Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,957)

Search Parameters:
Keywords = calcium determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4221 KB  
Article
Polyphenolic Profile and Antioxidant and Aortic Endothelium Effect of Michay (Berberis congestiflora Gay) Collected in the Araucanía Region of Chile
by Fredi Cifuentes, Javier Palacios, Astrid Lavado, Javier Romero-Parra, Adrián Paredes and Mario J. Simirgiotis
Plants 2026, 15(3), 352; https://doi.org/10.3390/plants15030352 - 23 Jan 2026
Abstract
Berries are an excellent source of bioactive compounds, particularly polyphenols, and have been widely used in folk medicine by the Mapuche people of southern Chile. In this study, a hydroalcoholic extract of Berberis congestiflora Gay (BE) was analyzed to determine its phytochemical composition [...] Read more.
Berries are an excellent source of bioactive compounds, particularly polyphenols, and have been widely used in folk medicine by the Mapuche people of southern Chile. In this study, a hydroalcoholic extract of Berberis congestiflora Gay (BE) was analyzed to determine its phytochemical composition and to evaluate its antioxidant capacity, vasorelaxant effects in rat aortas, and inhibitory activity on enzymes related to chronic non-communicable diseases, including exploration of a possible vasodilatory mechanism in isolated rat aortas. Antioxidant activity was assessed using Oxygen Radical Absorbance Capacity (ORAC), DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid)) radical scavenging assays, as well as ferric reducing antioxidant power (FRAP). Vascular responses to the Berberis extract were studied using isometric tension recordings in an ex vivo rat thoracic aortic ring model, and the chemical constituents of BE were identified for the first time by HPLC-DAD-MS. The extract itself produced a dose-dependent contraction at 100 and 1000 µg/mL and induced relaxation in phenylephrine-precontracted aortas at the same concentrations, with a maximum contraction of 71% and maximum relaxation of 70% at 1000 µg/mL. Mechanistically, the extract triggered calcium-mediated contraction primarily through calcium release from the sarcoplasmic reticulum and, to a lesser degree, via extracellular Ca2+ influx, while its relaxant effect depended on an intact endothelium and activation of the NO/cGMP pathway. In addition, the extract showed inhibitory activity against cholinesterase, glucosidase, and amylase, with IC50 values of 7.33 ± 0.32, 243.23 ± 0.3, and 27.21 ± 0.03 µg/mL, respectively, and docking studies were carried out for selected berry compounds. Overall, these findings indicate that these berries are a rich source of bioactive constituents with antioxidant properties and endothelium-dependent vasodilator effects, supporting their traditional use and highlighting their potential as enzyme inhibitors and as promising candidates for the development of phytotherapeutic products, particularly as supplements for chronic disease management. Full article
Show Figures

Figure 1

27 pages, 624 KB  
Review
Nutrition in Perinatal Midwifery Care: A Narrative Review of RCTs, Current Practices, and Future Directions
by Artemisia Kokkinari, Maria Dagla, Kleanthi Gourounti, Evangelia Antoniou, Nikoleta Tsinisizeli, Evangelos Tzamakos and Georgios Iatrakis
Healthcare 2026, 14(2), 283; https://doi.org/10.3390/healthcare14020283 - 22 Jan 2026
Abstract
Background: Nutrition during the perinatal period, including pregnancy, childbirth, postpartum, and lactation, is a critical determinant of maternal and neonatal health. While the importance of balanced nutrition is well established, the integration of nutritional counseling into midwifery care remains inconsistent across settings. Evidence [...] Read more.
Background: Nutrition during the perinatal period, including pregnancy, childbirth, postpartum, and lactation, is a critical determinant of maternal and neonatal health. While the importance of balanced nutrition is well established, the integration of nutritional counseling into midwifery care remains inconsistent across settings. Evidence suggests that midwives are uniquely positioned to deliver nutrition-related support, yet gaps persist in their formal training and in the availability of structured guidance. These gaps are particularly evident in certain regions, such as Greece, where dedicated national guidelines for perinatal nutrition are lacking. Methods: This systematized narrative review synthesises evidence from studies published between 2010 and 2025, retrieved through PubMed, CINAHL, Scopus, and relevant national guidelines. Although the synthesis draws on diverse study designs to provide contextual depth, randomized controlled trials (RCTs) were prioritized and synthesized separately to evaluate the effectiveness of midwife-led interventions. In total, ten randomized controlled trials were included in the evidence synthesis, alongside additional observational and qualitative studies that informed the narrative analysis. Both international and Greek literature were examined to capture current practices, challenges, and knowledge gaps in the nutritional dimension of midwifery care. Results: Findings indicate that adequate intake of macronutrients and micronutrients, including iron, folic acid, vitamin D, iodine, calcium, and omega-3 fatty acids, is essential for optimal maternal and neonatal outcomes. Despite this, studies consistently report insufficient nutritional knowledge among midwives, limited confidence in providing counseling, and variability in clinical practice. Socio-cultural factors, such as dietary traditions and migration-related challenges, further influence nutritional behaviors and access to guidance. Emerging approaches, including e-health tools, group counseling models, and continuity-of-care frameworks, show promise in enhancing midwives’ capacity to integrate nutrition into perinatal care. Conclusion: Nutrition is a cornerstone of perinatal health, and midwives are strategically placed to address it. However, gaps in training, inconsistent guidelines, and cultural barriers limit the effectiveness of current practices. Strengthening midwifery education in nutrition, developing context-specific tools, and fostering interdisciplinary collaboration are essential steps toward more comprehensive and culturally sensitive perinatal care. Future research should focus on longitudinal and intervention studies that assess the impact of midwife-led nutritional counseling on maternal and neonatal outcomes. Full article
(This article belongs to the Section Healthcare and Sustainability)
Show Figures

Figure 1

39 pages, 488 KB  
Review
A Decade-Old Atlas of TMEM (Transmembrane) Protein Family in Lung Cancer: Lessons Learnt and Future Directions
by Siwei Zhang, Guojie Cao, Xuelin Hu, Chen Chen and Peng Chen
Int. J. Mol. Sci. 2026, 27(2), 1120; https://doi.org/10.3390/ijms27021120 - 22 Jan 2026
Abstract
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP [...] Read more.
A growing body of work has linked the dysregulation of transmembrane (TMEM) proteins to the proliferation, metastasis, drug resistance, and tumor microenvironment remodeling of lung cancer, the leading global cause of cancer mortality. Renamed members such as STING1 (stimulator of interferon response cGAMP interactor 1, TMEM173), ANO1 (anoctamin-1, TMEM16A), ORAI1 (ORAI calcium release-activated calcium modulator 1, TMEM142A), ORAI3 (TMEM142C), and NDC1 (NDC1 transmembrane nucleoporin, TMEM48) are among the most extensively studied ones. Mechanisms of TMEM dysregulation in lung cancer span the modulation of Ca2+ influx, lysosomal exocytosis, ferroptosis, Wnt and β-catenin signaling, and immune cell infiltration and immune checkpoint rewiring, among others. Epigenetic silencing and targetable fusions (i.e., TMEM106B-ROS1 and TMEM87A-RASGRF1) create DNA-level vulnerabilities, while miRNA sponges offer RNA-level druggability. A subset of studies revealed context-specific expression (endothelial, B cell, and hypoxic EV) that can be exploited to remodel the tumor microenvironment. One study specifically focused on how isoform-specific expression and localization of TMEM88 determine its functional impact on tumor progression. Yet for most TMEMs, only pre-clinical or early-phase data exist, with many supported by a single study lacking independent validation. This review brings together scattered evidence on TMEM proteins in lung cancer, with the aim of guiding future work on their possible use as biomarkers or therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
17 pages, 4910 KB  
Article
Proteomic Variation in Two Genotypes of Bitter Gourd During Cold Acclimation
by Kai Yan, Yu Ning, Lihong Su, Hai Xu, Zhenlu Lv, Yang Wang, Longzheng Chen and Huashan Lian
Horticulturae 2026, 12(1), 123; https://doi.org/10.3390/horticulturae12010123 - 22 Jan 2026
Abstract
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in [...] Read more.
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in bitter gourd could facilitate the development of cold-resistant cultivars via genetic engineering or molecular breeding. In this study, a cold-tolerant (CT) and a cold-sensitive (CS) inbred line of bitter gourd were used to investigate proteomic differences under cold stress. Before cold stress, 504 differentially accumulated proteins (DAPs) were identified, with 123 up-accumulated in CT plants compared to CS plants. Upon exposure to cold stress, these numbers changed to 388 DAPs (259 up-accumulated in CT) at 6 h and further to 649 DAPs (415 up-accumulated in CT) at 24 h. K-means cluster analysis identified 65 cold-stress response proteins that may contribute to cold tolerance in CT plants, including evm.TU.chr4.3733 (Proline dehydrogenase 1), evm.TU.chr10.115 (Delta(1)-pyrroline-2-carboxylate reductase), and evm.TU.chr10.815 (Calcium-dependent protein kinase 3). Glucose and starch levels remained stable in both CS and CT plants during cold stress, and the baseline concentration of glucose was consistently and significantly higher in CT plants than in CS plants. Before cold stress, proline content was similar in both CT and CS plants. Following 6 h of cold stress, CS plants accumulated significantly higher proline levels than CT plants. This trend, however, reversed after 24 h, with proline content becoming significantly lower in CS plants. Differential protein accumulation between CT and CS plants under cold stress reflects their distinct responses, with core DAPs serving as key functional determinants of enhanced cold tolerance in the CT genotype. This study revealed important proteomic data underlying the cold stress response in bitter gourd. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

22 pages, 14490 KB  
Article
Mechanical Behavior and Pollutant Stabilization of Modified Basalt Fiber-Reinforced Bio-Cemented Phosphogypsum
by Gan Nan, Jiaming Zhang and Kai Liu
Buildings 2026, 16(2), 455; https://doi.org/10.3390/buildings16020455 - 22 Jan 2026
Abstract
To facilitate the large-scale recycling of phosphogypsum (PG) as a construction material and mitigate the environmental safety concerns associated with its stockpiling or discharge, this study proposes an innovative approach. The method employs modified (acid-treated) basalt fibers (MBF) synergistically combined with microbially induced [...] Read more.
To facilitate the large-scale recycling of phosphogypsum (PG) as a construction material and mitigate the environmental safety concerns associated with its stockpiling or discharge, this study proposes an innovative approach. The method employs modified (acid-treated) basalt fibers (MBF) synergistically combined with microbially induced carbonate precipitation (MICP) technology for PG solidification. This synergistic MBF–MICP treatment not only enhances the strength and further improves the toughness of the solidified PG but also effectively immobilizes heavy metals within the PG matrix. Bacterial attachment tests conducted on fibers subjected to various pretreatment conditions revealed that the maximum bacterial adhesion occurred on fibers treated with a 1 mol/L acid concentration for 2 h at 40 °C. However, MICP mineralization experiments performed on these pretreated fibers determined the optimal pretreatment conditions for mineralization efficiency to be an acid concentration of 0.93 mol/L, a treatment duration of 0.96 h, and a temperature of 30 °C. Unconfined compressive strength (UCS) tests and calcium carbonate content measurements identified the optimal reinforcement parameters for MBF–MICP-solidified PG as a fiber length of 9 mm and a fiber dosage of 0.4%. Furthermore, comparative analysis demonstrated that the UCS and toughness of MBF–MICP-solidified PG were superior to those of bio-cemented PG specimens treated with unmodified fibers or without any fiber reinforcement. It was found by scanning electron microscopy that there was an obvious phosphogypsum particle-fiber-calcium carbonate precipitation interface in the sample, and the fiber had a bridging effect. Finally, heavy metal leaching tests conducted on the solidified PG confirmed that the leached heavy metal concentrations were below the detection limit, complying with national discharge standards. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 1861 KB  
Article
Differential Expression of S100A Genes in hDPSCs Following Stimulation with Two Hydraulic Calcium Silicate Cements: A Laboratory Investigation
by Holger Jungbluth, Diana Lalaouni, Jochen Winter, Søren Jepsen and Dominik Kraus
J. Funct. Biomater. 2026, 17(1), 55; https://doi.org/10.3390/jfb17010055 - 21 Jan 2026
Abstract
Hydraulic calcium silicate cements (HCSCs) are contemporary materials in vital pulp therapy (VPT) and regenerative endodontic therapy (RET) due to their favorable effects on pulpal and periodontal cells, including cell differentiation and hard tissue formation. Recent studies also indicated the involvement of several [...] Read more.
Hydraulic calcium silicate cements (HCSCs) are contemporary materials in vital pulp therapy (VPT) and regenerative endodontic therapy (RET) due to their favorable effects on pulpal and periodontal cells, including cell differentiation and hard tissue formation. Recent studies also indicated the involvement of several S100A proteins in inflammatory, differentiation, and mineralization processes of the pulp. The aim of the present study was to investigate the effects of HCSCs on S100A gene expression in human dental pulp stem cells (hDPSCs). Human DPSCs were isolated and characterized by multi-lineage stem-cell markers and differentiation protocols. In stimulation experiments hDPSCs were exposed to ProRoot®MTA, Biodentine®, IL-1β, and dexamethasone. Cell viability was determined by XTT assay. IL-6 and IL-8 mRNA expression was measured to analyze proinflammatory response. In addition, odontogenic differentiation and biomineralization assays were conducted (DSPP- and ALP-mRNA expression, ALP activity, and Alizarin Red staining). Differential expression of 13 S100A genes was examined using qPCR. Low concentrations of HCSCs enhanced the proliferation of hDPSCs, whereas higher concentrations exhibited cytotoxic effects. HCSCs induced a pro-inflammatory response and led to odontogenic differentiation and biomineralization. This was accompanied by significant alterations in the expression levels of various S100A genes. ProRoot®MTA and Biodentine® significantly affect the expression of several S100A genes in hDPSCs, supporting their role in inflammation, differentiation, and mineralization. These findings indicate a link between the effects of HCSCs on human pulp cells during VPT or RET and S100A proteins. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

21 pages, 10017 KB  
Article
Calcium-Modified Coal-Based Humin Waste Residue: Enhanced Cadmium Remediation in Combined Soil–Plant Systems
by Fei Wang, Nan Guo, Yuxin Ma, Zhi Yuan, Xiaofang Qin, Yun Jia, Guixi Chen, Haokai Yu, Ping Wang and Zhanyong Fu
Sustainability 2026, 18(2), 1103; https://doi.org/10.3390/su18021103 - 21 Jan 2026
Abstract
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) [...] Read more.
Coal-based humic acid waste residue is a solid waste generated during the production of humic acid products. The extraction of coal-based humin (NHM) from such residues presents an effective approach for solid waste resource recovery. In this study, a novel calcium-based humin (Ca-NHM) was synthesized via a low-temperature-assisted method. The material was characterized and its cadmium passivation mechanism was investigated using scanning electron microscopy (SEM), zeta potential analysis (Zeta), carbon nuclear magnetic resonance (13C-CPMAS-NMR), and X-ray photoelectron spectroscopy (XPS). Soil incubation experiments were conducted to determine the actual cadmium adsorption capacity of coal-based humin in soils and to evaluate the stability of cadmium passivation. Plant cultivation experiments were carried out to verify the effects of coal-based humin on migration and transformation in soil, as well as on cadmium bioefficiency. The results showed that Ca-NHM passivated soil cadmium through multiple mechanisms such as ion exchange, electrostatic adsorption, complexation reactions, and physical adsorption. Compared with NHM, Ca-NHM exhibited a 69.71% increase in passivation efficiency, and a 2.44% reduction in cadmium leaching concentration. In Ca-NHM treatments, the above- and below-ground biomass of pakchoi increased by 18.06%, and 80.95%, respectively, relative to the control group. Furthermore, Ca-NHM enhanced the cadmium resistance of pakchoi, reduced the enrichment coefficient, activity coefficient, and activity-to-stability ratio in the above-ground portion of pakchoi, and maintained a transfer coefficient below 1, thereby alleviating cadmium toxicity. In summary, this study provides a theoretical foundation for understanding the mechanisms by which coal-based humin mitigates cadmium toxicity in pakchoi. Full article
(This article belongs to the Special Issue Sustainable Risk Assessment and Remediation of Soil Pollution)
Show Figures

Figure 1

26 pages, 9144 KB  
Article
Utilization of Demolition Waste Enhanced with Sewage Sludge Ash and Calcium Carbide Slag for Sustainable Road Base Construction
by Muhammet Çelik
Appl. Sci. 2026, 16(2), 1089; https://doi.org/10.3390/app16021089 - 21 Jan 2026
Abstract
Concrete waste generated from the demolition of structures constitutes a significant source of waste worldwide. Recycled concrete aggregates (RCA) obtained from this waste exhibit disadvantages such as high porosity and low mechanical strength; therefore, they are not used in pavement structures without improvement. [...] Read more.
Concrete waste generated from the demolition of structures constitutes a significant source of waste worldwide. Recycled concrete aggregates (RCA) obtained from this waste exhibit disadvantages such as high porosity and low mechanical strength; therefore, they are not used in pavement structures without improvement. This study investigates the feasibility of using RCA improved with waste-based stabilizers as highway subbase material. RCA was used as fine aggregate and blended with basalt aggregate (BA) at different replacement ratios. The mixtures were subjected to California Bearing Ratio (CBR) tests to determine the optimum RCA content. Subsequently, unconfined compressive strength (UCS) tests were conducted using calcium carbide slag (CCS) as an activator and sewage sludge ash (SSA) as pozzolanic material at various proportions. The experimental results indicated that the mixture containing 35% RCA exhibited the most favorable performance, while higher RCA contents resulted in significant reduction in CBR values. The highest UCS value was obtained in the mixture containing 30% waste additive by weight of RCA with a CCS:SSA ratio of 3:7. For this mixture, CBR reached 315%, and displacement measured in the cyclic plate loading test under a load of 35 kN was 2.5 mm. This mixture provides sustainable and mechanically suitable alternatives for highway subbase applications. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

10 pages, 982 KB  
Article
Comparative Kinetic Study of Phenol Degradation Using Free and Alginate-Gel-Entrapped Extract Containing Tyrosinase from Agaricus bisporus
by Saida Leboukh and Hicham Gouzi
Catalysts 2026, 16(1), 102; https://doi.org/10.3390/catal16010102 - 20 Jan 2026
Abstract
The aim of this study was to investigate the biochemical properties of free and immobilized mushroom tyrosinase (EC 1.14.18.1) entrapped in calcium alginate beads for phenol oxidation in a batch system. Tyrosinase activity was determined spectrophotometrically at 400 nm under optimal conditions. The [...] Read more.
The aim of this study was to investigate the biochemical properties of free and immobilized mushroom tyrosinase (EC 1.14.18.1) entrapped in calcium alginate beads for phenol oxidation in a batch system. Tyrosinase activity was determined spectrophotometrically at 400 nm under optimal conditions. The effects of key operational parameters on phenol oxidation kinetics were evaluated for both enzyme systems. The Michaelis–Menten constant (KM) of the immobilized enzyme (0.94 ± 0.2 mM) was approximately twice that of the free enzyme (0.56 ± 0.04 mM), while its maximum reaction velocity (VMax = 101.4 ± 2.2 µmol L−1 min−1) decreased by nearly 30-fold (VMax(App) = 3.63 ± 0.3 µmol L−1 min−1). Immobilization also shifted the optimal pH of the enzyme to pH 6.0. The optimum temperature and activation energy for phenol oxidation were determined as 55 °C and 52.48 kJ/mol for immobilized tyrosinase, whereas they were 45 °C and 39.58 kJ/mol for the free enzyme. The highest level of activity was obtained with alginate beads of 2.6 mm diameter, and the immobilized preparation exhibited enhanced operational stability, completely retaining its initial activity after five reuse cycles. Overall, these findings suggest that mushroom tyrosinase immobilized in alginate beads is a promising system for phenol removal from wastewater. Full article
Show Figures

Figure 1

21 pages, 3422 KB  
Article
Synergistic Effects of 25-Hydroxyvitamin D3, Phytase, and Probiotics on Growth, Calcium and Phosphorus Metabolism, and Bone Development in Weaned Piglets Fed Low Ca-P Diets
by Baoshi Shi, Saiming Gong, Zhenyang Wang, Jingjing Wang, Cunji Shui, Zhiru Tang, Xie Peng, Yetong Xu and Zhihong Sun
Animals 2026, 16(2), 278; https://doi.org/10.3390/ani16020278 - 16 Jan 2026
Viewed by 102
Abstract
Seventy 28-day-old weaned barrow piglets (Duroc × Landrace × Large White; 7.2 ± 0.20 kg) were used to determine the effects of 25-hydroxyvitamin D3 (25-OH-VD3) combined with phytase and probiotics on calcium and phosphorus metabolism and bone development. Five dietary [...] Read more.
Seventy 28-day-old weaned barrow piglets (Duroc × Landrace × Large White; 7.2 ± 0.20 kg) were used to determine the effects of 25-hydroxyvitamin D3 (25-OH-VD3) combined with phytase and probiotics on calcium and phosphorus metabolism and bone development. Five dietary groups were tested: basal diet + 50 µg/kg 25-OH-VD3 (CON); basal diet with 17% reduced calcium and phosphorus + 50 µg/kg 25-OH-VD3 (LCP); LCP + 50 mg/kg phytase (LH); LCP + 10 mg/kg probiotics (LC); LCP + 50 mg/kg phytase + 10 mg/kg probiotics (LHC). The experiment lasted for 31 days, including 3 days adaptation period. Apparent phosphorus digestibility was higher in the LH and LHC groups than in the CON group (p < 0.05). Bone mineral density and calcium content in metacarpal and rib bones were also higher in the LHC group compared with the CON, LCP, LC, and LH groups (p < 0.05). The jejunal mRNA expression of solute carrier family 34 members (SLC34A1, SLC34A2, and SLC34A3) members was higher in the LHC group than the CON, LCP, LC, and LH groups (p < 0.05), while the relative protein expression of the calcium-sensing receptor in the kidneys was lower in the CON group than in the LCP, LH, LC, and LHC groups (p < 0.05). Additionally, supplementation with 25-OH-VD3, either alone or in combination with phytase and probiotics, was associated with an increased abundance of beneficial gut bacteria. Overall, combined supplementation of 25-OH-VD3, phytase and probiotics enhanced bone development in weaned piglets fed a low-calcium, low-phosphorus diet by improving calcium and phosphorus utilization and calcium–phosphorus metabolic regulation. Full article
Show Figures

Figure 1

22 pages, 5584 KB  
Article
Experimental Study on the Effect of Rubber Fibre Content on the Mechanical Properties and Failure Mode of Grouting Materials
by Yixiang Wang, Xianzhang Ling, Xipeng Qin, Zhongnian Yang, Mingyu Liu, Runqi Guo and Yingying Zhang
Appl. Sci. 2026, 16(2), 931; https://doi.org/10.3390/app16020931 - 16 Jan 2026
Viewed by 84
Abstract
To promote waste tyre resource utilisation and reduce environmental pressure, this study prepared five stone sample groups using waste tyre rubber fibre (RF) as a modifier, combined with blast furnace slag, fly ash, carbide slag, and calcium chloride, with RF contents of 0%, [...] Read more.
To promote waste tyre resource utilisation and reduce environmental pressure, this study prepared five stone sample groups using waste tyre rubber fibre (RF) as a modifier, combined with blast furnace slag, fly ash, carbide slag, and calcium chloride, with RF contents of 0%, 6%, 10%, 14%, and 18%. Working performance was analysed via density, fluidity, and water separation rate tests, while mechanical properties and failure mechanisms were explored through uniaxial compression tests, acoustic emission (AE) monitoring, and SEM microstructure observations. Results showed that as RF content increased, slurry density and fluidity decreased nonlinearly, water separation rate first rose then fell, and uniaxial compressive strength dropped significantly (64.97% lower at 18% RF than 0%). Failure mode shifted from shear to tensile–shear mixed failure, AE signal activity weakened, energy release gentled, and crack propagation was delayed. Microstructurally, 6–10% RF ensured uniform fibre dispersion, blocking microcracks and optimising interfacial zones, while 14–18% RF caused agglomeration and pore defects. The optimal grouting material ratio was determined as 10% RF, blast furnace slag: fly ash = 4:1, 40% carbide slag, 1% calcium chloride, and a 0.7 water–cement ratio (total solid component 100%). Full article
Show Figures

Figure 1

8 pages, 431 KB  
Proceeding Paper
Compressive Strength, Density, and Setting Time of Concrete Blended with Rice Husk Ash
by Edidiong Eseme Ambrose, Okiemute Roland Ogirigbo, Tirimisiu Bayonle Bello and Saviour Umoh Akpando
Eng. Proc. 2026, 124(1), 1; https://doi.org/10.3390/engproc2026124001 - 14 Jan 2026
Viewed by 232
Abstract
This study investigated the effects of incorporating rice husk ash (RHA) as a partial replacement for cement on the properties of concrete. To determine the optimal replacement level, RHA was used to replace cement in varying proportions, ranging from 0% to 25% in [...] Read more.
This study investigated the effects of incorporating rice husk ash (RHA) as a partial replacement for cement on the properties of concrete. To determine the optimal replacement level, RHA was used to replace cement in varying proportions, ranging from 0% to 25% in 5% increments. The mix with 0% RHA served as the control. The properties evaluated included setting time, density, and compressive strength. The results revealed that blending RHA with cement increased the initial setting time. This was attributed to the lower calcium oxide (CaO2) content of RHA, which slows early-age hydration reactions. Conversely, the final setting time was reduced due to the pozzolanic activity of RHA, which enhances later-stage reactions. Additionally, the inclusion of RHA resulted in a decrease in concrete density, owing to its lower specific gravity and bulk density compared to Portland cement. Despite this, RHA-modified specimens exhibited higher compressive strengths than the control specimens. This strength enhancement was linked to the formation of additional calcium–silicate–hydrate (C-S-H) gel due to the pozzolanic reaction between amorphous silica in RHA and calcium hydroxide (CaOH) from hydration reaction. The gel fills concrete voids at the microstructural level, producing a denser and more compact concrete matrix. Based on the balance between strength and durability, the optimal RHA replacement level was identified as 10%. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Viewed by 204
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

13 pages, 256 KB  
Article
A Cross-Sectional Study of Sex-Specific Associations of Renin and Electrolytes on the Development of Hypertension
by Seong Beom Cho
J. Clin. Med. 2026, 15(2), 643; https://doi.org/10.3390/jcm15020643 - 13 Jan 2026
Viewed by 158
Abstract
Background/Objectives: Blood renin and electrolyte levels are associated with blood pressure and hypertension. While sex-specific effects of such factors have been investigated, exact comparisons of the factors between the sexes have been scarce. Methods: Using cohort data from the Korean Genome [...] Read more.
Background/Objectives: Blood renin and electrolyte levels are associated with blood pressure and hypertension. While sex-specific effects of such factors have been investigated, exact comparisons of the factors between the sexes have been scarce. Methods: Using cohort data from the Korean Genome and Environmental Study (KoGES), the study population that did not receive any interventions for blood pressure was determined. Blood levels of renin and electrolytes, including sodium, potassium, chloride, and calcium, were used to test their relationship with hypertension and blood pressure. Confounding variables, including age, body mass index (BMI), waist-to-hip ratio, family history of hypertension, alcohol consumption, smoking, blood urea nitrogen, creatinine, protein, and albumin levels, were used for adjustment in the multiple regression analysis. Results: In the single-variable analysis, sodium levels were significantly higher in the female population, and showed strong associations in the multiple regression analysis. Blood potassium levels showed no significant sex-specific differences. Among these factors, renin showed the greatest significance in both the total population and sex-specific groups. Moreover, in the development of hypertension, the effect size of renin was significantly different between sexes. Additionally, BMI tended to show stronger associations in females. Conclusions: This study identified sex-specific differential effects of renin and other electrolytes that are important in the pathophysiology of blood pressure. These findings provide clues for the more precise management of hypertension. Full article
(This article belongs to the Section Cardiovascular Medicine)
21 pages, 4286 KB  
Article
Potential Molecular Targets of the Broad-Range Antimicrobial Peptide Tyrothricin in the Apicomplexan Parasite Toxoplasma gondii
by Yosra Amdouni, Ghalia Boubaker, Joachim Müller, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anne-Christine Uldry, Sophie Braga-Lagache, Manfred Heller and Andrew Hemphill
Biomedicines 2026, 14(1), 172; https://doi.org/10.3390/biomedicines14010172 - 13 Jan 2026
Viewed by 158
Abstract
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring [...] Read more.
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring inhibition of tachyzoite proliferation and electron microscopy, host cell and splenocyte toxicity was measured by Alamar blue assay, and early embryo toxicity was assessed using zebrafish embryos. Differential affinity chromatography coupled to mass spectrometry and proteomics (DAC-MS-proteomics) was employed to identify potential molecular targets in T. gondii cell-free extracts. Results: Tyrothricin inhibited T. gondii proliferation at IC50s < 100 nM, with tyrocidine A being the active and gramicidin A the inactive component. Tyrothricin also impaired fibroblast, T cell and zebrafish embryo viability at 1 µM. Electron microscopy carried out after 6 h of treatment revealed cytoplasmic vacuolization and structural alterations in the parasite mitochondrion, but these changes appeared only transiently, and tachyzoites recovered after 96 h. Tyrothricin also induced a reduction in the mitochondrial membrane potential. DAC-MS-proteomics identified 521 proteins binding only to tyrocidine A. No specific binding to gramicidin A was noted, and four proteins were common to both peptides. Among the proteins binding specifically to tyrocidine A were several SRS surface antigens and secretory proteins, mitochondrial inner and outer membrane proteins associated with the electron transfer chain and porin, and several calcium-binding proteins putatively involved in signaling. Discussion: These results suggest that tyrocidine A potentially affected multiple pathways important for parasite survival and development. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

Back to TopTop