Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = campaign station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14296 KiB  
Article
An Investigation of GNSS Radio Occultation Data Pattern for Temperature Monitoring and Analysis over Africa
by Usman Sa’i Ibrahim, Kamorudeen Aleem, Tajul Ariffin Musa, Terwase Tosin Youngu, Yusuf Yakubu Obadaki, Wan Anom Wan Aris and Kelvin Tang Kang Wee
NDT 2025, 3(2), 15; https://doi.org/10.3390/ndt3020015 - 18 Jun 2025
Viewed by 1484
Abstract
Climate change monitoring and analysis is a critical task that involves the consideration of both spatial and temporal dimensions. Theimproved spatial distribution of the global navigation satellite system (GNSS) ground-based Continuous Operating Reference (COR) stations can lead to enhanced results when coupled with [...] Read more.
Climate change monitoring and analysis is a critical task that involves the consideration of both spatial and temporal dimensions. Theimproved spatial distribution of the global navigation satellite system (GNSS) ground-based Continuous Operating Reference (COR) stations can lead to enhanced results when coupled with a continuous flow of data over time. In Africa, a significant number of COR stations do not operate continuously and lack collocation with meteorological sensors essential for climate studies. Consequently, Africa faces challenges related to inadequate spatial distribution and temporal data flow from GNSS ground-based stations, impacting climate change monitoring and analysis. This research delves into the pattern of GNSS radio occultation (RO) data across Africa, addressing the limitations of the GNSS ground-based data for climate change research. The spatial analysis employed Ripley’s F-, G-, K-, and L-functions, along with calculations of nearest neighbour and Kernel density. The analysis yielded a Moran’s p-value of 0.001 and a Moran’s I-value approaching 1.0. For temporal analysis, the study investigated the data availability period of selected GNSS RO missions. Additionally, it examined seasonal temperature variations from May 2001 to May 2023, showcasing alignment with findings from other researchers worldwide. Hence, this study suggests the utilisation of GNSS RO missions/campaigns like METOP and COSMIC owing to their superior spatial and temporal resolution. Full article
Show Figures

Figure 1

24 pages, 6441 KiB  
Article
A Wearable Sensor Node for Measuring Air Quality Through Citizen Science Approach: Insights from the SOCIO-BEE Project
by Nicole Morresi, Maite Puerta-Beldarrain, Diego López-de-Ipiña, Alex Barco, Oihane Gómez-Carmona, Carlos López-Gomollon, Diego Casado-Mansilla, Maria Kotzagianni, Sara Casaccia, Sergi Udina and Gian Marco Revel
Sensors 2025, 25(12), 3739; https://doi.org/10.3390/s25123739 - 15 Jun 2025
Viewed by 565
Abstract
Air pollution is a major environmental and public health challenge, especially in urban areas where fine-grained air quality data are essential to effective interventions. Traditional monitoring networks, while accurate, often lack spatial resolution and public engagement. This study presents a novel wearable wireless [...] Read more.
Air pollution is a major environmental and public health challenge, especially in urban areas where fine-grained air quality data are essential to effective interventions. Traditional monitoring networks, while accurate, often lack spatial resolution and public engagement. This study presents a novel wearable wireless sensor node (WSN) that was developed within the Horizon Europe SOCIO-BEE project to support air quality monitoring through citizen science (CS). The low-cost, body-mounted WSN measures NO2, O3, and PM2.5. Three pilot campaigns were conducted in Ancona (Italy), Maroussi (Greece), and Zaragoza (Spain), and involved diverse user groups—seniors, commuters, and students, respectively. PM2.5 sensor data were validated through two approaches: direct comparison with reference stations and spatial clustering analysis using K-means. The results show strong correlation with official PM2.5 data (R2 = 0.75), with an average absolute error of 0.54 µg/m3 and a statistical confidence interval of ±3.3 µg/m3. In Maroussi and Zaragoza, where no reference stations were available, the clustering approach yielded low intra-cluster coefficients of variation (CV = 0.50 ± 0.40 in Maroussi, CV = 0.28 ± 0.30 in Zaragoza), indicating that the measurements had high internal consistency and spatial homogeneity. Beyond technical validation, user engagement and perceptions were evaluated through pre-/post-campaign surveys. Across all pilots, over 70% of participants reported satisfaction with the system’s usability and inclusiveness. The findings demonstrate that wearable low-cost sensors, when supported by a structured engagement and data validation framework, can provide reliable, actionable air quality data, empowering citizens and informing evidence-based environmental policy. Full article
Show Figures

Figure 1

16 pages, 10369 KiB  
Article
A Portable Non-Motorized Smart IoT Weather Station Platform for Urban Thermal Comfort Studies
by Raju Sethupatu Bala, Salaheddin Hosseinzadeh, Farhad Sadeghineko, Craig Scott Thomson and Rohinton Emmanuel
Future Internet 2025, 17(5), 222; https://doi.org/10.3390/fi17050222 - 15 May 2025
Viewed by 851
Abstract
Smart cities are widely regarded as a promising solution to urbanization challenges; however, environmental aspects such as outdoor thermal comfort and urban heat island are often less addressed than social and economic dimensions of sustainability. To address this gap, we developed and evaluated [...] Read more.
Smart cities are widely regarded as a promising solution to urbanization challenges; however, environmental aspects such as outdoor thermal comfort and urban heat island are often less addressed than social and economic dimensions of sustainability. To address this gap, we developed and evaluated an affordable, scalable, and cost-effective weather station platform, consisting of a centralized server and portable edge devices to facilitate urban heat island and outdoor thermal comfort studies. This edge device is designed in accordance with the ISO 7726 (1998) standards and further enhanced with a positioning system. The device can regularly log parameters such as air temperature, relative humidity, globe temperature, wind speed, and geographical coordinates. Strategic selection of components allowed for a low-cost device that can perform data manipulation, pre-processing, store the data, and exchange data with a centralized server via the internet. The centralized server facilitates scalability, processing, storage, and live monitoring of data acquisition processes. The edge devices’ electrical and shielding design was evaluated against a commercial weather station, showing Mean Absolute Error and Root Mean Square Error values of 0.1 and 0.33, respectively, for air temperature. Further, empirical test campaigns were conducted under two scenarios: “stop-and-go” and “on-the-move”. These tests provided an insight into transition and response times required for urban heat island and thermal comfort studies, and evaluated the platform’s overall performance, validating it for nuanced human-scale thermal comfort, urban heat island, and bio-meteorological studies. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

21 pages, 6578 KiB  
Article
Canopy Transpiration Mapping in an Apple Orchard Using High-Resolution Airborne Spectral and Thermal Imagery with Weather Data
by Abhilash K. Chandel, Lav R. Khot, Claudio O. Stöckle, Lee Kalcsits, Steve Mantle, Anura P. Rathnayake and Troy R. Peters
AgriEngineering 2025, 7(5), 154; https://doi.org/10.3390/agriengineering7050154 - 14 May 2025
Viewed by 710
Abstract
Precision irrigation requires reliable estimates of crop evapotranspiration (ET) using site-specific crop and weather data inputs. Such estimates are needed at high resolutions which have been minimally explored for heterogeneous crops such as orchards. In addition, weather information for estimating ET is very [...] Read more.
Precision irrigation requires reliable estimates of crop evapotranspiration (ET) using site-specific crop and weather data inputs. Such estimates are needed at high resolutions which have been minimally explored for heterogeneous crops such as orchards. In addition, weather information for estimating ET is very often selected from sources that do not represent conditions like heterogeneous site-specific conditions. Therefore, a study was conducted to map geospatial ET and transpiration (T) of a high-density modern apple orchard using high-resolution aerial imagery, as well as to quantify the impact of site-specific weather conditions on the estimates. Five campaigns were conducted in the 2020 growing season to acquire small unmanned aerial system (UAS)-based thermal and multispectral imagery data. The imagery and open-field weather data (solar radiation, air temperature, wind speed, relative humidity, and precipitation) inputs were used in a modified energy balance (UASM-1 approach) extracted from the Mapping ET at High Resolution with Internalized Calibration (METRIC) model. Tree trunk water potential measurements were used as reference to evaluate T estimates mapped using the UASM-1 approach. UASM-1-derived T estimates had very strong correlations (Pearson correlation [r]: 0.85) with the ground-reference measurements. Ground reference measurements also had strong agreement with the reference ET calculated using the Penman–Monteith method and in situ weather data (r: 0.89). UASM-1-based ET and T estimates were also similar to conventional Landsat-METRIC (LM) and the standard crop coefficient approaches, respectively, showing correlation in the range of 0.82–0.95 and normalized root mean square differences [RMSD] of 13–16%. UASM-1 was then modified (termed as UASM-2) to ingest a locally calibrated leaf area index function. This modification deviated the components of the energy balance by ~13.5% but not the final T estimates (r: 1, RMSD: 5%). Next, impacts of representative and non-representative weather information were also evaluated on crop water uses estimates. For this, UASM-2 was used to evaluate the effects of weather data inputs acquired from sources near and within the orchard block on T estimates. Minimal variations in T estimates were observed for weather data inputs from open-field stations at 1 and 3 km where correlation coefficients (r) ranged within 0.85–0.97 and RMSD within 3–13% relative to the station at the orchard-center (5 m above ground level). Overall, the results suggest that weather data from within 5 km radius of orchard site, with similar topography and microclimate attributes, when used in conjunction with high-resolution aerial imagery could be useful for reliable apple canopy transpiration estimation for pertinent site-specific irrigation management. Full article
Show Figures

Graphical abstract

16 pages, 16221 KiB  
Article
Advancing Concrete Pavement Rehabilitation and Strategic Management Through Nondestructive Testing at Toll Stations
by Konstantinos Gkyrtis, Christina Plati and Andreas Loizos
Appl. Sci. 2025, 15(10), 5304; https://doi.org/10.3390/app15105304 - 9 May 2025
Viewed by 331
Abstract
In contrast to maintaining asphalt pavements, maintaining healthy and functional concrete pavements is a much greater challenge due to the especially brittle nature of concrete, which may require a more complex rehabilitation plan. Thanks to nondestructive testing, noninvasive on-site inspections can be carried [...] Read more.
In contrast to maintaining asphalt pavements, maintaining healthy and functional concrete pavements is a much greater challenge due to the especially brittle nature of concrete, which may require a more complex rehabilitation plan. Thanks to nondestructive testing, noninvasive on-site inspections can be carried out to assess a pavement’s condition, with the falling weight deflectometer (FWD) being the most representative example. In this study, five toll stations with concrete pavements in operation, for which no long-term monitoring protocols existed yet, were evaluated mainly with deflectometric tests using the FWD. The objective of the study was to propose a methodological framework to support responsible decision-makers in the strategic management of concrete pavements at toll stations. To meet this aim, a test campaign was organized to evaluate the pavement condition of individual slabs or lanes, assess the durability of the slabs, and determine the efficiency of load transfer across joints and cracks. As a key finding, pavement slab deflections were found to exhibit a considerable range; in particular, a range of 50–1450 μm for the maximum deflection of the FWD was observed. This finding stimulated a distribution fitting analysis to estimate characteristic values and thresholds for common deflection indicators that were validated on the basis of pavement design input data. Finally, the study proceeded with the development of a conceptual approach proposing evaluation criteria for individual slab assessment and the condition mapping of in-service concrete pavements. Full article
Show Figures

Figure 1

18 pages, 8367 KiB  
Article
Passive Seismic Surveys for a Simplified Experimental Dynamic Characterization of the Messina Bell Tower (Sicily, Italy)
by Sabrina Grassi, Sebastiano Imposa and Gabriele Morreale
Appl. Sci. 2025, 15(9), 4973; https://doi.org/10.3390/app15094973 - 30 Apr 2025
Viewed by 407
Abstract
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis [...] Read more.
This study proposes a simplified approach for the experimental dynamic characterization of the historic Messina Bell Tower (northeastern Sicily) using passive seismic single-station surveys. The Horizontal-to-Vertical Spectral Ratio (HVSR) analysis identified a site resonance frequency of approximately 1.06 Hz, while the Multichannel Analysis of Surface Waves (MASW) survey contributed to the characterization of the shear wave velocity profile, providing a coherent geophysical framework useful for structural dynamic analysis. Spectral ratios analysis revealed four distinct vibration modes, including a fundamental rocking mode (~1.4 Hz), a torsional mode (3.5 Hz), and two higher-frequencies flexural modes. The structure’s dynamic behavior, notably its sensitivity to torsion and rocking, is attributed to the deformable subsoil. Damping ratios estimated via the Random Decrement Method (RDM) were below 1%, consistent with the expected linear elastic response under ambient vibrations. The results show strong agreement with previous long-term monitoring, validating the effectiveness of passive seismic techniques for rapid, non-invasive assessment. This study demonstrates that streamlined, time-efficient methodologies are capable of delivering modal parameters consistent with those obtained from more extensive and resource-intensive monitoring campaigns, thereby providing a reliable and practical approach for the seismic vulnerability assessment of heritage structures. Full article
(This article belongs to the Special Issue Simplified Seismic Analysis of Complex Civil Structures)
Show Figures

Figure 1

11 pages, 4122 KiB  
Proceeding Paper
UKSBAS Testbed Performance Assessment of Two Years of Operations
by Javier González Merino, Fernando Bravo Llano, Michael Pattinson, Madeleine Easom, Juan Ramón Campano Hernández, Ignacio Sanz Palomar, María Isabel Romero Llapa, Sangeetha Priya Ilamparithi, David Hill and George Newton
Eng. Proc. 2025, 88(1), 35; https://doi.org/10.3390/engproc2025088035 - 21 Apr 2025
Viewed by 340
Abstract
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. [...] Read more.
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. The development of operational SBAS systems is in transition due to the extension of L1 SBAS services to new regions and the improvements expected by the introduction of dual frequency multi-constellation (DFMC) services, which allow the use of more core constellations such as Galileo and the use of ionosphere-free L1/L5 signal combination. The UKSBAS Testbed is a demonstration and feasibility project in the framework of ESA’s Navigation Innovation Support Programme (NAVISP), which is sponsored by the UK’s HMG with the participation of the Department for Transport and the UK Space Agency. UKSBAS Testbed’s main objective is to deliver a new L1 SBAS signal in space (SIS) from May 2022 in the UK region using Viasat’s Inmarsat-3F5 geostationary (GEO) satellite and Goonhilly Earth Station as signal uplink over PRN 158, as well as L1 SBAS and DFMC SBAS services through the Internet. SBAS messages are generated by GMV’s magicSBAS software and fed with data from the Ordnance Survey’s station network. This paper provides an assessment of the performance achieved by the UKSBAS Testbed during the last two years of operations at the SIS and user level, including a number of experimentation campaigns performed in the aviation and maritime domains, comprising ground tests at airports, flight tests on aircraft and sea trials on a vessel. This assessment includes, among others, service availability (e.g., APV-I, LPV-200), protection levels (PL), and position errors (PE) statistics over the service area and in a network of receivers. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

20 pages, 3590 KiB  
Article
Three-Dimensional Refractivity Model for Atmospheric Mitigation in Distance and Vertical Angle Measurements
by Raquel Luján, Luis García-Asenjo and Sergio Baselga
Sensors 2025, 25(7), 1981; https://doi.org/10.3390/s25071981 - 22 Mar 2025
Viewed by 444
Abstract
Atmospheric refraction is a significant challenge to accurate distance and angle measurements in open-air environments, often limiting the precision of measurements obtained using electro-optic geodetic instruments despite their nominal accuracies. This study introduces a novel model, 3D-RM, designed to mitigate atmospheric effects on [...] Read more.
Atmospheric refraction is a significant challenge to accurate distance and angle measurements in open-air environments, often limiting the precision of measurements obtained using electro-optic geodetic instruments despite their nominal accuracies. This study introduces a novel model, 3D-RM, designed to mitigate atmospheric effects on both distance and vertical angle measurements. The 3D-RM integrates in situ meteorological data from a network of automatic data-loggers, terrain information from a digital terrain model (DTM), and sensible heat flux from the fifth generation of European Centre for Medium-Range Weather Forecast reanalysis (ERA5), which is used in the application of the Turbulence Transfer Model (TTM) for estimating vertical refractivity gradients at various height levels. The model was tested with total station observations to 10 target points during two field campaigns. The results show that applying the model for distance correction leads to improvements in terms of closeness to reference values when compared to the standard method, which relies only on meteorological data collected at the station. Furthermore, the model has been additionally tested by removing the station meteorological data (3D-RM2). The results demonstrate that accurate corrections can be obtained even without the need of meteorological sensors specifically installed at the station point, which makes it more flexible. The 3D-RM is a cost-effective and relatively easy-to-implement solution, offering a promising alternative to existing methodologies, such as measuring meteorological values at both station and target points or the development of new instruments that can compensate the refractivity (such as a multiple-color electronic distance meter). Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

11 pages, 965 KiB  
Article
The Impact of Mandatory Helmet Laws on Urban Bike-Sharing and Sustainable Mobility in Prague
by Jan Střecha, Bettina Anker, Mark Romanelli and Louis Moustakas
Future Transp. 2025, 5(1), 33; https://doi.org/10.3390/futuretransp5010033 - 19 Mar 2025
Cited by 1 | Viewed by 1042
Abstract
Urban cycling has evolved significantly over the last decade, becoming a key component of many cities’ sustainability strategies, including Prague, which is the focus of this study. This research explores the potential impacts of the proposed mandatory helmet law (MHL) on urban cycling [...] Read more.
Urban cycling has evolved significantly over the last decade, becoming a key component of many cities’ sustainability strategies, including Prague, which is the focus of this study. This research explores the potential impacts of the proposed mandatory helmet law (MHL) on urban cycling in the city, particularly focusing on bike-sharing programs. While helmets are proven to reduce head injuries, mandatory laws may discourage cycling, counteracting efforts to promote sustainable transport. This study utilizes survey data from 448 urban cyclists to examine the relationship between helmet legislation, cycling rates, and sustainable mobility goals. Results indicate diverse attitudes towards helmet use, with many cyclists perceiving MHL as inconvenient, potentially leading to reduced cycling frequency. Bike-sharing users, less likely to wear helmets, may be particularly affected, risking a decline in spontaneous cycling and undermining Prague’s climate commitments. Potential actions, including educational campaigns, helmet availability at bike-share stations, and infrastructure improvements, could enhance safety while encouraging cycling. Full article
Show Figures

Figure 1

32 pages, 3700 KiB  
Article
A Study on the Suitability of In Situ Ocean Observing Systems Through Fixed Stations and Periodic Campaigns: The Importance of Sampling Frequency and Spatial Coverage
by Manuel Vargas-Yáñez, Cristina Alonso Moreno, Enrique Ballesteros Fernández, Silvia Sánchez Aguado, M. Carmen García Martínez, Yaovi Zounon, María Toboso Curtu, Araceli Martín Sepúlveda, Patricia Romero and Francina Moya Ruiz
Water 2025, 17(5), 620; https://doi.org/10.3390/w17050620 - 20 Feb 2025
Viewed by 583
Abstract
Monitoring the oceans and establishing a global ocean observing system is a task of paramount importance for topics as diverse as the study of climate change, the management of marine environments, and the safety of coastal areas and marine traffic. These systems must [...] Read more.
Monitoring the oceans and establishing a global ocean observing system is a task of paramount importance for topics as diverse as the study of climate change, the management of marine environments, and the safety of coastal areas and marine traffic. These systems must be based on long-term observations that allow the correct modeling of the behavior of the seas and the proper environmental management of them. Despite the logical present trend toward automation, in situ measurements from oceanographic vessels are still needed at present, especially when dealing with biogeochemical variables or when seeking information from the subsurface or deep layers of the sea. Long-term measurements by oceanographic vessels can be carried out at one single fixed oceanographic station with a high sampling frequency (typically once a month) or across a grid of stations. In the latter case a larger geographical area is usually covered, but the cost is a reduction of sampling frequency. The question that arises is: what objectives can be achieved, and what questions can be answered according to the sampling frequency and the spatial coverage of the monitoring program? In this work, we analyze the influence of the sampling frequency on the capacity of observing programs to capture the temporal variability of ocean variables at different time scales and to estimate average seasonal cycles and long-term trends. This analysis is conducted through the study of sea surface chlorophyll concentrations in the Western Mediterranean. The trade-off between sampling frequency and spatial coverage is addressed. For this purpose, a monitoring program in the Spanish Mediterranean waters is used as a case study. We show that monthly and fortnightly intervals are the best sampling frequencies for describing the temporal variability of ocean variables as well as their average seasonal cycles. Quarterly sampling could also be appropriate for estimating such seasonal cycles. Surprisingly, the limitations of these low frequency samplings do not arise from the high frequency variability of ocean variables but from the shape of the seasonal cycles. Both high and low frequency sampling designs could be suitable for detecting long-linear trends, depending on the variance of the noise and that of the trend. In the case of quarterly sampling, we show that some statistics improve with the length of the time series, whereas others do not. Although some results may be related to the dynamics of this region, the results are generally applicable to any other marine monitoring system. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

27 pages, 5777 KiB  
Article
Fiducial Reference Measurements for Greenhouse Gases (FRM4GHG): Validation of Satellite (Sentinel-5 Precursor, OCO-2, and GOSAT) Missions Using the COllaborative Carbon Column Observing Network (COCCON)
by Mahesh Kumar Sha, Saswati Das, Matthias M. Frey, Darko Dubravica, Carlos Alberti, Bianca C. Baier, Dimitrios Balis, Alejandro Bezanilla, Thomas Blumenstock, Hartmut Boesch, Zhaonan Cai, Jia Chen, Alexandru Dandocsi, Martine De Mazière, Stefani Foka, Omaira García, Lawson David Gillespie, Konstantin Gribanov, Jochen Gross, Michel Grutter, Philip Handley, Frank Hase, Pauli Heikkinen, Neil Humpage, Nicole Jacobs, Sujong Jeong, Tomi Karppinen, Matthäus Kiel, Rigel Kivi, Bavo Langerock, Joshua Laughner, Morgan Lopez, Maria Makarova, Marios Mermigkas, Isamu Morino, Nasrin Mostafavipak, Anca Nemuc, Timothy Newberger, Hirofumi Ohyama, William Okello, Gregory Osterman, Hayoung Park, Razvan Pirloaga, David F. Pollard, Uwe Raffalski, Michel Ramonet, Eliezer Sepúlveda, William R. Simpson, Wolfgang Stremme, Colm Sweeney, Noemie Taquet, Chrysanthi Topaloglou, Qiansi Tu, Thorsten Warneke, Debra Wunch, Vyacheslav Zakharov and Minqiang Zhouadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(5), 734; https://doi.org/10.3390/rs17050734 - 20 Feb 2025
Cited by 1 | Viewed by 1345
Abstract
The COllaborative Carbon Column Observing Network has become a reliable source of high-quality ground-based remote sensing network data that provide column-averaged dry-air mole fractions of carbon dioxide (XCO2), methane (XCH4), and carbon monoxide (XCO). The fiducial reference measurements of [...] Read more.
The COllaborative Carbon Column Observing Network has become a reliable source of high-quality ground-based remote sensing network data that provide column-averaged dry-air mole fractions of carbon dioxide (XCO2), methane (XCH4), and carbon monoxide (XCO). The fiducial reference measurements of these gases from the COCCON complement the TCCON and NDACC-IRWG data. This study shows the application of COCCON data for the validation of existing greenhouse gas satellite products. This study includes the validation of XCH4 and XCO products from the European Copernicus Sentinel-5 Precursor (S5P) mission, XCO2 products from the American Orbiting Carbon Observatory-2 (OCO-2) mission, and XCO2 and XCH4 products from the Japanese Greenhouse gases Observing SATellite (GOSAT). A total of 27 datasets contributed to this study; some of these were collected in the framework of campaign activities and covered only a short time period. In addition, several permanent stations provided long-term observations. The random uncertainties in the validation results, specifically for S5P with a lot of coincidences pairs, are found to be similar to the comparison with the TCCON. The comparison results of OCO-2 land nadir and land glint observation modes to the COCCON on a global scale, despite limited coincidences, are very promising. The stations can, therefore, expand on the coverage of the already existing ground-based reference remote sensing sites from the TCCON and the NDACC network. The COCCON data can be used for future satellite and model validation studies and carbon cycle studies. Full article
Show Figures

Figure 1

29 pages, 28035 KiB  
Article
A New Earth Crustal Velocity Field Estimation from ROA cGNSS Station Networks in the South of Spain and North Africa
by David Rodríguez Collantes, Abel Blanco Hernández, María Clara de Lacy Pérez de los Cobos, Jesús Galindo-Zaldivar, Antonio J. Gil, Manuel Ángel Sánchez Piedra, Mohamed Mastere and Ibrahim Ouchen
Remote Sens. 2025, 17(4), 704; https://doi.org/10.3390/rs17040704 - 19 Feb 2025
Viewed by 738
Abstract
The convergence zone of the Eurasian (EURA) and North Africa plate (NUBIA) is primarily marked by the activity between the Betics in south of Spain and the Rif and Atlas in Morocco. This area, where the diffuse tectonics between these plates are currently [...] Read more.
The convergence zone of the Eurasian (EURA) and North Africa plate (NUBIA) is primarily marked by the activity between the Betics in south of Spain and the Rif and Atlas in Morocco. This area, where the diffuse tectonics between these plates are currently converging in a NW-SE direction, presents several continuous fault zones, such as the Betic–Alboran–Rif shear zone. The Royal Institute and Observatory of the Spanish Navy (ROA) currently operates geodetic stations in various parts of North Africa, some in particularly interesting locations, such as the Alhucemas (ALHU) rock, and also in more stable areas within the Nubian plate, such as Tiouine (TIOU). For the first time, the displacement velocities of the ROA CGNSS stations have been estimated to provide additional geodynamic information in an area with few stations. The obtained velocities have been compared with other recent studies in this field that included data older than 10 years or episodic campaigns without continuous stations. PRIDE (3.1.2) and SARI (February, 2025) software were used for processing, and the velocities were obtained by the ROA for international stations (RABT, SFER, MALA, HUEL, LAGO, TARI, and ALME). These initial results confirm the convergence trend between Eurasia and Nubia of approximately 4 mm/year in the NW-SE direction. It is also evident that there is independent behavior among the Atlas stations and those in the Moroccan Meseta compared to those located in the Rif mountain range, which could indicate the separation of smaller tectonic domains within the continental plate convergence zone. Along the Rif coast in Al Hoceima Bay, the faults are being approached; additionally, there is a slight clockwise displacement towards Melilla, which has also been demonstrated by stations in the Middle Atlas, such as TAZA. As for the stations in the Strait of Gibraltar, they exhibit a similar behavior until reaching the diffuse zone of the Guadalquivir basin where the diffuse convergence zone may exist. This may explain why stations to the north of the basin, such as LIJA or HUEL, change their behavior compared to nearby ones like SFER in the south. Furthermore, Alboran seems to follow the same displacement in direction and velocity as the other stations in North Africa and southern Spain. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

29 pages, 14374 KiB  
Article
Assessment of Heavy Metals in Surface Waters of the Santiago–Guadalajara River Basin, Mexico
by Rosa Leonor González-Díaz, José de Anda, Harvey Shear, Luis Eduardo Padilla-Tovar, Ofelia Yadira Lugo-Melchor and Luis Alberto Olvera-Vargas
Hydrology 2025, 12(2), 37; https://doi.org/10.3390/hydrology12020037 - 17 Feb 2025
Cited by 2 | Viewed by 2103
Abstract
The Santiago–Guadalajara River Basin has an area of 10,016.46 km2. The Metropolitan Area of Guadalajara, within the basin, is the second-largest city in the country, with more than 5 million inhabitants. The growth of the urban population, as well as industrial [...] Read more.
The Santiago–Guadalajara River Basin has an area of 10,016.46 km2. The Metropolitan Area of Guadalajara, within the basin, is the second-largest city in the country, with more than 5 million inhabitants. The growth of the urban population, as well as industrial and agricultural activities with insufficient infrastructure for the sanitation of wastewater and its reuse, have caused environmental deterioration of surface waters and gradual depletion of groundwater resources. To assess the level of contamination in surface waters from the presence of heavy metals in the basin, a monthly monitoring campaign was carried out at 25 sampling stations located in the main and tributary streams from July 2021 to April 2022. The following decreasing sequence was found according to the mean concentration values: Fe > Al > Mn > B > Ba > Zn > As > Cu > Cr > Ni > Pb > Cd. The Heavy Metal Pollution Index (HPI) method was applied to assess the level of risk to aquatic life, finding an average global HPI value of 305.522 for the basin, which classifies it as in the critical contamination range. The results also reflect health risks due to the presence of As, Cd, and Ni in some monitored stations. It will be necessary to expand the monitoring network, identify the point and non-point sources of contamination, and implement measures for pollution control to protect aquatic life and human health due to the presence of heavy metals in the river. Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
Show Figures

Figure 1

12 pages, 6336 KiB  
Data Descriptor
An Open Database of the Internal and Surface Temperatures of a Reinforced-Concrete Slab-on-I-Beam Section
by Pedro Cavadia, José M. Benjumea, Oscar Begambre, Edison Osorio and María A. Mantilla
Data 2025, 10(2), 21; https://doi.org/10.3390/data10020021 - 4 Feb 2025
Viewed by 1187
Abstract
Due to climate change, the temperature monitoring of reinforced-concrete (RC) structures is becoming critical for preventive maintenance and extending their lifespan. Significant temperature variations in RC elements can affect their natural frequencies and modulus of elasticity or generate abnormal stress levels, potentially leading [...] Read more.
Due to climate change, the temperature monitoring of reinforced-concrete (RC) structures is becoming critical for preventive maintenance and extending their lifespan. Significant temperature variations in RC elements can affect their natural frequencies and modulus of elasticity or generate abnormal stress levels, potentially leading to structural damage. Data from thermal monitoring systems are invaluable for testing and validating numerical methodologies for estimating internal thermal responses and aiding in prevention/maintenance decision making. Despite its importance, few experimental outdoor data on the internal and external temperatures of concrete structures are available. This study presents a comprehensive dataset from a 120-day temperature-monitoring campaign on a 1.2 m long reinforced-concrete slab-on-I-beam model under tropical conditions in Bucaramanga, Colombia. The monitoring system measured the internal temperatures at 40 points using embedded thermocouples, while the surface temperatures were recorded with handheld and drone-mounted thermal cameras. Simultaneously, the ambient temperature, solar radiation, rainfall, wind velocity, and other parameters were monitored using a weather station. The instrumentation ensured the synchronization and high spatial resolution of the thermal data. The data, collected at 30 min intervals, are openly available in CSV format, offering valuable resources for validating numerical models, studying thermal gradients, and enhancing structural health-monitoring frameworks. Full article
Show Figures

Figure 1

22 pages, 11315 KiB  
Article
Investigation of the Ionospheric Effects of the Solar Eclipse of April 8, 2024 Using Multi-Instrument Measurements
by Aritra Sanyal, Bhuvnesh Brawar, Sovan Kumar Maity, Shreyam Jana, Jean Marie Polard, Peter Newton, George S. Williams, Stelios M. Potirakis, Haris Haralambous, Georgios Balasis, James Brundell, Pradipta Panchadhyayee, Abhirup Datta, Ajeet K. Maurya, Saibal Ray and Sudipta Sasmal
Atmosphere 2025, 16(2), 161; https://doi.org/10.3390/atmos16020161 - 31 Jan 2025
Cited by 1 | Viewed by 1275
Abstract
Solar eclipses present a valuable opportunity for controlled in situ ionosphere studies. This work explores the response of the upper atmosphere’s F-layer during the total eclipse of 8 April 2024, which was primarily visible across North and South America. Employing a multi-instrument approach, [...] Read more.
Solar eclipses present a valuable opportunity for controlled in situ ionosphere studies. This work explores the response of the upper atmosphere’s F-layer during the total eclipse of 8 April 2024, which was primarily visible across North and South America. Employing a multi-instrument approach, we analyze the impact on the ionosphere’s Total Electron Content (TEC) and Very Low Frequency (VLF) signals over a three-day period encompassing the eclipse (7–9 April 2024). Ground-based observations leverage data from ten International GNSS Service (IGS)/Global Positioning System (GPS) stations and four VLF stations situated along the eclipse path. We compute vertical TEC (VTEC) alongside temporal variations in the VLF signal amplitude and phase to elucidate the ionosphere’s response. Notably, the IGS station data reveal a decrease in VTEC during the partial and total solar eclipse phases, signifying a reduction in ionization. While VLF data also exhibit a general decrease, they display more prominent fluctuations. Space-based observations incorporate data from Swarm and COSMIC-2 satellites as they traverse the eclipse path. Additionally, a spatiotemporal analysis utilizes data from the Global Ionospheric Map (GIM) database and the DLR’s (The German Aerospace Center’s) database. All space-based observations consistently demonstrate a significant depletion in VTEC during the eclipse. We further investigate the correlation between the percentage change in VTEC and the degree of solar obscuration, revealing a positive relationship. The consistent findings obtained from this comprehensive observational campaign bolster our understanding of the physical mechanisms governing ionospheric variability during solar eclipses. The observed depletion in VTEC aligns with the established principle that reduced solar radiation leads to decreased ionization within the ionosphere. Finally, geomagnetic data analysis confirms that external disturbances do not significantly influence our observations. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

Back to TopTop