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Abstract: Aquatic pollution is one of the main problems due to rapid development in industrialization.
The remediation of industrial wastewater (IWW) by microorganisms is an environmentally friendly
technique. This study was conducted to assess pollution load in IWW and to use Bacillus pakistanensis
and Lysinibacillus composti individually and in a consortium for bioremediation. The IWW was
obtained from Hayatabad Industrial Estate and evaluated for physicochemical parameters and metal
concentration. The pH, color, electrical conductivity (EC), turbidity, temperature, sulfide, fluoride,
chloride, biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids
(TSS), total dissolved solids (TDS), calcium hardness, magnesium hardness, and total hardness
were noted as 6.82, 440 TCU, 1.195 mS/cm, 54.65 mg/L, 26.8 ◦C, 5.60 mg/L, 3.6 mg/L, 162 mg/L,
85.5 mg/L, 921 mg/L, 232 mg/L, 794 mg/L, 590 mg/L, 395 mg/L, and 985 mg/L, respectively. The
metals such as manganese, copper, chromium, cadmium, cobalt, silver, nickel, calcium, magnesium,
and lead were also analyzed as 1.23 mg/L, 0.81 mg/L, 2.12 mg/L, 0.18 mg/L, 0.151 mg/L, 0.24 mg/L,
1.12 mg/L, 0.113 mg/L, 14.5 mg/L, and 0.19 mg/L, respectively. A pot experiment was performed
for two weeks to evaluate the efficiency of the selected species. The IWW and tap water (control)
were treated with selected species, individually and in a consortium. After treatment, a considerable
reduction was noted in the color 87.3%, EC 46.5%, turbidity 84.1%, sulfide 87.5%, fluoride 25.0%,
chloride 91.3%, BOD 96.4%, COD 86.5%, TSS 90%, TDS 45.0%, Ca hardness 42.3%, Mg hardness
77.2%, and total hardness 52.2%. After the experiment, samples of water were also analyzed for
metal concentrations by atomic absorption spectrophotometry. The selected species removed 99.3%
of Mn, 99.6% of Cu, 97.8% of Cr, 94.4% of Cd, 46.3% of Co, 85.1% of Ag, 88.4% of Ni, 98.8% of Ca,
91.5% of Mg, and 90.5% of Pb. The t-test analysis showed that the treatment with the selected species
significantly decreased the metal concentrations in the IWW (p ≤ 0.05).

Keywords: bioremediation; bacteria; physicochemical parameters; heavy metals; bioremoval efficiency

1. Introduction

Anthropogenic activities such as industrialization and urbanization release large
amounts of wastewater (WW) into nearby aquatic environments without any treatment.
Different industries such as photographic processing, metal plating, petroleum refining, and
mining are the main causes of water contamination by releasing potentially heavy metals
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(HMs) [1], fertilizers, and other organic and inorganic contaminants [2]. Approximately two
million tons of effluents and sewage are exhausted into the water daily. While waterborne
diseases affect about 1.5 million children each year. According to a United Nations report
(2010), these conditions are the most horrible in underdeveloped nations, where raw sewage
(90%) and industrial wastes (70%) are drained into the surface water [3]. Therefore, access
to clean water and sanitation is insufficient and is the main problem affecting human
health [4].

A large amount of water pollutants cause a raise in turbidity, total suspended solids
(TSS), coloration, total dissolved solids (TDS), biological oxygen demand (BOD), and
chemical oxygen demand (COD), while the contents, including fluoride, chloride, and
sulfide make the water unsafe for drinking and irrigation purposes. Urbanization and
industrialization supplemented large amounts of WW to the natural aquatic ecosystem,
consisting of HMs. The HMs in the natural ecosystem are of greater importance due to
their nonbiodegradability, persistency, and toxicity [1]. Some HMs are essential for the
organism in trace levels for growth, such as iron (Fe), selenium (Si), zinc (Zn), cobalt
(Co), and copper (Cu), although larger amounts of each can cause toxic effects that are
teratogenic/mutagenic, synergistic, acute, and chronic [5].

About 40 HMs, even at trace levels, are considered potentially toxic for living organ-
isms and humans due to their increased assimilation in the food chain [6] and, therefore,
they are becoming an enduring burden on the environment [1]. Heavy metals discharged in
ecosystems possess a severe risk [7]. Whenever the HMs accumulate in the food chain via
living organisms, it leads to cytotoxic, mutagenic, and carcinogenic impacts on humans and
wildlife [8,9]. The physiological function of the aquatic organisms’ reproductive system,
kidneys, and liver can be badly affected through direct HM contact. Alterations in the
physicochemical characteristics of the aquatic ecosystem can affect the diversity and activity
of aquatic bacteria, zooplankton, and plants [10,11]. Various HMs raise the acidity of the
blood, resulting in the extraction of Ca (calcium) from bones for the pH restoration of blood,
leading to osteoporosis. This is generally found in children and aged people [12]. The
major environmental problem emerges from HM emissions from Zn, Hg, Cu, Cr, and Cd
industries. Consequently, the removal of HMs from industrial effluents is necessary [12].

There are several methods for HMs removal from the water, such as reverse osmo-
sis, chemical precipitation, ion exchange, biochar, adsorption on activated carbon, and
membrane filtration [13]. Though, the achievability of these costly methods and various
technological factors may limit the execution of these techniques [14]. All of the above
traditional methods for HM removal have some limitations despite their ability to eliminate
metals, up to some point from the industrial WW. The HMs are generally altered to other
forms, which need to be eliminated. Moreover, they are very expensive in terms of energy
cost [15].

Research is continuously going onwards and discovering cost-effective and suitable
biotechniques. HM removal from WW is regarded as a main field of research concerning
environmental and economic considerations. Previous research emphasized biological
techniques, such as yeasts, bacteria, and fungi have been studied for HM removal from the
WW [16]. Bacteria have a large surface area to volume ratio that presents a huge contact
surface, allowing the interaction with HMs in their environment, and have been used
successfully as biosorbents [13]. Bacteria have the highest range of potential for the process
of bioremediation. Many microbes, such as Ochrobactrum, Acinetobacter, Cellulomonas sp.,
Bacillus sp., Serratia marcescens, Pseudomonas sp., Arthrobacter, and Desulfovibrio vulgaris
have been recognized to reduce the highly toxic and soluble forms to less toxic and less
soluble forms [17]. Many diverse bacteria, such as B. subtilis, endophytes, and pseudomonas
have been used in the remediation process [18]. Hayatabad, Peshawar is one of the key
industrial area of Khyber Pakhtunkhwa, Pakistan. Heavy metal pollution is one of the
key issues in industrial wastewater in this area. The level of heavy metals is increasing
because of excessive industrialization. These heavy metals can be degraded or removed
from industrial wastes through the direct use of microbes, including bacteria or enzymes.
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To date, no comprehensive study is available for the safe and efficient removal of these
toxic heavy metals. By keeping these gaps, the present study is designed to categorize the
most efficient bacterial species and explore the efficiency of removing HMs (Mn, Cr, Cd,
Cu, Co, Ag, Pb, Ni, Ca, and Mg) present in the industrial wastewater in the Hayatabad
Industrial Estate, Peshawar, Pakistan.

2. Materials and Methods
2.1. Bacterial Collection and Transportation

The bacterial species, Bacillus pakistanensis and Lysinibacillus composti were collected
from National Agricultural Research Centre (NARC), Islamabad, Pakistan. The bacteria
were shifted through a portable delagua kit. The bacteria were transplanted in industrial
effluents of the Hayatabad Industrial Estate (HIE) for 14 days at room temperature and a
light/dark cycle of 14:10 h [19]. The reason behind the selection of these species is their
rapidly growing temperature, high and low pH resistance, and their high tolerance to
heavy metals (HMs) toxicity.

2.2. Collection of Industrial Effluents

The water sample was collected from the main source, where all the industrial effluents
fall into the main drain in the Hayatabad Industrial Estate, Peshawar. The industrial
effluent of the Hayatabad industrial Estate contains organic and inorganic pollutants [3].
Hayatabad Industrial Estate has pharmaceutical, paint, plastic, chipboard, match, steel,
rubber, incinerator, and paper industries that generate a huge amount of WW [20]. Before
experimentation, the WW sample was analyzed for different parameters, including COD,
pH, BOD, TSS, TDS, turbidity, color, fluoride, Ca hardness, Mg hardness, total hardness,
electric conductivity, and chloride using standard analytical methods [3]. HMs such as
Pb, Ni, Co, Cr, Mn, Cu, Cd, Ag, Ca, and Mg were analyzed using an atomic absorption
spectrophotometer (AAS) in a laboratory at the Environmental Protection Agency (EPA) in
Peshawar, Khyber Pakhtunkhwa (KP), Pakistan [3].

2.3. Experimental Design

A pot experiment was performed to study the efficiency of bacteria against organic
and inorganic pollutants. For this purpose, six pots were used, which were first washed
thoroughly with double deionized distilled water, and 10% dilute nitric acid [19]. Three
pots served as control pots containing tap water and three as treatment pots containing
industrial effluents.

The pots were named C1, C2, and C3, and contained Bacillus pakistanensis (5 mL),
Lysinibacillus composti (5 mL), individually, and a consortium of Bacillus pakistanensis
(5 mL), and Lysinibacillus composti (5 mL) in clean tap water (500 mL each), respectively.
The treatment pots were named T1, T2, and T3, and contained Bacillus pakistanensis
(5 mL), Lysinibacillus composti (5 mL), and a consortium of Bacillus pakistanensis (5 mL),
and Lysinibacillus composti (5 mL) in industrial effluents (500 mL each).

2.4. Water Sampling and Analysis

Water samples (500 mL) from each of the six containers (C1–C3 and T1–T3) were
obtained for analysis after 14 days of experimentation. All the water samples collected from
control and treatment containers were analyzed for pH, EC, temperature, COD, BOD, TSS,
TDS, sulfide, color, turbidity, chloride, fluoride, calcium hardness, magnesium hardness,
and total hardness using standard analytical methods [3,19–21].

2.5. Heavy Metal Analysis

The water samples were prepared for analysis using the selected metals [22]. Nitric
acid (25 mL) and HCl (75 mL) were added to (50 mL) of each sample digestion for 24 h,
and afterward, the makeup of the sample was conducted with distilled water to a total of
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250 mL [21]. Using ASS, the water samples were analyzed for Pb, Ni, Co, Cr, Mn, Cu, Cd,
Ag, Ca, and Mg concentration [20].

2.6. Bioremoval Efficiency (%)

Bioremoval efficiency (%) was calculated using the equation R = Ci−C f
Ci × 100, where

R represents the removal percentage, Ci is the initial concentration of the metal in the water
samples, and Cf is the final concentration of the metal in the water samples [22].

2.7. Statistical Analysis

Statistical analysis was performed using software, including SigmaPlot and Microsoft
Excel for graphical representation of the data and Statistical Package for Social Science
(SPSS) 16.0. The t-test was used to determine the significant difference (p) between two and
more than two variables of the parameters.

3. Results and Discussion
3.1. Physicochemical Parameters of WW

The physicochemical parameters of the water samples used for the experiment are
provided in Table 1. At the initial and final points of the experiment, the water samples
were collected from each container (C1, T1, C2, T2, C3, and T3). In the present study, the
industrial WW at the Hayatabad Industrial Estate initially had low mean pH values (6.83),
which indicates that the acidity and the presence of large amounts of pollutants are in the
industrial WW (Table 1). The results show that the influences of bacteria on the pH were
insignificant, with the changes ranging from 0.68 to 1.38 units. The low pH in the industrial
WW may raise the metal solubility, if released in aquatic ecosystems, and negatively impact
aquatic organisms [23]. In previous studies, similar findings (pH of 7.6) were observed
by Fito et al. [24], who analyzed the WW in the sugar industry. Khan et al. [25] observed
the same results (pH of 6.15) while experimenting with the treatment of industrial WW
at the Hayatabad Industrial Estate by algae. Hossain et al. [26] conducted a study on the
pollution load of industrial WW discharged from Bangladeshi industries and discovered
similar results (pH of 7.28). These pH values can be ascribed to the difference in the water
samples collected for analysis.

At the initial stage, the observed EC value for industrial WW was 1.195 mS/cm. The
EC values were significantly (p ≤ 0.05) reduced (11.9–46.5%) in the pot experiment, which
could be related to bacterial metal uptake and precipitation (Table 1). This EC value does
not agree with the EC value (5.04 mS/cm) found in the industrial WW at the Hayatabad
Industrial Estate as observed by Ayaz et al. [3]. A study by Hossain et al. [26] reported on
the physicochemical characteristics of WW released from different industries (Bangladesh)
and found similar findings (2.64 mS/cm).

The TSS value at the initial stage observed for industrial WW at the Hayatabad
Industrial Estate was 232 mg/L. TSS was reduced to a range of 2–90% (Table 1). The
high TSS values in WW can have harmful effects on the physical, biological, and chemical
characteristics of water [27], while if utilized for irrigation purposes, it can cause soil
pore clogging [28]. Aniyikaiye et al. [29] carried out a study on paint industrial WW
and found much higher TSS values (2470 mg/L). Similarly, the TDS values at the initial
stage for industrial WW samples were observed as 794 mg/L. The high value of TDS in
industrial WW can lead to salinity problems when discharged without prior treatment
for irrigation [30]. Ayaz et al. [3] experimented on the phytoremediation in the WW and
observed much lower TDS values (2.0 mg/L). Similarly, much higher TDS values (7072
mg/L) have been determined in textile industrial WW by Paul et al. [31]. The differences in
the findings can be attributed to the different sampling sites.
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Table 1. Physiochemical parameters of water samples in both control and experimental groups.

Physiochemical
Parameters

C1 T1 C2 T2 C3 T3

Mean Eff. % Mean Eff. % Mean Eff. % Mean Eff. % Mean Eff. % Mean Eff. (%)

pH I 7.3 6.83 7.3 6.83 7.3 6.83 −20.2
F 7.98 8.02 8.23 8.10 8.27 8.21

EC (mS/cm)
I 0.44

45.45
1.195

11.9
0.44

15.9
1.195

16.0
0.436 46.5 1.195 15.8

F 0.24 1.052 0.37 1.003 0.23 1.006

Temperature (◦C) I 26.6
45.1

26.8
45.1

26.6
45.8

26.8
45.1

26.6 45.1 26.8 45.1
F 14.6 14.7 14.4 14.7 14.6 14.7

BOD (mg/L) I 04
50

85.5
75.4

04
75

85.5
96.4

04 25 85.5 43.8
F 02 21 01 03 03 48

COD (mg/L) I 05
60

921
80.5

05
80

921
86.5

05 20 921 84.7
F 02 179 01 124 04 140

TSS (mg/L) I 02
9.5

232
83.6

02
39

232
90.0

02 2.0 232 84.4
F 1.81 38 1.22 23 1.96 36

TDS (mg/L) I 288
14.2

794
16.6

288
9.7

794
45.0

288 17.0 794 18.1
F 247 662 260 436 239 650

Sulfide (mg/L) I 0.40
20.0

5.6
76.7

0.4
10.0

5.6
87.5

0.4 25.0 5.6 83.9
F 0.32 1.3 0.36 0.7 0.30 0.9

Color (TCU)
I 0.34

50.0
440

85.6
0.34

23.5
440

85.5
0.34 79.4 440 87.3

F 0.17 63.13 0.26 63.72 0.07 55.45

Turbidity (NTU) I 1.08
3.7

54.65
81.06

1.08
3.7

54.65
84.1

1.080 4.6 54.65 73.9
F 1.04 10.35 1.04 8.642 1.03 14.23

Fluoride (mg/L) I 0.13
7.6

3.6
25

0.13
23.0

3.6
11.1

0.13 15.4 3.6 11.1
F 0.12 2.7 0.10 3.2 0.11 3.2

Chloride (mg/L) I 54
24.0

162
32.0

54
40.7

162
19.7

54 33.3 162 91.3
F 41 110 32 130 36 14

Calcium Hardness (mg/L) I 280
28.5

590
1.6

280
25.0

590
18.6

280 35.7 590 42.3
F 200 580 210 480 180 340

Magnesium Hardness (mg/L) I 180
5.5

395
46.8

180
14.6

395
77.2

180 10.5 395 49.3
F 170 210 157 90 161 200

Total Hardness (mg/L) I 460
19.5

985
52.2

460
20.2

985
42.1

460 25.8 985 45.1
F 370 470 367 570 341 540

C1: Container of control for Bacillus pakistanensis; T1: Treatment for Bacillus pakistanensis; C2: Container for control of Lysinibacillus composti;T2: Container for treatment of Lysinibacillus
composti; C3: Container for control of Bacillus pakistanensis, Lysinibacillus composti; T3: Container for treatment of Bacillus pakistanensis, Lysinibacillus composti;I: initial; F: final;
% eff.: % efficiency.
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A reduction in the values of BOD and COD was noted in the range of 25–96.4% and
20–86.5%, respectively (Table 1). The BOD at the initial stage, observed for the industrial
WW at the Hayatabad Industrial Estate, was 85.5 mg/L, which is comparable to the research
study by Ayaz et al. [3]. The similarity may be due to the same sample collection point
and study area. However, the findings are much higher and do not agree with the findings
(25 mg/L) in the research study performed on the remediation of wastewater by Khan
et al. [20]. The COD at the initial stage, reported for the WW, was 921 mg/L. These COD
values do not agree with the COD values for the WW at the Hayatabad Industrial Estate
obtained by Ayaz et al. [3]. Moreover, these discoveries are considerably similar to the
results (1231 mg/L) from the study conducted by Aniyikaiye et al. [29] on effluents in the
paint industry.

A decrease in sulfide contents was observed in the range of 10–87.5%. A reduction in
the values for color and turbidity were in the ranges of 23.5–87.3% and 7.6–25%, respectively.
After experimentation, reductions in the values of fluoride, chloride, calcium hardness,
magnesium hardness, and total hardness for the water samples were also observed, as
shown in Table 1. The sulfide concentration at the initial stage observed in industrial WW
was 5.6 mg/L. This sulfide concentration does not agree with the results (195–1434 mg/L)
determined from the physical analysis of industrial WW released from paint industries in
Nigeria by Aniyikaiye et al. [29]. Another physicochemical study on the sugar industry
WW, conducted by Fito et al. [24], found a much higher concentration of sulfide (30 mg/L).
At the initial stage, the turbidity value observed for industrial WW was 54.65 NTU. The
present value of turbidity is in line with the results (60 NTU) in industrial WW observed by
Momeni et al. [32]. At the initial stage, the fluoride value observed for industrial WW was
3.6 mg/L. A study reported on the quality of groundwater and health risks associated with
fluoride contamination in the watershed in India by Adimalla et al. [33] and found similar
findings (1.4–5.9 mg/L). At the initial stage, the chloride content observed in industrial WW
was 162 mg/L. This chloride concentration did not agree with the findings (733.8 mg/L)
determined by the physical analysis of industrial WW released from paint industries in
Nigeria by Aniyikaiye et al. [29]. A study reported on the physicochemical characteristics
of WW released from ethanol distillery wastewater by Fito et al. [24] and found much
higher values (6722 mg/L). These differences in the results can be attributed to the study
area differences. At the initial stage, the total hardness value observed in industrial WW
was 985 mg/L. An analysis reporting on fishpond water by Stone and Thomforde [34]
identified many low findings (103.80 mg/L). These differences in data can be attributed to
the different study areas used.

3.2. Heavy Metals
3.2.1. Manganese (Mn)

Mn concentrations checked at the initial stage for both control and treated water
were 0.013 and 1.23 mg/L, respectively. At the final stages, the Mn mean concentration
ranged from 0.004 to 0.011 mg/L for the control and from 0.008 to 0.049 mg/L for the
treated water samples, as shown in Table 2. The highest values were recorded in T1 for
the treatment water, while in C2 for the control water samples at the final stage. The
study found a 69.2, 96, 15.3, 99.1, 38.4, and 99.3% reduction in the final water samples
of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval efficiency (R) was
shown by T3, whereas the lowest was for C2 (Figure 1). Ali et al. [35], investigated the
physicochemical parameters of the water collected from the Kurram River, Pakistan, and
found much higher values (4–10 mg/L).
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Table 2. Metal concentration (mg/L) in water samples of both control and experimental groups.

HMs
C1 T1 C2 T2 C3 T3

Mean Mean Mean Mean Mean Mean

Mn
Initial 0.013 1.230 0.013 1.230 0.013 1.230

Final 0.004 0.049 0.011 0.011 0.008 0.008

Cu
Initial 0.010 0.810 0.010 0.810 0.010 0.810

Final 0.003 0.003 0.009 0.013 0.004 0.012

Cr
Initial 0.016 2.120 0.016 2.120 0.016 2.120

Final 0.001 0.102 0.012 1.470 0.001 0.046

Cd
Initial 0.012 0.180 0.012 0.180 0.012 0.180

Final 0.010 0.010 0.005 0.055 0.001 0.081

Co
Initial 0.014 0.151 0.014 0.151 0.014 0.151

Final 0.012 0.102 0.011 0.081 0.009 0.089

Ag
Initial 0.054 0.240 0.054 0.240 0.054 0.240

Final 0.008 0.080 0.019 0.190 0.012 0.100

Pb
Initial 0.002 1.120 0.002 1.120 0.002 1.120

Final 0.001 0.450 0.001 0.420 0.0017 0.104

Ni
Initial 0.046 0.113 0.046 0.113 0.046 0.113

Final 0.013 0.013 0.012 0.012 0.019 0.019

Ca
Initial 1.720 14.50 1.720 14.50 1.720 14.50

Final 0.088 0.880 0.920 1.265 0.110 0.160

Mg
Initial 0.040 0.190 0.040 0.190 0.040 0.190

Final 0.017 0.047 0.007 0.097 0.016 0.016
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3.2.2. Copper (Cu)

The Cu values observed at the initial stage for both control and treatment water sam-
ples were 0.010 and 0.81 mg/L, respectively. At the final point, the mean Cu concentrations
ranged from 0.003 to 0.009 mg/L for the control and from 0.003 to 0.013 mg/L for the
treated water samples. The highest values were recorded in T2 for treatment water, while
in C2 for the control water samples. The study found a 70, 99.6, 10, 98.3, 60, and 98.5%
reduction in the final water samples in C1, T1, C2, T2, C3, and T3, respectively. The highest
bioremoval efficiency was observed in T1, whereas the lowest was in C2 (Figure 2). In other
physicochemical studies on the sugar industry WW, conducted by Fito et al. [24], found
similar results (0.7 mg/L).
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Figure 2. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Cu in indus-
trial wastewater.

3.2.3. Chromium (Cr)

Cr concentrations, checked at the initial stage for both control and treatment water,
were 0.016 and 2.12 mg/L, respectively. At the final stages, the mean concentration ranged
from 0.001 to 0.012 mg/L for the control and from 0.046 to 1.47 mg/L for the treated water
samples. The highest values were recorded in T2 for treatment water, while in C1 and
C3 for the control water samples. The study found 93.7, 95.1, 25, 30.6, 93.7, and 97.8%
reductions in the final water samples for C1, T1, C2, T2, C3, and T3, respectively. The
highest bioremoval efficiency was observed in T3, whereas the lowest was in C2 (Figure 3).
This value for the Cr concentration agrees with the 1.5 mg/L finding by Fito et al. [24]
who reported on the physicochemical properties of the sugar industry WW. Ali et al. [35]
conducted a study on the physicochemical parameters of water collected from the Kurram
River, Pakistan, and found much higher values (8.0 mg/L). These differences in the results
can be ascribed to the difference in the collection site.
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Figure 3. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Cr in indus-
trial wastewater.

3.2.4. Cadmium (Cd)

The Cd concentrations determined at the initial stage for both the control and treated
water samples were 0.012 and 0.18 mg/L, respectively. At the final stages, the mean values
ranged from 0.001 to 0.010 mg/L for the control and from 0.010 to 0.081 mg/L for the
treated water samples. The highest values were recorded in T3 for the treatment water,
while in C1 for the control water samples. The study found reductions of 16.6, 94.4, 58.3,
69.4, 91.6, and 55% in the final water samples of C1, T1, C2, T2, C3, and T3, respectively. The
highest bioremoval efficiency was observed in T1, whereas the lowest was in C1 (Figure 4).
Ali et al. [35] conducted a study on the physicochemical parameters of water collected from
the Kurram River, Pakistan, and found a very similar cadmium concentration (0.14 mg/L).
Another study conducted on the industrial WW at the Hayatabad Industrial Estate by
Ayaz et al. [3], observed a much higher Cd concentration (4.5–8.0 mg/L).
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Figure 4. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Cd in indus-
trial wastewater.
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3.2.5. Cobalt

The Co levels checked at the initial stage for both control and treatment water, were
0.014 and 0.151 mg/L, respectively. At the final stages, the mean values ranged from 0.009
to 0.012 mg/L for the control and from 0.081 to 0.102 mg/L for the treated water samples.
The highest values were recorded in T1 for the treatment water, while in C1 for the control
water samples. The study found 14.2, 32.4, 21.4, 46.3, 35.7, and 41% reductions in the
final water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval
efficiency was observed in T2, whereas the lowest was in C1 (Figure 5). Similarly, Gokalp
and Mohammed [36] carried out a research study on the assessment of metal pollution in
Heshkaro, Iraq, and determined lower concentrations (0.00002–0.00233 mg/L) of Co. The
differences may be ascribed to the difference in the water sample collection site and the
initial metal concentration.
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Figure 5. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Co in indus-
trial wastewater.

3.2.6. Silver (Ag)

The Ag concentrations at the initial stage for both control and treated water were 0.054
and 0.24 mg/L, respectively. At the final stages, the Ag mean values ranged from 0.008
to 0.019 mg/L for the control and from 0.08 to 0.19 mg/L for the treated water samples.
The highest values were recorded in T2 for the treatment water, while in C2 for the control
water samples. The study found 85.1, 66.2, 64.8, 20.8, 82.3, and 58.3% reductions in the final
water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval efficiency
was observed in C1, whereas the lowest was in T2 (Figure 6). Ali et al. [35] conducted a
study on the physicochemical parameters of the water collected from the Kurram River,
Pakistan, and found much higher heavy metal concentrations.
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Figure 6. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Ag in
industrial wastewater.

3.2.7. Lead (Pb)

The Pb concentrations checked at the initial stage for both control and treated water
were 0.002 and 1.12 mg/L, respectively. At the final stages, the mean values ranged from
0.001 to 0.0017 mg/L for the control and from 0.104 to 0.450 mg/L for the treated water
samples. The highest values were recorded in T1 for the treatment water, while in C3 for
the control water samples. The study found 50, 59.8, 50, 62.5, 25, and 90.7% reductions in
the final water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval
efficiency was observed in T3, whereas the lowest was in C3 (Figure 7). The initial Pb
concentration observed for industrial WW was 1.12 mg/L. In another study, conducted
on the industrial WW at the Hayatabad Industrial Estate, by Ayaz et al. [3], a much higher
Pb concentration (6.81–8.01 mg/L) was observed. The difference in results may be due to
the initial concentration difference. In the initial stage the Ni concentration observed in the
industrial WW was 0.026 mg/L. Ali et al. [35] analyzed the physicochemical parameters
of the water collected from the Kurram River, Pakistan, and found a much higher Ni
concentration (2.0–10.5 mg/L). These results differences can be ascribed to the difference in
the study area and initial concentrations of Ni.
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Figure 7. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Pb in indus-
trial wastewater.
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3.2.8. Nickel (Ni)

The Ni concentrations checked at the initial stage for both the control and treated
water were 0.046 and 0.113 mg/L, respectively. At the final stages, the mean values ranged
from 0.012 to 0.019 mg/L for the control and from 0.012 to 0.019 mg/L for the treated
water samples. The highest values were recorded in T3 for the treatment water, while in
C3 for the control water samples. The study found 71.7, 88.4, 73.9, 89.3, 58.6, and 83.1%
reductions in the final water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest
bioremoval efficiency was observed in T2, whereas the lowest was in C3 (Figure 8). A
study was conducted by Kamika and Momba [37] on the bioremediation of the selected
bacterial species (Pseudomonas putida, Bacillus licheniformis, and Peranema) on HMs in IWW.
The removal efficiencies (Co-71%, Ni-51%, Mn-45%, and Cu-49%) observed by Kamika and
Momba [37] were much lower and were not in agreement with the present results.
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Figure 8. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Ni in indus-
trial wastewater.

3.2.9. Calcium (Ca)

The Ca levels checked at the initial stage for both the control and treated water were
1.72 and 14.5 mg/L, respectively. At the final stages, the mean values ranged from 0.088
to 0.920 for the control and from 0.880 to 1.265 mg/L for the treated water samples. The
highest values were recorded in T2 for the treatment water, while in C2 for the control
water samples. The study found 94.8, 93.9, 46.5, 91.2, 93.6, and 98.8% reductions in the
final water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval
efficiency was observed in T3, whereas the lowest was in C2 (Figure 9). The findings are not
in agreement with the findings (376.9–468 mg/L) of the study by Fito et al., which reported
on the physicochemical properties of the sugar industry WW [24].
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Figure 9. Bioremoval efficiency of Bacillus pakistanensis and Lysinibacillus composti for Ca in indus-
trial wastewater.

3.2.10. Magnesium (Mg)

The Mg levels checked at the initial stage for both the control and treated water were
0.040 and 0.19 mg/L, respectively. At the final stages, the mean values ranged from 0.007
to 0.017 mg/L for the control and from 0.016 to 0.97 mg/L for the treated water samples.
The highest values were recorded in T2 for the treatment water, while in C1 for the control
water samples. The study found 57.5, 75.2, 82.5, 48.9, 60, and 91.5% reductions in the final
water samples of C1, T1, C2, T2, C3, and T3, respectively. The highest bioremoval efficiency
was observed in T3, whereas the lowest was in T2 (Figure 10). However, in another study
conducted by Nirgude et al. [38] on the physicochemical evaluation of industrial effluents
from Indian industrial areas, much higher values (34 to 3246 mg/L) were observed. The
recent finding is not in agreement with the results (274.2–341.0 mg/L) of the study by
Fito et al., which reported on the physicochemical properties of the sugar industry WW [24].
The difference may be ascribed to the difference in the initial concentration, water sample
collection site, and season of collection.
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4. Conclusions and Recommendations

The concentrations of the metals found in the Hayatabad Industrial Estate’s industrial
WW exceed the permissible limits. The bacterial species, individually and in a consortium,
have a noteworthy role in the remediation of metal from industrial WW. The Bacillus pak-
istanensis had the best removal efficiency in the C1 control for Ag, and in the T1 treatments
for Cu and Cd. Overall, the concentrations of the metals (Ag, Cu, Cd, and Co) in the
industrial WW significantly reduced (p ≤ 0.05) following the treatment of T1 and C1. The
Lysinibacillus composti had the best removal efficiency in the treatment of T2 for Mn and Ni.
Similarly, treating the bacterial consortium T3 showed the best removal efficiency for Cr,
Pb, Ca, and Mg. Overall, the concentrations of the metals (Mn, Ni, Cr, Ca, and Mg) in the
WW significantly reduced (p ≤ 0.05) in the T2 and T3. The study showed that the bacterial
species Bacillus pakistanensis is more competent in most of the metal (Mn, Cu, Cr, Ag, Pb,
Ca, and Cd) uptake. Moreover, this species is more efficient in the control pot (C1), which
indicates that the species can remediate wastewater, even if the metals are at trace levels,
unlike traditional methods. The results also showed that the use of treatment with pot T3
(consortium of Bacillus pakistanensis and Lysinibacillus composti) was more efficient in metal
removal, compared to the other treatments. Therefore, it is concluded that at higher metal
concentrations the consortium of both these species is more effective than simply using
individual bacterial species (T1 and T3). These selected species can survive under stress
triggered by the metal concentrations. Therefore, this character can encourage evidence
for these selected bacterial species to be utilized for the bioremediation of polluted water,
either individually or in a consortium. Thus, it can be concluded that bioremediation is
environmentally friendly, cost-effective, and can be used for industrial WW remediation.
This study serves as a baseline for the removal of toxic heavy metals by using promising
bacterial species, while these species can be used for the safe removal of heavy metals from
other areas of the country. However, further research is needed to identify some other
novel bacteria that have similar modes of action against toxic heavy metals.
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