Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (465)

Search Parameters:
Keywords = cable well

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9663 KiB  
Article
Investigation on Structural Performance of Integral Steel Wall Plate Structure in Cable–Pylon Anchorage Zone
by Chen Liang, Yuqing Liu, Yimin Liu and Chi Lu
Appl. Sci. 2025, 15(15), 8672; https://doi.org/10.3390/app15158672 - 5 Aug 2025
Abstract
To enhance the bearing capacity of cable–pylon anchorage zones in cable-stayed bridges, this paper proposes the integral steel wall plate (IWP) structure and investigates the structural performance of its application in anchorage zones with a steel anchor beam and with a steel anchor [...] Read more.
To enhance the bearing capacity of cable–pylon anchorage zones in cable-stayed bridges, this paper proposes the integral steel wall plate (IWP) structure and investigates the structural performance of its application in anchorage zones with a steel anchor beam and with a steel anchor box. The proposed structure contains an end plate, a surface plate, and several perforated side plates, forming steel cabins that encase the concrete pylon wall, where the steel and concrete are connected by perfobond connectors on side plates. A half-scaled experiment and a finite element analysis were first conducted on the IWP with the steel anchor beam to study the deformation at the steel–concrete interface, as well as the stress distribution in steel plates and rebars. The results were compared with experimental data of a conventional type of anchorage zone. Then, finite element models of anchorages with steel anchor boxes were established based on the geometries of an as-built bridge, and the performance of the IWP structure was compared with conventional details. Finally, the effects of plate thickness and connector arrangement were investigated. Results show that the proposed IWP structure offers excellent performance when applied with an anchor beam or anchor box, and it can effectively reduce principal tensile stress on the concrete pylon wall compared with conventional anchorage details. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 2893 KiB  
Article
Research on the Cable Force Optimization of the Precise Closure of Steel Truss Arch Bridges Based on Stress-Free State Control
by Ningbo Wang, Qian Wei, Zhugang Chang, Bei Liu, Zhihao Fan and Chengshuo Han
Mathematics 2025, 13(14), 2314; https://doi.org/10.3390/math13142314 - 20 Jul 2025
Viewed by 239
Abstract
During the construction of large-span steel truss arch bridges, challenges such as complex control calculations, frequent adjustments of the cantilever structure, and deviations in the closure state often arise in the process of the assembly and closure of arch ribs. Based on the [...] Read more.
During the construction of large-span steel truss arch bridges, challenges such as complex control calculations, frequent adjustments of the cantilever structure, and deviations in the closure state often arise in the process of the assembly and closure of arch ribs. Based on the stress-free state control theory, this paper proposes a precise assembly control method for steel truss arch bridges, which takes the minimization of structural deformation energy and the maintenance of the stress-free dimensions of the closure wedge as the control objectives. By establishing a mathematical relationship between temporary buckle cables and the spatial position of the closure section, as well as adopting the influence matrix method and the quadprog function to determine the optimal parameters of temporary buckle cables (i.e., size, position, and orientation) conforming to actual construction constraints, the automatic approaching of bridge alignment to the target alignment can be achieved. Combined with the practical engineering case of Muping Xiangjiang River Bridge, a numerical calculation study of the precise assembly and closure of steel truss arch bridges was conducted. The calculated results demonstrate that, under the specified construction scheme, the proposed method can determine the optimal combination for temporary buckle cable tension. Considering the actual construction risk and the economic cost, the precise matching of closure joints can be achieved by selectively trimming the size of the closure wedge by a minimal amount. The calculated maximum stress of the structural rods in the construction process is 42% of the allowable value of steel, verifying the feasibility and practicality of the proposed method. The precise assembly method of steel truss arch bridges based on stress-free state control can significantly provide guidance and reference for the design and construction of bridges of this type. Full article
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Life Estimation of HVDC Extruded Cables Subjected to Extension of Qualification Test Conditions and Comparison with Prequalification Test Conditions
by Bassel Diban, Giovanni Mazzanti and Rolando Ezequiel Diaz
Energies 2025, 18(14), 3651; https://doi.org/10.3390/en18143651 - 10 Jul 2025
Viewed by 259
Abstract
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained [...] Read more.
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained by the authors in the case of the prequalification test (PQT) load cycles. This goal has been achieved in the present investigation by properly modifying a previously developed procedure for the life and reliability estimation of HVDC cables—implemented in MatlabTM environment—to make it applicable to EQT load cycles in addition to PQT and type test load cycles, which are already considered in the former version of the procedure. Considering a 500 kV DC-XLPE cable as the case study, the time-varying temperature profile and electric field profile within the cable insulation are calculated. Then, the fractions of life lost and the life of the cable at five locations within the insulation thickness are evaluated by means of a proper electrothermal life model. A comparison between the electric field distributions, fractions of life lost, and cable life under EQT and PQT is carried out. In this way, important features of the EQT compared to the PQT load cycles are singled out, and eventually, a new modified extension of qualification test (MEQT) is proposed as a feasible and meaningful compromise between the pros and cons of the EQT and PQT. Full article
Show Figures

Figure 1

30 pages, 3860 KiB  
Review
OTDR Development Based on Single-Mode Fiber Fault Detection
by Hui Liu, Tong Zhao and Mingjiang Zhang
Sensors 2025, 25(14), 4284; https://doi.org/10.3390/s25144284 - 9 Jul 2025
Viewed by 551
Abstract
With the large-scale application and high-quality development demands of optical fiber cables, higher requirements have been placed on the corresponding measurement technologies. In recent years, optical fiber testing has played a crucial role in evaluating cable performance, as well as in the deployment, [...] Read more.
With the large-scale application and high-quality development demands of optical fiber cables, higher requirements have been placed on the corresponding measurement technologies. In recent years, optical fiber testing has played a crucial role in evaluating cable performance, as well as in the deployment, operation, maintenance, fault repair, and upgrade of optical networks. The Optical Time-Domain Reflectometer (OTDR) is a fiber fault diagnostic tool recommended by standards such as the International Telecommunication Union and the International Electrotechnical Commission. It is used to certify the performance of new fiber links and monitor the status of existing ones, detecting and locating fault events with advantages including simple operation, rapid response, and cost-effectiveness. First, this paper introduces the working principle and system architecture of OTDR, along with a brief discussion of its performance evaluation metrics. Next, a comprehensive review of improved OTDR technologies and systems is provided, categorizing different performance enhancement methods, including the enhanced measurement distance with simple structure and low cost in 2024, and the high spatial resolution measurement of optical fiber reflection events and non-reflection events in 2025. Finally, the development trends and future research directions of OTDR are outlined, aiming to achieve the development of low-cost, high-performance OTDR systems. Full article
(This article belongs to the Special Issue Fault Diagnosis Based on Sensing and Control Systems)
Show Figures

Figure 1

12 pages, 17214 KiB  
Technical Note
A Prototype Crop Management Platform for Low-Tunnel-Covered Strawberries Using Overhead Power Cables
by Omeed Mirbod and Marvin Pritts
AgriEngineering 2025, 7(7), 210; https://doi.org/10.3390/agriengineering7070210 - 2 Jul 2025
Viewed by 338
Abstract
The continuous and reliable operation of autonomous systems is important for farm management decision making, whether such systems perform crop monitoring using imaging systems or crop handling in pruning and harvesting applications using robotic manipulators. Autonomous systems, including robotic ground vehicles, drones, and [...] Read more.
The continuous and reliable operation of autonomous systems is important for farm management decision making, whether such systems perform crop monitoring using imaging systems or crop handling in pruning and harvesting applications using robotic manipulators. Autonomous systems, including robotic ground vehicles, drones, and tractors, are major research efforts of precision crop management. However, these systems may be less effective or require specific customizations for planting systems in low tunnels, high tunnels, or other environmentally controlled enclosures. In this work, a compact and lightweight crop management platform is developed that uses overhead power cables for continuous operation over row crops, requiring less human intervention and independent of the ground terrain conditions. The platform does not carry batteries onboard for its operation, but rather pulls power from overhead cables, which it also uses to navigate over crop rows. It is developed to be modular, with the top section consisting of mobility and power delivery and the bottom section addressing a custom task, such as incorporating additional sensors for crop monitoring or manipulators for crop handling. This prototype illustrates the infrastructure, locomotive mechanism, and sample usage of the system (crop imaging) in the application of low-tunnel-covered strawberries; however, there is potential for other row crop systems with regularly spaced support structures to adopt this platform as well. Full article
Show Figures

Graphical abstract

19 pages, 2505 KiB  
Review
Machine Learning Applications in Parallel Robots: A Brief Review
by Zhaokun Zhang, Qizhi Meng, Zhiwei Cui, Ming Yao, Zhufeng Shao and Bo Tao
Machines 2025, 13(7), 565; https://doi.org/10.3390/machines13070565 - 29 Jun 2025
Viewed by 803
Abstract
Parallel robots, including cable-driven parallel robots (CDPRs), are widely used due to their high stiffness, precision, and high dynamic performance. However, their multi-chain closed-loop architecture brings nonlinear, multi-degree-of-freedom coupled motion and sensitivity to geometric errors, which result in significant challenges in their modeling, [...] Read more.
Parallel robots, including cable-driven parallel robots (CDPRs), are widely used due to their high stiffness, precision, and high dynamic performance. However, their multi-chain closed-loop architecture brings nonlinear, multi-degree-of-freedom coupled motion and sensitivity to geometric errors, which result in significant challenges in their modeling, error compensation, and control. The rise in machine learning technology has provided a promising approach to address these issues by learning complex relationships from data, enabling real-time prediction, compensation, and adaptation. This paper reviews the progress of typical applications of machine learning methods in parallel robots, covering four main areas: kinematic modeling, error compensation, trajectory tracking control, as well as other emerging applications such as design synthesis, motion planning, and CDPR fault diagnosis. The key technologies used, their implementation architecture, technical difficulties solved, performance advantages and applicable scope are summarized. Finally, the review outlines current challenges and future directions. It is proposed that hybrid learning physics modeling, transfer learning, lightweight deployment, and interdisciplinary collaboration will be the key directions for advancing the integration of machine learning and parallel robotic systems. Full article
(This article belongs to the Special Issue Advances in Parallel Robots and Mechanisms)
Show Figures

Figure 1

23 pages, 4788 KiB  
Article
Different Configurations of the Non-Minimal Prismatic Tensegrities
by Andrzej Rutkiewicz
Appl. Sci. 2025, 15(13), 7140; https://doi.org/10.3390/app15137140 - 25 Jun 2025
Viewed by 209
Abstract
In the paper analytical and numerical investigations on stable prestressed configurations of prismatic tensegrities with a non-minimal number of members are studied. Up to date, non-minimal prisms were rarely analyzed. Analytical equations are written based on the elastic energy approach and are further [...] Read more.
In the paper analytical and numerical investigations on stable prestressed configurations of prismatic tensegrities with a non-minimal number of members are studied. Up to date, non-minimal prisms were rarely analyzed. Analytical equations are written based on the elastic energy approach and are further solved numerically. The prestressing procedure has a physical meaning due to changing the lengths of selected groups of members and is explained by a simple mathematical model. Also, an example of the physical model is presented. The results show that additional cables commonly used in non-minimal prismatic tensegrities can be replaced by bars, as well as that the total number of bars in non-minimal prismatic tensegrities can be doubled, in regard to minimal prismatic systems. Full article
Show Figures

Figure 1

24 pages, 10811 KiB  
Article
Research on the Shear Performance of Carbonaceous Mudstone Under Natural and Saturated Conditions and Numerical Simulation of Slope Stability
by Jian Zhao, Hongying Chen and Rusong Nie
Appl. Sci. 2025, 15(12), 6935; https://doi.org/10.3390/app15126935 - 19 Jun 2025
Viewed by 261
Abstract
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their [...] Read more.
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their natural state and after immersion in saturated water. The push shear force–displacement relationship curve and fracture surface shape characteristics of carbonaceous mudstone samples were analyzed, and the shear strength index of carbonaceous mudstone was obtained, and numerical simulations on the stability and support effect of carbonaceous mudstone slopes were conducted. The research results indicate that carbonaceous mudstone can exhibit good structural properties and typical strain softening characteristics under natural conditions. The fracture surface, shear strength, and shear deformation process of carbonaceous mudstone samples will undergo significant changes after being soaked in saturated water. The average cohesion decreases by 33% compared to the natural state, and the internal friction angle decreases by 15%. The numerical simulation results also fully verify the attenuation of mechanical properties of carbonaceous mudstone after immersion, as well as the effectiveness of prestressed anchor cables and frame beams in supporting carbonaceous mudstone slopes. The research results provide an effective method for understanding the shear performance of carbonaceous mudstone and practical guidance for evaluating the stability and reinforcement design of carbonaceous mudstone slopes. Full article
Show Figures

Figure 1

35 pages, 4434 KiB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 522
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

16 pages, 1594 KiB  
Article
Measurement of Deformation and Force Changes Recorded During Long-Term Monitoring of a Steel Cable-Stayed Bridge
by Czesław Machelski, Maciej Hildebrand and Jarosław Rybak
Sensors 2025, 25(12), 3638; https://doi.org/10.3390/s25123638 - 10 Jun 2025
Viewed by 509
Abstract
Long-term processes, manifesting themselves in slow geometrical alterations and changes in internal forces, have been known and observed to take place mainly in large bridges made of prestressed concrete, but they also occur, albeit to a smaller degree, in steel bridges. Two sets [...] Read more.
Long-term processes, manifesting themselves in slow geometrical alterations and changes in internal forces, have been known and observed to take place mainly in large bridges made of prestressed concrete, but they also occur, albeit to a smaller degree, in steel bridges. Two sets of data, coming from, respectively, multi-year geodetic surveys and the structural health monitoring of a cable-stayed bridge (forces in its stays), were compared. Using the collocation method, displacements consistent with the results of the geodetic measurements were input into a numerical model of the bridge. Then, changes in the forces in the stays, which should accompany the displacements, were computed. The computed changes were compared with the actual changes in the mean force values in the stays of the bridge recorded over an eight-year period of its structural health monitoring. The two sets of data were found to be not in satisfactory good agreement. The main factors making it difficult to reach full agreement were the very small relative values of the observed geometrical alterations (the deformation, i.e., the increase in deflection, of the 375 m long span amounting merely 10–15 mm after eight years of periodic measurement) and the very small changes (amounting to about 0.5% for 8 years of monitoring) in the mean forces in the stays, as well as the possible mistakes in the survey. Despite these difficulties, the employed collocation method proved to be effective. It was also found that the long-term geometrical alterations and the changes in the forces in the stays do not adversely affect the safety of the bridge and its use. Full article
(This article belongs to the Special Issue Advanced Sensing Technology in Structural Health Monitoring)
Show Figures

Figure 1

25 pages, 5127 KiB  
Article
Comparative Analysis of Insulation Aging in Cross-Linked Polyethylene and Ethylene–Propylene Rubber Cables Through the Progression Rate of Partial Discharge
by Andréia C. Domingos, Leandro Duarte, Alan P. Pinheiro, Fabrício A. M. Moura, Lorenço Vasconcelos, Daniel P. de Carvalho, Fernando E. de F. Fadel and Patrícia N. Sakai
Energies 2025, 18(10), 2653; https://doi.org/10.3390/en18102653 - 21 May 2025
Cited by 1 | Viewed by 676
Abstract
In order to ensure the continuous and reliable supply of electrical energy to the power grid, it is necessary to evaluate and monitor the degree of impairment of the insulation of electrical cables, as throughout its service life, insulation around cables suffers degradation [...] Read more.
In order to ensure the continuous and reliable supply of electrical energy to the power grid, it is necessary to evaluate and monitor the degree of impairment of the insulation of electrical cables, as throughout its service life, insulation around cables suffers degradation due to numerous stress factors, which can arise from both environmental and operational causes. This aspect has aroused deep interest among energy professionals, as well as the industrial sector, with focus mainly placed on the undesirable effect caused by unexpected and sudden process stoppages, as well as their consequent financial and social impacts. That said, this article presents a methodology for evaluating the degree of insulation aging using the partial discharge progression curve. For this purpose, a thermal oven was duly constructed, in accordance with the technical premises presented in the literature, capable of homogeneously heating conductor samples. After thermal cycles, these conductors were aptly handled and tested in a controlled laboratory environment to determine the partial discharge progression curve. Through accurate data processing, a correlation was obtained between the degradation of the insulation and the rate of increase in partial discharge. The results are promising, as they provide support for maintenance agents’ ability to monitor and intervene regarding conductors. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 2600 KiB  
Article
c-Abl/TFEB Pathway Activation as a Common Pathogenic Mechanism in Lysosomal Storage Diseases: Therapeutic Potential of c-Abl Inhibitors
by Miguel V. Guerra, Juan Castro, Antonio Moreno, Elisa Balboa, Juan J. Marugan, Alejandra R. Alvarez and Silvana Zanlungo
Antioxidants 2025, 14(5), 611; https://doi.org/10.3390/antiox14050611 - 20 May 2025
Viewed by 536
Abstract
Lysosomal storage diseases (LSDs) are characterized by the accumulation of undegraded substrates within lysosomes, often associated with oxidative stress and impaired lysosomal function. In this study, we investigate the role of the c-Abl/TFEB pathway in different LSDs: Gaucher, Niemann-Pick type A (NPA), and [...] Read more.
Lysosomal storage diseases (LSDs) are characterized by the accumulation of undegraded substrates within lysosomes, often associated with oxidative stress and impaired lysosomal function. In this study, we investigate the role of the c-Abl/TFEB pathway in different LSDs: Gaucher, Niemann-Pick type A (NPA), and Niemann-Pick type C (NPC). Our findings identify c-Abl activation (p-c-Abl) as a common pathogenic mechanism in these disorders. We demonstrate that c-Abl phosphorylates TFEB at Tyr173, leading to its cytoplasmic retention. Using pharmacological models of Gaucher, NPA and NPC in SH-SY5Y neuronal cells and HeLa cells, we assess the effects of the c-Abl inhibitors Imatinib and Neurotinib, as well as the antioxidant α-Tocopherol (α-TOH), on TFEB nuclear translocation and p-c-Abl protein levels. Additionally, we explore the effects of c-Abl inhibitors in cholesterol accumulation in LSDs neuronal models. Our results show that treatment with c-Abl inhibitors or α-TOH promotes TFEB nuclear translocation, enhances lysosomal clearance, and reduces cholesterol accumulation in all three LSD models. These findings highlight the c-Abl/TFEB pathway as a potential therapeutic target for LSDs and potentially other neurodegenerative disorders associated with lysosomal dysfunction. Full article
(This article belongs to the Special Issue Oxidative Stress and Lysosomal Function in Health and Disease)
Show Figures

Figure 1

22 pages, 2890 KiB  
Review
A Review of Partial Discharge Electrical Localization Techniques in Power Cables: Practical Approaches and Circuit Models
by Mohammad Alqtish, Alessio Di Fatta, Giuseppe Rizzo, Ghulam Akbar, Vincenzo Li Vigni, Antonino Imburgia, Guido Ala, Roberto Candela and Pietro Romano
Energies 2025, 18(10), 2583; https://doi.org/10.3390/en18102583 - 16 May 2025
Viewed by 601
Abstract
This paper remedies the lack of comparison between studies specifically addressing partial discharge (PD) localization using electrical techniques. It identifies all the elements in need in each technique as well as the equations leading to a precise determination of the discharge site in [...] Read more.
This paper remedies the lack of comparison between studies specifically addressing partial discharge (PD) localization using electrical techniques. It identifies all the elements in need in each technique as well as the equations leading to a precise determination of the discharge site in a cable with a certain length and documents several circuit models set to simulate various types of PD. From the details in this paper, different detection methods can be combined based on the specific requirements of each method for detecting PD. This work thoroughly evaluates several electrical PD detection approaches, including time-based, frequency band, and electromagnetic time reversal (EMTR). Additionally, it gathers circuit modeling for various types of PD along cables to improve detection accuracy. It is evident that all time-dependent methods, despite their simplicity and requiring only a small number of components, face challenges when applied to long cables. This is primarily due to their reliance on signal propagation time. The authors provide profound insights into suggestions for future study areas. This review will provide essential insights and serve as a foundation for researchers to develop more effective methods for detecting PD in cables. Full article
Show Figures

Figure 1

16 pages, 3703 KiB  
Article
Real-Time Tracking and Position Control of an Elastic Cable-Driven Winch System
by Deniz Kavala Sen, Aydemir Arisoy and Hakan Gokdag
Appl. Sci. 2025, 15(10), 5462; https://doi.org/10.3390/app15105462 - 13 May 2025
Viewed by 369
Abstract
This study explores the sliding mode control (SMC) strategy to address challenges such as nonlinear dynamics, steady-state errors, and torque fluctuations in elastic cable-driven winch systems. While traditional Proportional-Derivative (PD) control is sufficient for linear systems, it struggles with instability and accuracy issues [...] Read more.
This study explores the sliding mode control (SMC) strategy to address challenges such as nonlinear dynamics, steady-state errors, and torque fluctuations in elastic cable-driven winch systems. While traditional Proportional-Derivative (PD) control is sufficient for linear systems, it struggles with instability and accuracy issues in flexible systems. SMC provides robustness against uncertainties but can cause mechanical wear and performance degradation due to its chattering effect. To mitigate this, a continuous control signal-based SMC approach was adopted, reducing chattering and improving system stability. This study focuses on tracking and position control, as well as managing motor torque fluctuations during position control, emphasizing controller parameter optimization. Experimental results demonstrate that SMC outperforms PD control in tracking, position control, and torque management. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

20 pages, 12806 KiB  
Article
Analysis of Buffeting Response and Stay Cable Fatigue Damage in Super-Long-Span Carbon Fiber-Reinforced Polymer (CFRP) Cable-Stayed Bridges
by Yuanqing Nie, Zhitian Zhang, Jiadong Zeng and Feiyu Han
Appl. Sci. 2025, 15(10), 5267; https://doi.org/10.3390/app15105267 - 9 May 2025
Viewed by 605
Abstract
As the span of cable-stayed bridges continues to increase, traditional steel cables face challenges such as excessive self-weight, significant sag effects, and sensitivity to wind-induced vibrations. This study proposes two super-long-span cable-stayed bridge schemes with a main span length of 1500 m and [...] Read more.
As the span of cable-stayed bridges continues to increase, traditional steel cables face challenges such as excessive self-weight, significant sag effects, and sensitivity to wind-induced vibrations. This study proposes two super-long-span cable-stayed bridge schemes with a main span length of 1500 m and identical girder cross-sections, employing steel cables and CFRP cables, respectively. Based on a discretized finite element model of stay cables, the global dynamic responses, cable vibration characteristics, and fatigue performance of both schemes were systematically evaluated using time-domain buffeting analysis and Miner’s linear fatigue damage accumulation theory. The results demonstrate that CFRP cables, benefiting from their lightweight and high-strength properties, significantly reduce the vertical, lateral, and torsional RMS responses of the main girder under the critical 3° angle of attack, achieving reductions of 31.6%, 28.5%, and 20.6% at mid-span, respectively. Additionally, CFRP cables suppress cable–girder internal resonance through frequency decoupling. Fatigue analysis reveals that the annual fatigue damage of CFRP cables under the design wind speed is far lower than that of steel cables and remains well below the critical threshold, highlighting their superior fatigue resistance. This research confirms that CFRP cables can effectively enhance the aerodynamic stability and long-term durability of super-long-span cable-stayed bridges, providing theoretical support for span breakthroughs. To further ensure long-term service safety, this study recommends implementing damping measures at critical cable locations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop