Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = cadmium fluoride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 215
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

15 pages, 2930 KiB  
Article
Energy Harvesting from Ankle Flexion During Gait Using Flexible CdS and PVDF Sensors
by Kimberly Trevizo, Luis Santana, Manuel Chairez, Amanda Carrillo and Rafael Gonzalez-Landaeta
Micromachines 2025, 16(6), 698; https://doi.org/10.3390/mi16060698 - 11 Jun 2025
Viewed by 664
Abstract
In this work, energy was harvested from ankle flexion during gait. For this, two piezoelectric thin films were tested: PVDF and CdS. The PVDF film was a commercial option, and the CdS film was fabricated in our laboratory. Deposition of the CdS film [...] Read more.
In this work, energy was harvested from ankle flexion during gait. For this, two piezoelectric thin films were tested: PVDF and CdS. The PVDF film was a commercial option, and the CdS film was fabricated in our laboratory. Deposition of the CdS film is also reported in this work. Energy harvested during gait from heel strike and ankle flexion was compared. Tests were performed with 10 healthy volunteers walking on a treadmill at 1.2–1.5 km/h. The volunteers wore a sock with piezoelectric films incorporated in the heel and ankle joint (talocrural joint). Tests were performed first with the PVDF film and then with the CdS film. The CdS thin film obtained a d33 coefficient of 1.4928 nm/V, indicating high electrical energy generated from strain-stress. The talocrural joint generated the most energy: 11.359 μJ for the PVDF film and 0.854 μJ for the CdS film. Although the CdS film generated less energy than the commercial option, it was shown that harvesting energy from ankle flexion increased the energy harvested by more than 700% during gait compared to the energy harvested from heel-to-ground impact. Full article
Show Figures

Figure 1

27 pages, 4395 KiB  
Article
Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India
by Pranaya Diwate, Prasanna Lavhale, Suraj Kumar Singh, Shruti Kanga, Pankaj Kumar, Gowhar Meraj, Jatan Debnath, Dhrubajyoti Sahariah, Md. Simul Bhuyan and Kesar Chand
Water 2025, 17(4), 540; https://doi.org/10.3390/w17040540 - 13 Feb 2025
Viewed by 1685
Abstract
Lakes are critical resources that support the ecological balance and provide essential services for human and environmental well-being. However, their quality is being increasingly threatened by both natural and anthropogenic processes. This study aimed to assess the water quality and the presence of [...] Read more.
Lakes are critical resources that support the ecological balance and provide essential services for human and environmental well-being. However, their quality is being increasingly threatened by both natural and anthropogenic processes. This study aimed to assess the water quality and the presence of heavy metals in 15 lakes in the Vidarbha and Marathwada regions of Maharashtra, India. To understand the extent of pollution and its sources, the physico-chemical parameters were analyzed which included pH, turbidity, total hardness, orthophosphate, residual free chlorine, chloride, fluoride, and nitrate, as well as heavy metals such as iron, lead, zinc, copper, arsenic, chromium, manganese, cadmium, and nickel. The results revealed significant pollution in several lakes, with the Lonar Lake showing a pH value of 12, exceeding the Bureau of Indian Standards’ (BIS) limit. The Lonar Lake also showed elevated levels of fluoride having a value of 2 mg/L, nitrate showing a value of 45 mg/L, and orthophosphate showing a concentration up to 2 mg/L. The Rishi Lake had higher concentrations of nickel having a value of 0.2 mg/L and manganese having a value of 0.7 mg/L, crossing permissible BIS limits. The Rishi Lake and the Salim Ali Lake exhibited higher copper levels than other lakes. Cadmium was detected in most of the lakes ranging from values of 0.1 mg/L to 0.4 mg/L, exceeding BIS limits. The highest turbidity levels were observed in Rishi Lake and Salim Ali Lake at 25 NTU. The total hardness value observed in the Kharpudi Lake was 400 mg/L, which is highest among all the lakes under study. The spatial analysis, which utilized remote sensing and GIS techniques, including Sentinel-2 multispectral imagery for land use and land cover mapping and Digital Elevation Model (DEM) for watershed delineation, provided insights into the topography and drainage patterns affecting these lakes. The findings emphasize the urgent need for targeted management strategies to mitigate pollution and protect these vital freshwater ecosystems, with broader implications for public health and ecological sustainability in regions reliant on these water resources. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

25 pages, 7109 KiB  
Review
Research Progress on Quantum Dot-Embedded Polymer Films and Plates for LCD Backlight Display
by Bin Xu, Jiankang Zhou, Chengran Zhang, Yunfu Chang and Zhengtao Deng
Polymers 2025, 17(2), 233; https://doi.org/10.3390/polym17020233 - 17 Jan 2025
Cited by 3 | Viewed by 2091
Abstract
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates [...] Read more.
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted. Various polymers, such as methyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyvinylidene fluoride (PVDF), polypropylene (PP), etc., are widely used in packaging quantum dot materials because of their high plasticity, simple curing, high chemical stability, and good compatibility with quantum dot materials. This paper focuses on the application and development of quantum dot–polymer materials in the field of backlight displays, summarizes and expounds the synthesis strategies, advantages, and disadvantages of different quantum dot–polymer materials, provides inspiration for the optimization of quantum dot–polymer materials, and promotes their application in the field of wide-color-gamut backlight display. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

15 pages, 2445 KiB  
Article
Integrating Water Quality Index (WQI) and Multivariate Statistics for Regional Surface Water Quality Evaluation: Key Parameter Identification and Human Health Risk Assessment
by Huoqian Luo, Xizhi Nong, Huajie Xia, Huabin Liu, Lingshuang Zhong, Yao Feng, Wenjuan Zhou and Yu Lu
Water 2024, 16(23), 3412; https://doi.org/10.3390/w16233412 - 27 Nov 2024
Cited by 3 | Viewed by 2648
Abstract
Assessing regional water quality and evaluating the associated risks to human health posed by aquatic contaminants are paramount for conserving and managing surface water resources and formulating effective local policy decisions. This study utilizes 17 water quality parameters collected monthly from nine national [...] Read more.
Assessing regional water quality and evaluating the associated risks to human health posed by aquatic contaminants are paramount for conserving and managing surface water resources and formulating effective local policy decisions. This study utilizes 17 water quality parameters collected monthly from nine national monitoring stations in Nanning City, China, from January 2021 to March 2023, i.e., water temperature (WT), pH, dissolved oxygen (DO), permanganate index (CODMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NH3-N), total phosphorus (TP), copper (Cu), zinc (Zn), fluoride (F-), selenium (Se), arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), and lead (Pb). Analyses were performed utilizing the Water Quality Index (WQI) and multiple stepwise regression to ascertain seasonal and spatial variations in water quality and to identify key water quality parameters. Human health risks were evaluated, focusing on eight heavy metals. The results indicated that the average WQI for the designated area was 94.1, with individual monitoring stations displaying WQIs ranging from 93.22 to 96.44, categorizing the water quality as “excellent”. The WQI exhibited seasonal fluctuations, peaking in spring and winter while decreasing in summer and autumn. All measured parameters met national standards for Class I and II surface waters. The stepwise regression analysis facilitated the construction of minimized WQI models (WQImin) derived from three different training and testing datasets, with a WQImin model incorporating six key parameters, i.e., DO, CODMn, NH3-N, Hg, WT, and Se. The concentration of heavy metals in the water exhibited a sequence of Zn (3.35 µg/L) > Cr (2.00 µg/L) > Cu (1.36 µg/L) > As (1.29 µg/L) > Se (0.32 µg/L) > Pb (0.17 µg/L) > Cd (0.03 µg/L) > Hg (0.01 µg/L), with all metals adhering to the Class I standard. Children are more susceptible to the adverse effects of heavy metal contamination than adults, exhibiting a total environmental health risk of 1.28 times greater. Cr was identified as the predominant contributor to the aggregate health risk, accounting for over 80% of the risk in adults and children, followed by As (19.1%). Future protection efforts are recommended to prioritize the control of Cr and As concentrations in Nanning City. Full article
(This article belongs to the Special Issue Water Quality Monitoring and Public Health)
Show Figures

Figure 1

21 pages, 5758 KiB  
Article
Innovative Solution for Invasive Species and Water Pollution: Hydrochar Synthesis from Pleco Fish Biomass
by Marisol Castro-Cárdenas, Nahum Andrés Medellín-Castillo, Lázaro Adrián González-Fernández, Roberto Leyva-Ramos, Cesar Fernando Azael Gómez-Duran, Yvan Gariepy, K. R. Jolvis Pou and Vijaya Raghavan
Processes 2024, 12(6), 1158; https://doi.org/10.3390/pr12061158 - 4 Jun 2024
Cited by 1 | Viewed by 1952
Abstract
In recent years, the invasive pleco fish has emerged as a global concern due to its adverse effects on ecosystems and economic activities, particularly in various water bodies in Mexico. This study introduces an innovative solution, employing microwave-assisted hydrothermal carbonization (MHTC) to synthesize [...] Read more.
In recent years, the invasive pleco fish has emerged as a global concern due to its adverse effects on ecosystems and economic activities, particularly in various water bodies in Mexico. This study introduces an innovative solution, employing microwave-assisted hydrothermal carbonization (MHTC) to synthesize hydrochar from pleco fish biomass. The research aimed to optimize synthesis conditions to enhance hydrochar yield, calorific value, and adsorption capacities for fluoride and cadmium in water. MHTC, characterized by low energy consumption, high reaction rates, and a simple design, was employed as a thermochemical process for hydrochar production. Key findings revealed that through response surface analysis, the study identified the optimal synthesis conditions for hydrochar production, maximizing yield and adsorption capacities while minimizing energy consumption. Physicochemical characterization demonstrated that hydrochars derived from pleco fish biomass exhibited mesoporous structures with fragmented surfaces, resembling hydroxyapatite, a major component of bone. Hydrochars derived from pleco fish biomass exhibited promising adsorption capacities for fluoride and cadmium in water, with hydrochar from Exp. 1 (90 min, 160 °C) showing the highest adsorption capacity for fluoride (4.16 mg/g), while Exp. 5 (90 min, 180 °C) demonstrated superior adsorption capacity for cadmium (98.5 mg/g). Furthermore, the utilization of pleco fish biomass for hydrochar production not only offers an eco-friendly disposal method for invasive species but also addresses fluoride and cadmium contamination issues, contributing to sustainable waste management and water treatment solutions. The resulting hydrochar, rich in solid fuel content with low pollutant emissions, presents a promising approach for waste management and carbon sequestration. Moreover, the optimized synthesis conditions pave the way for sustainable applications in energy production, addressing critical environmental and public health concerns. This research provides valuable insights into the potential of microwave-assisted hydrothermal carbonization for transforming invasive species into valuable resources, thereby mitigating environmental challenges and promoting sustainable development. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

15 pages, 3781 KiB  
Article
Anodized TiO2 Nanotubes Sensitized with Selenium Doped CdS Nanoparticles for Solar Water Splitting
by Julián Alfaro Chacón, Andrea Cerdán-Pasarán, Isaac Zarazúa, Lourdes Ramos-Galicia, J. A. Hernández-Magallanes, K. C. Sanal, Shadai Lugo Loredo and Juan Manuel Hernández-López
Energies 2024, 17(7), 1592; https://doi.org/10.3390/en17071592 - 26 Mar 2024
Cited by 3 | Viewed by 1945
Abstract
In this research, TiO2 nanotubes (NTs) were produced by electrochemical anodization of a Ti substrate where different NH4F wt.% in the electrolyte was added. NTs with diameter of 65–90 nm and 3.3–4.9 µm length were obtained and sensitized with binary [...] Read more.
In this research, TiO2 nanotubes (NTs) were produced by electrochemical anodization of a Ti substrate where different NH4F wt.% in the electrolyte was added. NTs with diameter of 65–90 nm and 3.3–4.9 µm length were obtained and sensitized with binary cadmium chalcogenides nanoparticles, CdS and CdSe, by successive ionic layer adsorption and reaction method (SILAR). Additionally, both anions S and Se were deposited onto Cd, labeled as CdSSe and CdSeS, to evaluate the effect of the deposition order of the anion from the precursor solution to form cadmium chalcogenides. The structural, optical, and electrochemical performance were analyzed through the SEM, XRD, XPS, UV-VIS, lineal voltammetry and chronoamperometry characterizations. The increase of NH4F wt.% from 1.5% to 4.5% produced a decrement of the diameter and length attributed to the fluoride ions concentration causing solubility of the NTs. XRD confirmed the TiO2 anatase and hexagonal CdS structures. From the EDS and XPS results, the presence of small amount of Se in the sensitized samples demonstrated the doping effect of Se instead of forming ternary semiconductor. With the sensitization of the TiO2 NTs with the nanoparticles, an improved hydrogen generation was observed (reaching 1.068 mL h−1 cm−2) in the sample with CdSSe. The improvement was associated to a synergetic effect in the light absorption and higher cadmium chalcogenide amount deposited when sulfur ions were deposited before selenium. Full article
Show Figures

Figure 1

15 pages, 2165 KiB  
Article
Effects of Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Nanocomposite Membrane on Reduction in Microbial Load and Heavy Metals in Surface Water Samples
by Lutendo Evelyn Macevele, Kgabo Lydia Maureen Moganedi and Takalani Magadzu
J. Compos. Sci. 2024, 8(4), 119; https://doi.org/10.3390/jcs8040119 - 23 Mar 2024
Cited by 2 | Viewed by 1829
Abstract
In this work, nanocomposite membranes were prepared using silver nanoparticles (Ag) attached to poly(amidoamine) dendrimer (P)-functionalised multi-walled carbon nanotubes (CNTs) blended with poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) polymeric membranes (i.e., AgP-CNT/PVDF-HFP) via the phase inversion method. The nanocomposites were characterised and analysed via transmission electron [...] Read more.
In this work, nanocomposite membranes were prepared using silver nanoparticles (Ag) attached to poly(amidoamine) dendrimer (P)-functionalised multi-walled carbon nanotubes (CNTs) blended with poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) polymeric membranes (i.e., AgP-CNT/PVDF-HFP) via the phase inversion method. The nanocomposites were characterised and analysed via transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) analysis. The TEM and EDX analyses confirmed the presence of Ag nanoparticles on the nanocomposites, while the SEM and BET data showed the spongy morphology of the nanocomposite membranes with improved surface areas. The sample analysis of surface water collected from the Sekhukhune district, Limpopo Province, South Africa indicated that the water could not be used for human consumption without being treated. The nanocomposite membranes significantly reduced the physicochemical parameters of the sampled water, such as turbidity, TSS, TDS and carbonate hardness, to 4 NTU, 7 mg/L, 7.69 mg/L and 5.9 mg/L, respectively. Significant improvements in microbial load (0 CFU/mL) and BOD (3.0 mg/L) reduction were noted after membrane treatment. Furthermore, toxic heavy metals such as chromium, cadmium and nickel were remarkably reduced to 0.0138, 0.0012 and 0.015 mg/L, respectively. The results clearly suggest that the AgP-CNT/PVDF-HFP nanocomposite membrane can be used for surface water treatment. Full article
(This article belongs to the Special Issue Characterization of Polymer Nanocomposites)
Show Figures

Figure 1

20 pages, 8029 KiB  
Article
Tetramethylpyrazine Antagonizes the Subchronic Cadmium Exposure-Induced Oxidative Damage in Mouse Livers via the Nrf2/HO-1 Pathway
by Xue Hu, Siqi Zhao, Ziming Guo, Yiling Zhu, Shuai Zhang, Danqin Li and Gang Shu
Molecules 2024, 29(7), 1434; https://doi.org/10.3390/molecules29071434 - 22 Mar 2024
Cited by 3 | Viewed by 1704
Abstract
Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium [...] Read more.
Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway. Full article
(This article belongs to the Special Issue Bioactive Compounds: From Extraction to Biological Evaluations)
Show Figures

Graphical abstract

12 pages, 5001 KiB  
Article
Computational Imaging at the Infrared Beamline of the Australian Synchrotron Using the Lucy–Richardson–Rosen Algorithm
by Soon Hock Ng, Vijayakumar Anand, Molong Han, Daniel Smith, Jovan Maksimovic, Tomas Katkus, Annaleise Klein, Keith Bambery, Mark J. Tobin, Jitraporn Vongsvivut and Saulius Juodkazis
Appl. Sci. 2023, 13(23), 12948; https://doi.org/10.3390/app132312948 - 4 Dec 2023
Cited by 2 | Viewed by 1547
Abstract
The Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and [...] Read more.
The Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and the sample is scanned pixel by pixel to record an image of a single plane using a single pixel mercury cadmium telluride detector. A computational stitching procedure is used to obtain a 2D image of the sample. However, if the imaging condition is not satisfied, then the recorded object’s information is distorted. Unlike commonly observed blurring, the case with a Schwarzschild objective is unique, with a donut like intensity distribution with three distinct lobes. Consequently, commonly used deblurring methods are not efficient for image reconstruction. In this study, we have applied a recently developed computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) in the online FTIRm system for the first time. The method involves two steps: training step and imaging step. In the training step, the point spread function (PSF) library is recorded by temporal summation of intensity patterns obtained by scanning the pinhole in the x-y directions across the path of the beam using the single pixel detector along the z direction. In the imaging step, the process is repeated for a complicated object along only a single plane. This new technique is named coded aperture scanning holography. Different types of samples, such as two pinholes; a number 3 USAF object; a cross shaped object on a barium fluoride substrate; and a silk sample are used for the demonstration of both image recovery and 3D imaging applications. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

16 pages, 3195 KiB  
Article
Selenite Removal from Aqueous Solution Using Silica–Iron Oxide Nanocomposite Adsorbents
by Georgiana Mladin, Mihaela Ciopec, Adina Negrea, Narcis Duteanu, Petru Negrea, Paula Svera (m. Ianăşi) and Cătălin Ianăşi
Gels 2023, 9(6), 497; https://doi.org/10.3390/gels9060497 - 19 Jun 2023
Cited by 4 | Viewed by 1629
Abstract
In recent years, during industrial development, the expanding discharge of harmful metallic ions from different industrial wastes (such as arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc) into different water bodies has caused serious concern, with one of the [...] Read more.
In recent years, during industrial development, the expanding discharge of harmful metallic ions from different industrial wastes (such as arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc) into different water bodies has caused serious concern, with one of the problematic elements being represented by selenium (Se) ions. Selenium represents an essential microelement for human life and plays a vital role in human metabolism. In the human body, this element acts as a powerful antioxidant, being able to reduce the risk of the development of some cancers. Selenium is distributed in the environment in the form of selenate (SeO42–) and selenite (SeO32–), which are the result of natural/anthropogenic activities. Experimental data proved that both forms present some toxicity. In this context, in the last decade, only several studies regarding selenium’s removal from aqueous solutions have been conducted. Therefore, in the present study, we aim to use the sol–gel synthesis method to prepare a nanocomposite adsorbent material starting from sodium fluoride, silica, and iron oxide matrices (SiO2/Fe(acac)3/NaF), and to further test it for selenite adsorption. After preparation, the adsorbent material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism associated with the selenium adsorption process has been established based on kinetic, thermodynamic, and equilibrium studies. Pseudo second order is the kinetic model that best describes the obtained experimental data. Also, from the intraparticle diffusion study, it was observed that with increasing temperature the value of the diffusion constant, Kdiff, also increases. Sips isotherm was found to best describe the experimental data obtained, the maximum adsorption capacity being ~6.00 mg Se(IV) per g of adsorbent material. From a thermodynamic point of view, parameters such as ΔG0, ΔH0, and ΔS0 were evaluated, proving that the process studied is a physical one. Full article
Show Figures

Figure 1

16 pages, 1737 KiB  
Article
Bioremediation of Heavy Metals from Industrial Effluents Using Bacillus pakistanensis and Lysinibacillus composti
by Ramzan Ali, Kashif Bashir, Saeed Ahmad, Amin Ullah, Said Farooq Shah, Qurban Ali, Humaira Yasmin and Ajaz Ahmad
Sustainability 2023, 15(9), 7591; https://doi.org/10.3390/su15097591 - 5 May 2023
Cited by 9 | Viewed by 3890
Abstract
Aquatic pollution is one of the main problems due to rapid development in industrialization. The remediation of industrial wastewater (IWW) by microorganisms is an environmentally friendly technique. This study was conducted to assess pollution load in IWW and to use Bacillus pakistanensis and [...] Read more.
Aquatic pollution is one of the main problems due to rapid development in industrialization. The remediation of industrial wastewater (IWW) by microorganisms is an environmentally friendly technique. This study was conducted to assess pollution load in IWW and to use Bacillus pakistanensis and Lysinibacillus composti individually and in a consortium for bioremediation. The IWW was obtained from Hayatabad Industrial Estate and evaluated for physicochemical parameters and metal concentration. The pH, color, electrical conductivity (EC), turbidity, temperature, sulfide, fluoride, chloride, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), calcium hardness, magnesium hardness, and total hardness were noted as 6.82, 440 TCU, 1.195 mS/cm, 54.65 mg/L, 26.8 °C, 5.60 mg/L, 3.6 mg/L, 162 mg/L, 85.5 mg/L, 921 mg/L, 232 mg/L, 794 mg/L, 590 mg/L, 395 mg/L, and 985 mg/L, respectively. The metals such as manganese, copper, chromium, cadmium, cobalt, silver, nickel, calcium, magnesium, and lead were also analyzed as 1.23 mg/L, 0.81 mg/L, 2.12 mg/L, 0.18 mg/L, 0.151 mg/L, 0.24 mg/L, 1.12 mg/L, 0.113 mg/L, 14.5 mg/L, and 0.19 mg/L, respectively. A pot experiment was performed for two weeks to evaluate the efficiency of the selected species. The IWW and tap water (control) were treated with selected species, individually and in a consortium. After treatment, a considerable reduction was noted in the color 87.3%, EC 46.5%, turbidity 84.1%, sulfide 87.5%, fluoride 25.0%, chloride 91.3%, BOD 96.4%, COD 86.5%, TSS 90%, TDS 45.0%, Ca hardness 42.3%, Mg hardness 77.2%, and total hardness 52.2%. After the experiment, samples of water were also analyzed for metal concentrations by atomic absorption spectrophotometry. The selected species removed 99.3% of Mn, 99.6% of Cu, 97.8% of Cr, 94.4% of Cd, 46.3% of Co, 85.1% of Ag, 88.4% of Ni, 98.8% of Ca, 91.5% of Mg, and 90.5% of Pb. The t-test analysis showed that the treatment with the selected species significantly decreased the metal concentrations in the IWW (p ≤ 0.05). Full article
(This article belongs to the Special Issue Sustainable Management and Remediation of Contaminated Sites)
Show Figures

Figure 1

11 pages, 1170 KiB  
Article
Wastewater Treatment of Real Effluents by Microfiltration Using Poly(vinylidene fluoride–hexafluoropropylene) Membranes
by Djamila Zioui, Pedro Manuel Martins, Lamine Aoudjit, Hugo Salazar and Senentxu Lanceros-Méndez
Polymers 2023, 15(5), 1143; https://doi.org/10.3390/polym15051143 - 24 Feb 2023
Cited by 27 | Viewed by 2944
Abstract
Over the last decades, the growing contamination of wastewater, mainly caused by industrial processes, improper sewage, natural calamities, and a variety of anthropogenic activities, has caused an increase in water-borne diseases. Notably, industrial applications require careful consideration as they pose significant threats to [...] Read more.
Over the last decades, the growing contamination of wastewater, mainly caused by industrial processes, improper sewage, natural calamities, and a variety of anthropogenic activities, has caused an increase in water-borne diseases. Notably, industrial applications require careful consideration as they pose significant threats to human health and ecosystem biodiversity due to the production of persistent and complex contaminants. The present work reports on the development, characterization, and application of a poly (vinylidene fluoride—hexafluoropropylene) (PVDF-HFP) porous membrane for the remediation of a wide range of contaminants from wastewater withdrawn from industrial applications. The PVDF-HFP membrane showed a micrometric porous structure with thermal, chemical, and mechanical stability and a hydrophobic nature, leading to high permeability. The prepared membranes exhibited simultaneous activity on the removal of organic matter (total suspended and dissolved solids, TSS, and TDS, respectively), the mitigation of salinity in 50%, and the effective removal of some inorganic anions and heavy metals, achieving efficiencies around 60% for nickel, cadmium, and lead. The membrane proved to be a suitable approach for wastewater treatment, as it showed potential for the simultaneous remediation of a wide range of contaminants. Thus, the as-prepared PVDF-HFP membrane and the designed membrane reactor represent an efficient, straightforward, and low-cost alternative as a pretreatment step for continuous treatment processes for simultaneous organic and inorganic contaminants’ remediation in real industrial effluent sources. Full article
Show Figures

Graphical abstract

12 pages, 2119 KiB  
Article
Stability of Dibromo-Dipyrromethene Complexes Coordinated with B, Zn, and Cd in Solutions of Various Acidities
by Iuliia Aksenova and Vladimir Pomogaev
Molecules 2022, 27(24), 8815; https://doi.org/10.3390/molecules27248815 - 12 Dec 2022
Viewed by 1637
Abstract
The spectral luminescent properties of dipyrromethenates halogenated with bromine on both ends of the long axis and coordinated using boron fluoride, zinc, or cadmium in neutral ethanol and acidified with hydrochloric acid solutions were studied. The constants of the acid–base equilibrium of the [...] Read more.
The spectral luminescent properties of dipyrromethenates halogenated with bromine on both ends of the long axis and coordinated using boron fluoride, zinc, or cadmium in neutral ethanol and acidified with hydrochloric acid solutions were studied. The constants of the acid–base equilibrium of the complexes in the proton-donor solvents in the ground and excited states was determined. The mechanisms of complex protonation were discussed, depending on the structure of the compounds. The electronic structures of the neutral and protonated compounds were modeled and analyzed based on the quantum-chemical method. The structures and spectral-luminescence properties were calculated using the SMD model of ethanol solvent using the TD-DFT theory with the B3LYP functional and the composite def2-SVP/def2-TZVP/def2-TZVPP_ECP basis sets, depending on the atomic number of the elements. Full article
Show Figures

Graphical abstract

14 pages, 6942 KiB  
Article
Coastal Groundwater Quality Evaluation and Hydrogeochemical Characterization Using Chemometric Techniques
by Hidayat Ullah, Iffat Naz, Aiyeshah Alhodaib, Muhammad Abdullah and Muhammad Muddassar
Water 2022, 14(21), 3583; https://doi.org/10.3390/w14213583 - 7 Nov 2022
Cited by 6 | Viewed by 2852
Abstract
The physicochemical parameters and heavy metals concentration in the groundwater of the coastal region of Lasbela, Baluchistan were investigated. Cations and anions were determined through ion chromatography. The concentration levels of eight heavy metals (Cr, Cd, Pb, Zn, Fe, Cu, and Mn) in [...] Read more.
The physicochemical parameters and heavy metals concentration in the groundwater of the coastal region of Lasbela, Baluchistan were investigated. Cations and anions were determined through ion chromatography. The concentration levels of eight heavy metals (Cr, Cd, Pb, Zn, Fe, Cu, and Mn) in the groundwater were analyzed through the analytical procedures of atomic absorption spectrophotometry. The cations were present in the descending order of magnesium > sodium > calcium > potassium and anions as bicarbonate > sulfate > chloride. Two parameters (bicarbonate and total dissolved solids) were above and other physicochemical indices of groundwater were below the threshold limits of the WHO. Positive correlations of pH and electrical conductivity were observed with cations and anions. The significant positive correlation between sodium and bicarbonate (0.427) indicated the dissolution of carbonate rocks. The concentration of heavy metals (Cu, Cd, Mn, Cr, Pb, Fe, Zn, and Ni) ranged from 0.1 to 0.4, 0.02 to 0.09, 0.04 to 0.9, 0.03 to 0.5, 0.01 to 0.91, 0.05 to 1.30, 0.01 to 0.60, and 0.02 to 0.90 mg/L. The highest concentration of Pb (0.21 mg/L) and Cd (0.16 mg/L) were approximately 20 and 50 times higher than the permissible limits of the WHO. Hierarchical cluster analysis classified the twelve physicochemical parameters into four clusters and the eight heavy metals into seven clusters. Principal component analysis extracted eight latent components for physicochemical properties and heavy metals with eigenvalues greater than 1.0 that had positive loads of fluoride, iron, electrical conductivity, sodium, cadmium, and sulfate. Major pollutants in the groundwater were accounted for by PC 1, and the main factors that affected the water quality were Pb, Cr, and Cu. Fe had a modest impact on the water quality in this region. From the findings, it can be concluded that the coastal groundwater of the region has a higher concentration of heavy metals, which makes it unfit for drinking purposes. Full article
(This article belongs to the Special Issue The Geochemical Behavior of Trace Elements in Inshore Environments)
Show Figures

Figure 1

Back to TopTop