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Abstract: In this research, TiO2 nanotubes (NTs) were produced by electrochemical anodization of a Ti
substrate where different NH4F wt.% in the electrolyte was added. NTs with diameter of 65–90 nm and
3.3–4.9 µm length were obtained and sensitized with binary cadmium chalcogenides nanoparticles,
CdS and CdSe, by successive ionic layer adsorption and reaction method (SILAR). Additionally,
both anions S and Se were deposited onto Cd, labeled as CdSSe and CdSeS, to evaluate the effect
of the deposition order of the anion from the precursor solution to form cadmium chalcogenides.
The structural, optical, and electrochemical performance were analyzed through the SEM, XRD,
XPS, UV-VIS, lineal voltammetry and chronoamperometry characterizations. The increase of NH4F
wt.% from 1.5% to 4.5% produced a decrement of the diameter and length attributed to the fluoride
ions concentration causing solubility of the NTs. XRD confirmed the TiO2 anatase and hexagonal
CdS structures. From the EDS and XPS results, the presence of small amount of Se in the sensitized
samples demonstrated the doping effect of Se instead of forming ternary semiconductor. With the
sensitization of the TiO2 NTs with the nanoparticles, an improved hydrogen generation was observed
(reaching 1.068 mL h−1 cm−2) in the sample with CdSSe. The improvement was associated to a
synergetic effect in the light absorption and higher cadmium chalcogenide amount deposited when
sulfur ions were deposited before selenium.

Keywords: TiO2 nanotubes; cadmium chalcogenide; nanoparticles; photoelectrochemical cell

1. Introduction

Solar water splitting for hydrogen generation has received much more attention in
recent years because access to affordable, safe, sustainable, and modern energy is part of
the sustainable development goals of the United Nations; as well as the development of
new surface modification systems that make hydrogen production more efficient on the
photocatalyst materials used for this purpose [1,2].

The development of stable, highly efficient, and low-cost photoelectrodes remains
the main challenge to boost the photoelectrochemical devices. Carbon-based materials
have been tested for photoelectrocatalytic application [3]; however, metal oxides are the
most selected materials for photoelectrodes because they are chemically stable and resistant
to corrosion. However, they present some disadvantages such as large bandgap, poor
electrical conductivity and short charge carrier lifetime and diffusion length. Among the
different alternatives, the most common semiconductor tested for photoelectrochemical
water splitting is TiO2. It is a wide band gap semiconductor (3.2 eV), with preferential
absorption in the UV range representing 4% of the solar spectrum, wasting most available
solar energy [4].
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To improve the photocatalytic activity of TiO2, it has been proposed to increase the ac-
tive surface area, modify the band gap, and sensitize to increase light absorption [5–7]. The
morphology of TiO2 varies from compact barrier layer, nanoparticles, nanorods, nanobelts,
nanofibers to nanotubes (NTs) [8–10]. In this way, NTs can be obtained by template,
hydrothermal, and anodization methods [4]. Electrochemical anodization consists of im-
mersing titanium in an electrolyte and applying an electrical stimulus for a specific time.
The final morphology and properties of the TiO2 nanotubes formed depend on parameters
such as voltage/current, time, electrolyte temperature, nature of the electrolyte, concen-
tration, and pH [11–17]. Additional advantages of the TiO2 NTs include high mechanical
strength, improved electronic properties related to the quantum confinement effect, as high
electron mobility, and the chance of embed specific ions into the NTs wall, as dopants or
co-catalysts [18,19].

On the other hand, the sensitization of TiO2 electrodes with binary semiconductors
such as CdS, CdSe, PbS, PbSe, and Cu2O has received interest to solve the problem of poor
light absorption in the visible region [10,20–22]. Other strategies such as co-sensitizing
and core-shell structures have been probed [23–26]. Nevertheless, there are few reports
concerning ternary nanomaterials. The use of ternary semiconductor materials present
advantages such as tunable band gap, and synergistic effect for light harvesting [26].

Li et al. obtained a CdSxSe1−x alloy by the hydrothermal method varying the S:Se
ratio and deposited it onto TiO2 NTs to fabricate quantum dot-sensitized solar cells
(QDSSCs) [27]. They found that an increment in Se content to reach the stoichiometry
CdS0.5Se0.5 resulted in an improvement of the photovoltaic performance attributed to the
increased light absorption and improvement of charge transport by the tuned S:Se ratio.
It agrees with the study carried out by Ai et al., where the optimized composition of the
photoelectrode was CdS0.52Se0.48 deposited by thermal vapor onto TiO2 nanowires that
showed improved stability for long-time hydrogen generation [28]. Likewise, Sung et al.
synthesized CdSxSe1−x nanowires and TiO2/CdSxSe1−x core-shell nanocables by thermal
vapor deposition and tested in a photoelectrochemical cell (PEC) [29]. They reported a
multishell structures with alloy phases obtained with the chosen deposition method. The
highest hydrogen generation rate was 600 µmol h−1 cm−2 with the TiO2/CdS0.2Se0.8 sam-
ple, however, this deposition technique is expensive and not easily scalable. Tyagi et al.
prepared CdS1−xSex quantum dots (QDs) by successive ionic layer absorption and reaction
(SILAR) and tested in QDSSCs. In the SILAR process, for the anionic precursor solution
they mixed Na2S and Se powder as sources to obtain Na2S1−xSex solution. In their study, an
increment in the power conversion efficiency was observed when the sulfur concentration
was increased [30]. It is noteworthy to mention that the SILAR method allows one to obtain
QDs or bulk material by the control of cycles number, and it has the advantage of allowing
a higher charge of light absorbing semiconductor layer than the pre-synthesized colloidal
QDs [31].

Furthermore, doping has been used as strategy to improve catalyst performance for
the hydrogen evolution reaction by creating a suitable electronic environment [32]. Yang
et al., synthesized Se-doped CdS nanocrystals by the hot injection method by varying the
reaction temperature and Cd:oleic acid ratio [33]. The optical and structural properties
were reported; however, no further information was provided. Shi et al., obtained a
Se-doped CdS QDs catalyst by solvothermal procedure modifying the Se content. They
found that Se shifted the Fermi level position to higher energy causing effective capture
of photogenerated electrons, inhibition of recombination charges and prolonged carriers
lifetime [34]. Poornaprakash et al., effectively tested Er-doped CdS nanoparticles for H2
production and organic pollutants degradation [35]. Likewise, CdS nanoparticles with
Mn, Cu, Ni and N as dopants have been evaluated [36–39]. In-doped CdS-ZnO and Sr-
doped CdS-ZnS composites have demonstrated enhanced photocatalytic activity attributed
to improved charge transport, band structure modification, and passivation of defect
centers [40,41].
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Although several works have been performed using doped Cd chalcogenides nanopar-
ticles, they were tested in systems where the catalysts are dispersed in the electrolyte, but
the main problem with this system is the removal of catalyst powder after reactions.

In this work, TiO2 NTs photoelectrodes were obtained by anodization where the
effect of the electrolyte concentration in the morphology by changing the NH4F wt.%
during the process was analyzed. Furthermore, the electrochemical performance for
the solar hydrogen generation with anodized TiO2 NTs sensitized with binary cadmium
chalcogenides nanoparticles, CdS and CdSe, were evaluated, as well as the combination
of anions, S and Se labeled as CdSSe and CdSeS, to assess the effect of the deposition
order of the anion from the precursor solution. Its morphological, structural, optical, and
electrochemical properties were investigated. The increased NH4F wt.% resulted in a
decrease in diameter and length of the TiO2 NTs. Additionally, the formation of cadmium
chalcogenide on the TiO2 NTs was obtained, and it was demonstrated that when sulfur is
deposited followed by selenium, it allowed for a more efficient deposition, and therefore
an improved hydrogen evolution rate.

2. Materials and Methods

Materials: Titanium foil (99.7%, 2 mm thickness) ammonium fluoride (NH4F), ethylene
glycol (HOCH2CH2OH), cadmium acetate dihydrate (Cd(CH3COO)2·2H2O), sodium sul-
fite nonahydrate (Na2S·9H2O), and selenium powder were obtained from Sigma-Aldrich.
Sodium sulfite (Na2SO3), methanol, and ethanol were obtained from Fermont.

2.1. TiO2 Nanotubes Anodization

The Ti foil was cut in dimensions of 2 cm × 1 cm to ensure a homogeneous surface;
before anodizing, it was mechanically roughened through successive grades of SiC paper
up to 1200 grade. All samples were chemically polished in a mixture of HF (40 wt.%):HNO3
(70 wt.%):H2O with a volume ratio of 1:4:5 for 1 min, at room temperature under continuous
stirring, finally rinsed in distilled water and dried in cold air. The anodizing process was
performed using a two-electrode arrangement with a Pt mesh as counter electrode, using
a power supply Keithley model 2410 (Ektronix, Inc., Beaverton, OR, USA) and applying
50 V for 30 min at room temperature with constant stirring. The electrolyte concentration
was varied changing the NH4F wt.% from 1.5% to 4.5% in ethylene glycol solution and
adding 4 vol% H2O. After the anodic oxidation, the substrates were rinsed with water and
a thermal treatment was carried out at 450 ◦C for 1 h.

2.2. Cadmium Chalcogenides Nanoparticles Formation and Deposition by SILAR

The CdS, CdSe, CdSSe and CdSeS nanoparticles were deposited onto the TiO2 NTs by
SILAR method. It consists in the successive immersion of the TiO2 NTs photoelectrode for
1 min in 0.05 M Cd(CH3COO)2 dissolved in ethanol and Na2S 0.05 M in methanol:water
1:1 v/v as Cd and S precursor solution [42]. Between each immersion, the electrodes
were rinsed in ethanol and methanol:water, respectively, to remove excess unreacted or
deposited ions. For the deposition of CdSe, the Cd source solution was the same, while
the Se precursor solution used was 0.1 M Na2SeSO3, which was obtained from 0.3 M of
Na2SO3 dissolved in 100 mL of water and adding 0.79 g of Se powder. It was maintained
under vigorous stirring at 250 ◦C in a hotplate with a reflux system for 3 h [43]. Five SILAR
cycles were performed to obtain CdS and CdSe nanoparticles. For the doped samples,
CdSSe or CdSeS, the Cd, S, and Se precursor solutions were used in a cycle changing the
sequence of S and Se.

2.3. Photoelectrochemical Cell

The electrochemical measurements were carried out in a three-electrode configuration
cell, where the TiO2/Cd-nanoparticles was the photoelectrode, Pt wire was the counter
electrode, and Ag/AgCl was the reference electrode. The electrolyte was distilled water
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with 0.25 M Na2SO3 and 0.35 M Na2S as sacrificial hole scavengers. For the hydrogen
evolution, it was collected and quantified in a sealed syringe containing the Pt wire.

2.4. Characterizations

The scanning electron microscopy was performed using a FEI Nova NanoSem200 mi-
croscopy (FEI Company, Hillsboro, OR, USA), to obtain the surface morphology of the TiO2
NTs. The NTs size was determined using ImageJ software version 1.8.0. The micrographs
of the TiO2 photoelectrodes with cadmium chalcogenide nanoparticles and EDS spectra
were obtained using a Jeol JSM-6010Plus/LA microscope (JEOL, Inc., Peabody, MA, USA).
The UV-VIS characterization was performed using a UV-Vis NIR spectrophotometer model
Cary 5000 (Agilent, Santa Clara, CA, USA). The X-ray diffraction measurements were
recorded with a Rigaku D-Max 2200 X-ray diffractometer (Rigaku, The Woodlands, TX,
USA) with monochromatized Cu-K radiation (λ = 1.54 Å). The high-resolution C 1s X-ray
photoelectron spectroscopy (XPS) was performed using a Thermo Scientific Escalab 250Xi
instrument (Thermo Scientific Inc., Waltham, MA, USA). The lineal sweep voltammetry and
chronoamperometry were obtained using a potentiostat/galvanostat EC Epsilon coupled
with a 100 W full spectrum Led chip COB DIY lamp (380–840 nm). The chronoamperometry
was performed at 0 V applied under intermittent light. In the PEC for hydrogen generation,
the photoelectrodes were illuminated with 100 mW cm−2 illumination intensity using a
450 W oriel xenon lamp model 66021, equipped with an A. M. 1.5 G filter. The externa
quantum efficiency (EQE) was performed with a monochromator adaptor, where light from
the PEC was reflected.

3. Results and Discussion
3.1. Nanotubes Formation

To assess the effect of electrolytic composition on the morphology of TiO2 nanotubes
(NTs), anodic layers were grown using three different concentrations of NH4F in the
anodization bath. Figure 1 depicts the characteristic current density versus time curve
generated during the anodization treatments performed at constant potential.
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Figure 1. Current density vs. time curve of the TiO2 NTs anodization obtained with different NH4F
wt.% in the electrolyte.

In all cases, the typical behavior of these curves during titanium and its alloy’s anodiza-
tion processes was observed. Initially, current densities sharply decreased, from maximum
values of 43 mA cm−2 for the titanium sample anodized with 4.5 wt.% of NH4F to around



Energies 2024, 17, 1592 5 of 14

12 mA cm−2 for the three studied conditions. This abrupt decrease in the early stages of
the anodization treatment is associated with the initial formation of a compact layer of
titanium oxide that inhibits the electrolyte-substrate interaction [14,44]. Subsequently, the
current density slightly increases in all studied conditions, a phenomenon associated with
pore nucleation on the surface of the compact layer created initially. The extent of this stage
depends on various factors such as the amount of fluorides present in the anodization bath,
surface finish, substrate chemical composition, solution pH, and water content, among
others [45]. Finally, a gradual decrease in current density is observed until stabilization
is reached after 150 s for all three conditions studied. At this stage, the current density is
associated with the competition between the growth and dissolution of the anodic layer, as
well as the presence of secondary reactions such as medium evolution [12].

The highest current density, observed in the equilibrium zone, was present at the
maximum fluoride condition of 4.5 wt.%, while it decreased with decreasing NH4F con-
centration. This behavior is associated with the increase in F− ion concentration in the
anodization bath, which accelerates the dissolution processes of the oxide layer formed
by an increase in the formation of soluble [TiF6]2− species, along with medium evolution
processes, as reported by several authors in both acidic and organic media [46,47].

3.2. Morphology

Figure 2 shows the SEM micrographs of TiO2 NTs obtained with different NH4F
wt.% in the electrolyte. A homogeneous pore formation in all samples was observed,
however, when the NH4F concentration was low (1.5%), Figure 2a, the formation of wires
over the TiO2 NTs which can provide a higher surface for the cadmium chalcogenide
nanoparticles deposition was noted. The NTs diameter distribution of the samples was
calculated using ImageJ software and the corresponding histograms are presented in
Figure 2b,e,h. A decrement of the pore diameter from 90 nm to 68 nm with the increment of
NH4F concentration was observed. Similar effect was obtained with the TiO2 NTs length,
that decreased from 4.95 µm to 3.86 µm. The increased TiO2 NTs size with the lower NH4F
wt.% agrees with the decreased current density observed in Figure 1.
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Figure 3 present SEM images of the TiO2 NTs after the cadmium chalcogenides
nanoparticles deposition. It is interesting to note that in all cases the cadmium chalco-
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genides nanoparticles were deposited on the top surface instead of penetrating the TiO2
NTs structure; this could be attributed to the number of SILAR cycles and to the compact-
ness of TiO2 NTs. In the samples with CdS and CdSe, there are zones where the diameter of
the NTs can be observed (marked with a red circle), while the cadmium nanoparticles form
agglomerations. In the case of CdSeS the covered surface increased due to the increase in
the immersion steps in the SILAR cycle, and in the sample with CdSSe, the surface was
almost completely covered.
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Figure 3. Top view of the SEM images of TiO2 NTs deposited with CdS, CdSe, CdSeS and CdSSe
nanoparticles. Red circles show uncoated TiO2 NTs.

Table 1 presents the estimated atomic weight percentage of the components detected
from EDS analysis performed on the photoelectrodes surface. The low amount of cadmium
chalcogenide nanoparticles deposited on the TiO2 NTs is evident. Moreover, the %Se was
lower than %S, which might indicate selenium is doping the CdS instead of forming a
ternary semiconductor, as it has been established that for the ternary CdSSe formation is
necessary an annealing over 230 ◦C [48], meanwhile in this study the SILAR deposition
was carried out at room temperature. In the samples with both S and Se, it is observed that
when S was deposited before Se, the covering of the nanoparticles on the TiO2 NTs surface
was enhanced according to the CdSSe sample. This suggests that the Se ions did not react
with the deposited Cd ions but rinsed them or only doped the formed CdS.

Table 1. Chemical composition (atomic %) of the TiO2 NTs photoelectrodes sensitized with cadmium
chalcogenides nanoparticles obtained from EDS analysis.

Sample Ti O Cd S Se

TiO2/CdS 21.91 59.93 6.25 11.91 -

TiO2/CdSe 27.34 65.30 0.79 6.55 0.02

TiO2/CdSeS 25.34 63.05 3.75 7.45 0.40

TiO2/CdSSe 27.75 52.42 8.01 10.42 1.40
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3.3. Structural Characteristics

The X-ray diffraction patterns of the TiO2 NTs obtained with 1.5% NH4F electrolyte
after thermal annealing and sensitizing with cadmium chalcogenide nanoparticles samples
are demonstrated in Figure 4. In all samples, the main peaks associated with the tetragonal
TiO2 anatase phase (PDF#21-1272) corresponding to (101), (004), (105), (211), (204) and (116)
planes were observed, marked with *. Additionally, in the electrode with CdS deposited,
two peaks at 28.4◦ and 47.8◦ were identified which correspond to (101) and (103) planes
attributed to the hexagonal CdS crystalline structure (PDF#41-1049). The intensity of the
28.4◦ peak increased in the photoelectrode sensitized with CdSSe and CdSeS. The sample
with CdSe showed the characteristic peaks of TiO2 and a small peak at 28.4◦ which can be
associated to the sulfur reacting with cadmium from the Na2SeSO3 precursor solution. The
absence of the CdSe peaks in the XRD diffractogram can be related to the small content
of Se in the samples, as was discussed from the EDS results. Furthermore, a small peak at
40◦ was observed in the samples corresponding to Ti foil substrate. The crystallite size was
calculated from the broadening of the XRD peaks using Scherrer equation [49]:

D =
0.9λ

βcosθ
(1)

where D is the crystallite size, 0.9 is the Scherrer constant, λ is the wavelength of the XRD
radiation (0.1541 nm for Cu Kα), β is the full width at half-maximum (FWHM), and θ is the
diffraction angle. The estimated crystallite size of TiO2 NTs was 13.7 nm, while for CdS was
14.1 nm. The higher crystallite size of the CdS explain its deposition over the TiO2 NTs.
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Figure 4. XRD diffractogram of the anodized TiO2 NTs sensitized with binary and selenium-doped
cadmium chalcogenide nanoparticles. PDF #21-1272 corresponding to TiO2 and #41-1049 correspond-
ing to CdS are included. The peak indicated with ◦ corresponds to the Ti foil substrate. The peaks
with * represent all TiO2 anatase observed planes.

To verify the influence of the order precursor solutions in the cadmium nanoparticles
formation by SILAR method, the XPS spectra of the TiO2 NTs photoelectrodes sensitized
with cadmium sulfur and selenide changing the order of S and Se deposited are shown in
Figure 5. The survey spectrum shows the presence of Ti, O, Cd and S, as well as the peak
of C from the air (Figure 5a). The characteristic peaks of Ti 2p at 458 and 464 eV observed
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in Figure 5b correspond to the Ti 2p3/2 and Ti 2p1/2 associated to Ti4+ [50]. The peak
observed at 529.7 eV is assigned to the O2− in the TiO2 lattice, while the peak at 531.6 eV
can be attributed to the surface-adsorbed hydroxyl (Figure 5c) [22,51]. It is interesting to
note that the area ratio of the two O 1s peaks changed with the different order of the S and
Se deposition. When S was deposited before Se (CdSSe sample), the OH area peak was
higher than the TiO2 area peak, this might indicate the formation of oxygen vacancies in
the lattice [52], whereas in the sample where Se was deposited before S (CdSeS), the higher
area observed was in the peak related to TiO2.
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Figure 5. (a) Survey spectrum and (b–f) XPS spectra of the TiO2 NTs sensitized with cadmium sulfide
and selenide deposited by SILAR with different order of S and Se deposition. Dashed lines show the
deconvoluted spectra.

Additionally, Figure 5d shows two peaks located at 405.1 and 411.8 eV corresponding
to Cd 3d5/2 and Cd 3d3/2, which are consistent to Cd2+ [53,54]. The two peaks observed at
161 and 162 eV are related to S 2p3/2 and 2p1/2 orbits in agreement with S2− (Figure 5e) [55].
Comparing the two samples with different order of deposition, a slight shift from 161.6 to
161.4 eV and from 161.7 to 161.6 eV was observed when S was deposited first (CdSSe). It
could be attributed to sulfur vacancies generated, and therefore, the possibility of selenium
doping the lattice [55]. Figure 5f shows in both samples the presence of Se 3d5/2 and
3d3/2 doublets at 53.8 and 54.7 eV associated to CdSe [56,57]. However, in the CdSSe
sample, an additional peak at 59 eV was observed, which can be attributed to SeO3

2− [58]
from the Se precursor solution suggesting that not all the Se reacted with the cadmium
sulfur nanoparticles.

3.4. Optical Properties

The absorbance of the sensitized TiO2 NTs samples is shown in Figure 6. In the
photoelectrode with TiO2/CdS, two absorption bands were observed at 350 nm and 500 nm,
corresponding to the light absorption of the TiO2 and CdS, respectively [23]. The sample
with CdSe deposited showed an abrupt decrease in absorption at 400 nm which corresponds
to the TiO2 absorption edge and a peak at 600 nm attributed to CdSe absorption, indicating
that the main light absorption contribution was made by the TiO2 NTs [59]. For the
samples with sulfur and selenium, a wider absorption spectrum was obtained, where the
three absorption peaks corresponding to TiO2 (350 nm), CdS (500 nm) and CdSe (600 nm)
were observed.
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Figure 6. Absorbance spectra of the anodized TiO2 NTs sensitized with binary and selenium-doped
cadmium chalcogenide nanoparticles.

3.5. Electrochemical Measurement

The electrochemical characterization of the anodized TiO2 NTs sensitized with bi-
nary and selenium-doped cadmium chalcogenide nanoparticles by the SILAR method is
presented in Figure 7. The lineal sweep voltammetry of the TiO2 TNs photoelectrodes
obtained with 1.5% NH4F and 4% H2O electrolyte sensitized with CdS, CdSe, CdSSe and
CdSeS is shown in Figure 7a. At 0 V vs. Ag/AgCl, the pristine TiO2 NTs electrode showed
0.15 mA cm−2. The current density of the electrode sensitized with CdS was very close
(1.46 mA cm−2) comparing to the current obtained with CdSe (1.35 mA cm−2). For the
Se-doped samples, the electrode deposited with CdSSe showed a higher current density
(2.41 mA cm−2) while the photoelectrode with CdSeS demonstrated 1.78 mA cm−2. This
agrees with the trend observed in Table 1 concerning the order of anions deposited.
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tion of the anodized TiO2 NTs photoelectrodes sensitized with binary and selenium-doped cadmium
chalcogenide nanoparticles.

Figure 7b presents the photocurrent response of the sensitized photoelectrodes at
transient illumination applying 0 V bias. A clear increment of the photocurrent response
was observed with the cadmium chalcogenide sensitizing the TiO2 NTs and a very stable
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current response. The photocurrent transient increased with the doped samples, showing
an increasing trend with the TiO2/CdSeS electrode and a slightly decreasing trend with the
TiO2/CdSSe electrode. The higher current density was obtained with the CdSSe sensitized
photoelectrode. This enhanced photocurrent agrees with the improved light absorption
obtained caused by the presence of both S and Se, and as has been reported, the CdS doping
produce the improvement of charge transport by the alignment of energy bands, especially
the addition of Se brings the fermi level closer to the conduction band, thereby allowing for
an effective capture of electrons and eliminating charge recombination [28,29,34,36].

The electrochemical characterization of the TiO2 NTs photoelectrodes obtained with
different NH4F concentration and sensitized with CdSSe nanoparticles is shown in Figure 8.
From the lineal sweep voltammetry, a slightly higher current density in the sample obtained
with 1.5% NH4F at 0 V vs. Ag/AgCl was observed (Figure 8a), associated to the larger
TiO2 NTs. The transient photocurrent response showed high current density with the lower
NH4F concentration, nevertheless, this decreased with time. With the increased NH4F
concentration, the transient photocurrent response was very stable, see Figure 8b.
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Figure 8. (a) Lineal sweep voltammetry and (b) chronoamperometry response at transient illumina-
tion of the anodized TiO2 NTs photoelectrodes with different NH4F concentration in the electrolyte
and sensitized with CdSSe nanoparticles.

The hydrogen evolution was performed in a three-cell configuration where the photo-
electrodes were illuminated, while the hydrogen was generated in the Pt wire and collected
in a locked syringe. Na2SO3 and Na2S were added as sacrificial agents to prevent corrosion
of the photoelectrode. The possible reaction mechanism in the PEC assembly has been
reported as follows [60]:

photoanode
TiO2/QDs + hv → e− + h+ (2)

cathode
2H2O + 2e− → H2 + 2OH− (3)

electrolyte

2S2− + 3SO2−
3 + H2O + 6h+ → 2S2O2−

3 + SO2−
4 + 2H+ (4)

The hydrogen rate obtained with the photoelectrodes in the photoelectrochemical cell
at 0 V bias under 1 sun illumination is presented in Figure 9a. The higher hydrogen genera-
tion with the TiO2/CdSSe sample (1.068 mL h−1 cm−2) compared with the TiO2/CdSeS
sample (0.695 mL h−1 cm−2) is evident, which is in agreement with the lineal sweep voltam-
metry response. The external quantum efficiency (EQE) (Figure 9b), which is defined as the
number of available electrons produced by the incident photons and collected from the cell
to the external circuit [61], demonstrated the response of the photoelectrodes tested mainly
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in the visible range until 550 nm attributed to the CdS and an additional small response
until 650 nm related to the Se doping. The increase in EQE suggests that the amount of
photogenerating semiconductor is higher in the sample with CdSSe, which is consistent
with Table 1. Therefore, it can be concluded that the enhanced hydrogen generation of
this sample is caused by an increase in deposited photoactive material due to the order of
deposition. The integrated current density curve resulting from the EQE confirmed the
improved performance of the TiO2/CdSSe photoelectrode regarding the TiO2/CdSeS.
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Figure 9. (a) Volume of hydrogen generated, and (b) external quantum efficiency and integrated cur-
rent density curve of the TiO2/CdSSe and TiO2/CdSeS photoelectrodes in the photoelectrochemical
cell under 1 sun illumination.

Although the amount of hydrogen generated with these photoelectrodes was low
compared with similar PECs reported (see Table 2), this system can be improved by
obtaining larger diameter NTs or enhancing the cadmium chalcogenide nanoparticles
deposition technique, for instance, with QDs that can be deposited inside the NTs and have
advantage such as quantum confinement and multiple carrier generation.

Table 2. Performance parameters of the PECs based on TiO2, and cadmium sulfide selenide nanopar-
ticles reported in literature and this work.

Photoanode Deposition
Method

Reference
Electrode Cathode Electrolyte Voltage Bias Jsc (mA cm−2) H2 Rate

(µmol cm−2 h−1) References

TiO2 (NW)/CdS/
CdS0.2Se0.8

(nanocables)/CdSe

Thermal vapor
transport Ag/AgCl Pt 1 M Na2S 0 V 6.8 600 [29]

FTO/TiO2/CdS0.52Se0.48
(NW) core/shell Vapor deposition Ag/AgCl Pt 0.24 M Na2S +

0.35 M Na2SO3
0 V 8.8 - [28]

ITO/TiO2 (meso-
porous)/CdS/CdSe

Chemical bath
deposition (CBD) Ag/AgCl Pt 0.24 M Na2S +

0.35 M Na2SO3
0 V 15.3 201 [62]

ITO/TiO2
(mesoporous)/CdS/

CdSe/ZnS QDs
CBD - Pt 0.24 M Na2S +

0.35 M Na2SO3
−0.85 V 14.9 226 (5.4 mL cm−2 h) [63]

FTO/TiO2/CdS/CdSe/ZnS SILAR - Pt 0.24 M Na2S +
0.35 M Na2SO3

0 V 4.3 8.33 [23]

TiO2 (NTs)/CdSSe SILAR Ag/AgCl Pt 0.25 M Na2S +
0.35 M Na2SO3

0 V 1.65 1.08 (mL cm−2 h) This work

4. Conclusions

TiO2 nanotubes were obtained by electrochemical anodization testing different NH4F
wt.% in the electrolyte, causing a decrement of the diameter and length. The TiO2 NTs
were sensitized with binary CdS and CdSe nanoparticles, as well as Se doping CdS by
SILAR. In the doped samples, the order of selenium and sulfur deposition demonstrated
an improvement of nanoparticles covering the TiO2 NTs when the sulfur precursor was
first deposited instead of selenium (CdSSe sample). This enhancement was attributed to
the increased surface of the TiO2 NTs when 1.5% NH4F was added, and a more efficient
deposition of the nanoparticles. Therefore, the higher hydrogen generation rate was
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obtained with the TiO2/CdSSe photoelectrode tested in the PEC. This demonstrated the
potential suitability of these nanomaterials for photoelectrochemical devices.
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