OTDR Development Based on Single-Mode Fiber Fault Detection
Abstract
1. Introduction
2. Theoretical Basis
2.1. Theoretical Model
2.2. Schematic Architecture
2.3. Typical OTDR Curve
3. Performance Metrics
3.1. Dynamic Range
3.2. Spatial Resolution
3.3. Improvement Progress
4. Measurement Range Enhancement
4.1. Pulse-Coding OTDR
4.1.1. Pseudorandom Bit Sequences (PRBSs)
4.1.2. Golay Codes
4.1.3. Orthogonal CCPONS Sequences
4.1.4. Simplex Codes
4.1.5. Hybrid Coding Schemes
4.1.6. Advantages and Limitations
4.2. Photon-Counting OTDR
4.2.1. Evolution Process
4.2.2. Engineering Implements
4.2.3. Advantages and Limitations
4.3. Chaotic-Pulse OTDR
5. Spatial Resolution Improvement
5.1. Linear Frequency Modulation OTDR
5.2. Chaotic OTDR
5.2.1. Generation Methods of Chaotic Laser
5.2.2. Chaotic Laser Integration
5.2.3. Bandwidth Performance Enhancement
5.2.4. Laser Self-Responding
5.2.5. Frequency Resonance
5.2.6. Joint Measurement of Fiber Loss and Attenuation
5.2.7. Measurement of Fiber Attenuation Event
5.2.8. Advantages and Limitations
5.3. Low-Coherence OTDR
5.4. Linear Optical Sampling OTDR
6. Measurement Accuracy Optimization
6.1. Wavelet Denoising
6.2. Empirical Mode Decomposition
6.3. Machine Learning
6.4. Trend Filtering
7. Monitoring Required Features and Techniques Comparison
- (1)
- Fault Detection: In OTDR systems, fault detection refers to the process of identifying, locating, and characterizing anomalies (e.g., fiber breaks, bends, splices, or connector losses) in an optical fiber link by analyzing backscattered and reflected light signals.
- (2)
- Cost: The cost of OTDR equipment is a critical consideration in engineering applications and system deployment. As a key instrument for optical fiber network testing and maintenance, its cost-effectiveness directly impacts several aspects, such as large-scale deployment feasibility, operation and maintenance expenses, and return on investment.
- (3)
- Complexity: The structural complexity of OTDRs can severely constrain their engineering applications. Such limitations directly conflict with core industry demands for cost-effective, compact, and field-serviceable OTDRs—particularly in distributed fiber sensing or telecom network monitoring where reliability and efficiency are critical.
- (4)
- Reliability: The system possesses a stable operational capability to achieve specified objectives while meeting expected performance metrics during repeated operations.
- (5)
- Notification Time: The time from fault occurrence to system response. Shorter durations indicate higher system response rates, enabling faster repairs.
- (6)
- Automatic: Network operators are capable of gathering monitoring information and identifying failures without the need for on-site technical personnel deployment.
- (7)
- Deployed: The monitoring technology should be applicable to deployed networks without requiring any modifications to the network infrastructure.
- (8)
- Scalability: The adaptability of the monitoring technique to evolving network infrastructure configurations.
Advantages and Limitations | Fault Detection | Cost | Complexity | Reliability | Notification Time | Automatic | Deployed | Scalability | Engineering Application | |
---|---|---|---|---|---|---|---|---|---|---|
Monitoring Techniques | ||||||||||
Measurement Range Enhancement | Pulse-Coding OTDR | Y | M | M | Y | M | Y | Y | Y | Submarine Optical Cable |
Photon-Counting OTDR | Y | H | L | Y | Lo | Y | Y | Y | Quantum Key Distribution Link Monitoring | |
Chaotic-Pulse OTDR | Y | L | L | Y | S | Y | Y | Y | Submarine Optical Cable | |
Spatial Resolution Improvement | LFM-OTDR | Y | M | M | Y | S | Y | Y | Y | Aircraft Wing Bending |
Chaotic OTDR | Y | L | L | Y | S | Y | Y | Y | High-Speed Railway Catenary Systems | |
Low-coherence OTDR | Y | H | M | Y | Lo | Y | Y | Y | Structural Monitoring of OCT Catheters | |
Linear Optical Sampling OTDR | Y | H | H | Y | Lo | Y | Y | Y | Connector Insertion Loss in Data Center Fiber Patch Cords | |
Measurement Accuracy Optimization | Wavelet Denoising | Y | L | L | Y | S | Y | Y | Y | Aging Fiber |
EMD-based OTDR | Y | L | L | Y | M | Y | Y | Y | Composite Cables (Fiber + Copper) | |
ML-based OTDR | Y | L | L | Y | Lo | Y | Y | Y | Intelligent Operation and Maintenance |
- (1)
- Pulse-coding OTDR: This technique is particularly suited for detecting minute losses in long-haul trunk fibers (e.g., inter-city/regional backbone networks, submarine cables) where high dynamic range is required but single-pulse power cannot be increased.
- (2)
- Photon-counting OTDR: This technique is ideally suited for low-light-intensity scenarios, such as detecting weak backscattered signals in optical fiber sensor networks or performing fault localization in quantum communication fiber links.
- (3)
- Chaotic-pulse OTDR: This technique is particularly applicable to cost-sensitive scenarios where fault spacing is large and millimeter-level precision is not required.
- (4)
- LFM-OTDR: This technique is particularly suitable for applications requiring high localization accuracy, such as rapid and precise fault identification in fiber-to-the-home (FTTH) networks and exact position detection of optical fiber sensors in industrial automation systems.
- (5)
- Chaotic OTDR: In complex electromagnetic environments, chaotic OTDR exhibits superior anti-interference capability, effectively resisting external electromagnetic disturbances and malicious attacks, thereby ensuring the stable operation of optical fiber communication systems. This technique is particularly employed for safeguarding critical communication infrastructure.
- (6)
- Low-coherence OTDR: The technique is suitable for fault localization scenarios where high spatial resolution is prioritized over strict requirements for detection distance.
- (7)
- Linear optical sampling OTDR: This technique is particularly suitable for remote optical identification and diagnostics in passive optical network (PON) links, as well as for precise fault localization in aircraft systems.
- (8)
- Wavelet-denoised OTDR: Wavelet-denoised OTDR is particularly effective in noisy optical fiber environments, such as aging fiber infrastructure or complex industrial settings, where it can efficiently suppress noise while extracting weak fault signatures, thereby significantly improving fault detection accuracy.
- (9)
- EMD-based OTDR: This method is particularly applicable for multi-scale fault analysis in non-uniform fiber links, including hybrid fault localization in composite cables (fiber + copper) and long-term monitoring of diverse coupling losses (bending, splicing, aging).
- (10)
- ML-based OTDR: This approach is particularly suitable for intelligent operation and maintenance management in optical fiber communication networks, significantly enhancing fault-handling efficiency. It enables the prediction of future loss trends in optical fiber links and evaluation of different maintenance strategies, thereby providing critical decision support for network planning and optimization.
8. Conclusions and Future Prospects
8.1. Conclusions
8.2. Technological Bottlenecks
- (1)
- Trade-off between dynamic range and spatial resolution. Increasing the pulse width enhances the input pulse energy, thereby improving the OTDR dynamic range. However, this simultaneously degrades the spatial resolution of the OTDR system.
- (2)
- Real-time performance versus computational complexity. High-precision algorithms (e.g., wavelet denoising, machine learning) require extensive computations, making real-time monitoring challenging.
- (3)
- Cost-performance trade-off. High-performance OTDR systems are cost-prohibitive, while low-cost devices exhibit limited capabilities, making them unsuitable for all application scenarios.
8.3. Future Prospects
- (1)
- Cost Reduction. Currently, the high cost of high-performance OTDR equipment limits its widespread application in small-scale optical networks. Optimizing hardware design and manufacturing processes to reduce costs while improving device usability and operability will facilitate broader adoption of OTDR technology.
- (2)
- System Integration. The integration of OTDR functionality into optical network units demonstrates significant advantages in terms of fault detection efficiency and operational expenditure reduction.
- (3)
- Intelligent Processing. The deep integration of OTDR technology with emerging technologies such as AI, big data, and the IoT represents a key future development trend. By enabling intelligent acquisition, transmission, storage, and analysis of OTDR test data, more efficient, intelligent, and automated optical fiber fault detection and maintenance systems can be established.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Give Full Play to the Important Supporting Role of Infrastructure Construction. Available online: http://www.legaldaily.com.cn/commentary/content/2022-04/28/content_8711257.html (accessed on 1 May 2025).
- Shim, H.K.; Cho, K.Y.; Takushima, Y.; Chung, Y.C. Correlation-based OTDR for In-service Monitoring of 64-split TDM PON. Opt. Express 2012, 20, 4921–4926. [Google Scholar] [PubMed]
- Lima, G.F.M.; Lamounier, E.A.; Barcelos, S.; Cardoso, A.; Peretta, I.S.; Rigon, E.; Muramoto, W.S. A TEO-based Algorithm to Detect Events Over OTDR Measurements in FTTH PON Networks. IEEE Lat. Am. Trans. 2013, 11, 886–891. [Google Scholar]
- TIA-568-C.3; Optical Fiber Cabling Components Standard. Telecommunications Industry Association: Arlington, VA, USA, 2008.
- IEC 11801; Information Technology—Generic Cabling for Customer Premises. International Organization for Standardization: Geneva, Switzerland, 2017.
- Barnoski, M.K.; Rourke, M.D.; Jensen, S.; Melville, R. Optical Time Domain Reflectometer. Appl. Opt. 1977, 16, 2375–2379. [Google Scholar] [PubMed]
- Hui, R.; O’Sullivan, M.S. Fiber Optic Measurement Techniques; Elsevier Academic Press: San Diego, CA, USA, 2022. [Google Scholar]
- Chen, M.M.; Masoudi, A.; Brambilla, G. Performance Analysis of Distributed Optical Fiber Acoustic Sensors Based on φ-OTDR. Opt. Express 2019, 27, 9684–9695. [Google Scholar]
- Danielson, B.L. Optical Time-domain Reflectometer Specifications and Performance Testing. Appl. Opt. 1985, 24, 2313–2322. [Google Scholar]
- Derickson, D. Fiber Optic Test and Measurement; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Hu, J.H.; Zhao, Q.Y.; Zhang, X.P.; Zhang, L.; Zhao, X.; Kang, L.; Wu, P. Photon-counting Optical Time-domain Reflectometry Using a Superconducting Nanowire Single-photon Detector. J. Light. Technol. 2012, 30, 2583–2588. [Google Scholar]
- Soto, M.A.; Bolognini, G.; Di Pasquale, F.; Thévenaz, L. Simplex-coded BOTDA Fiber Sensor with 1 m Spatial Resolution Over a 50 km Range. Opt. Lett. 2010, 35, 259–261. [Google Scholar]
- Geiger, H.; Dakin, J.P. Low-cost High-resolution Time-domain Reflectometry for Monitoring the Range of Reflective Points. J. Light. Technol. 1995, 13, 1282–1288. [Google Scholar]
- Okada, K.; Hashimoto, K.; Shibata, T.; Nagaki, Y. Optical Cable Fault Location Using Correlation Technique. Electron. Lett. 1980, 16, 629–630. [Google Scholar]
- Nazarathy, M.; Newton, S.A.; Giffard, R.; Moberly, D.; Sischka, F.; Trutna, W.; Foster, S. Real-time Long Range Complementary Correlation Optical Time domain Reflectometer. J. Light. Technol. 1989, 7, 24–38. [Google Scholar]
- Jones, M.D. Using Simplex Codes to Improve OTDR Sensitivity. IEEE Photonics Technol. Lett. 1993, 5, 822–824. [Google Scholar]
- Naseem, A.; Mehmood, H.; Muhammad, S.S.; Abbas, S.A. Composite Coding Scheme for OTDR SNR Enhancement. In Proceedings of the 11th International Conference on Telecommunications, Graz, Austria, 15–17 June 2011; pp. 321–324. [Google Scholar]
- Zoboli, M.; Bassi, P. High Spatial Resolution OTDR Attenuation Measurements by a Correlation Technique. Appl. Opt. 1983, 22, 3680–3681. [Google Scholar] [PubMed]
- Everard, J. Novel Signal Processing Techniques for Enhanced OTDR Sensors. In Fiber Optic Sensors II; SPIE, International Society for Optics and Photonics: Bellingham, WA, USA, 1987; Volume 798, pp. 42–47. [Google Scholar]
- Healey, P. Optical Orthogonal Pulse Compression Codes by Hopping. Electron. Lett. 1981, 17, 970–971. [Google Scholar]
- Wang, Y.N.; Jiang, Z.D. Application of Golay Codes to Distributed Optical Fiber Sensor for Long-distance Oil Pipeline Leakage and External Damage Detection. Chin. Opt. Lett. 2006, 4, 141–144. [Google Scholar]
- Nazarathy, M.; Newton, S.; Trutna, W. Complementary Correlation OTDR with Three Codewords. Electron. Lett. 1990, 26, 70–71. [Google Scholar]
- Liu, H.M. Research on Embedded OTDR Related Technologies. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2011. [Google Scholar]
- Wang, P.F. The Research on Enhancing the Dynamic Range of OTDR Using Complementary Correlation. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2016. [Google Scholar]
- Liao, R.L.; Tang, M.; Zhao, C.; Wu, H.; Fu, S.; Liu, D.; Shum, P.P. Harnessing Oversampling in Correlation-coded OTDR. Opt. Express 2019, 27, 1693–1705. [Google Scholar]
- Sahu, P.K.; Gowre, S.C.; Mahapatra, S. Optical Time-domain Reflectometer Performance Improvement Using Complementary Correlated Prometheus Orthonormal Sequence. IET Opt. 2008, 2, 128–133. [Google Scholar]
- Tian, D. The Research on Embedded OTDR Based on CCPONS Codes and Access Network Online Monitoring Technique. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2016. [Google Scholar]
- Lee, D.; Yoon, H.; Kim, N.Y.; Lee, H.; Park, N. Analysis and Experimental Demonstration of Simplex Coding Technique for SNR Enhancement of OTDR. In Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference, Palisades, NY, USA, 20–20 October 2004; pp. 118–122. [Google Scholar]
- Lee, D.; Yoon, H.; Kim, P.; Park, J.; Park, N. Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes. J. Light. Technol. 2006, 24, 322–328. [Google Scholar]
- Liu, J.J.; Cheng, Y.Y.; Liu, G.Q.; Zhang, Y.J. SNR Improving Method of OTDR System Based on Compound C-S Code. Opt. Commun. Technol. 2015, 39, 35–37. [Google Scholar]
- Cheng, W. Research on Key Technologies of OTDR Based on G-S Composite Code and Wavelet Transform. Master’s Thesis, Southwest Jiaotong University, Chongqing, China, 2019. [Google Scholar]
- Pellion, D.; Jradi, K.; Moutier, F.; Oms, F.; Gardou, J.; Magenc, C.; Camps, T.; Esteve, D.; Bazer-Bachi, A. APD Photodetectors in the Geiger Photon Counter Mode. Nucl. Instrum. Meth. 2009, 610, 410–414. [Google Scholar]
- Hlavac, M.; Jasenek, J.; Cervenova, J. Custom Photon Counting OTDR for Optical C-Band. J. Electr. Eng. 2009, 60, 215–218. [Google Scholar]
- Ripamonti, G.; Lacaita, A.L. Single-photon Semiconductor Photodiodes for Distributed Optical Fiber Sensors: State of the Art and Perspectives. In Distributed Multiplexed Fiber Optic Sensors II; SPIE, International Society for Optics and Photonics: Bellingham, WA, USA, 1993; Volume 1797, pp. 38–49. [Google Scholar]
- Zang, P.C.; Wang, X.B.; Xiao, L.T.; Jia, S.T. Optics Time Domain Reflection Measurement by Using Photon Counting Modulation. Opto-Electron. Eng. 2010, 37, 34–38. [Google Scholar]
- Scholder, F.; Gautier, J.D.; Wegmüller, M.; Gisin, N. Long-distance OTDR Using Photon Counting and Large Detection Gates at Telecom Wavelength. Opt. Commun. 2002, 213, 57–61. [Google Scholar]
- Diamanti, E.; Langrock, C.; Fejer, M.; Yamamoto, Y.; Takesue, H. 1.5 µm Photon-Counting Optical Time-Domain Reflectometry with a Single-Photon Detector Based on Upconversion in a Periodically Poled Lithium Niobate Waveguide. Opt. Lett. 2006, 31, 727–729. [Google Scholar]
- Legre, M.; Thew, R.; Zbinden, H. High Resolution Optical Time Domain Reflectometer Based on 1.55 µm Up-conversion Photon-counting Module. Opt. Express 2007, 15, 8237–8242. [Google Scholar]
- Li, B.; Zhang, R.M.; Wang, Y.; Li, H.; You, L.; Ou, Z.; Zhou, H.; Ling, Y.; Wang, Y.; Deng, G. Dispersion Independent Long-haul Photon-counting Optical Time-domain Reflectometry. Opt. Lett. 2020, 45, 2640–2643. [Google Scholar]
- Zhao, Q.Y.; Xia, L.; Wan, C.; Hu, J.; Jia, T.; Gu, M.; Zhang, L.; Kang, L.; Chen, J.; Zhang, X.; et al. Long-haul and High-Resolution Optical Time Domain Reflectometry Using Superconducting Nanowire Single-photon Detectors. Sci. Rep. 2015, 5, 10441. [Google Scholar]
- Schuck, C.; Pernice, W.H.; Ma, X.; Tang, H.X. Optical Time Domain Reflectometry with Low Noise Waveguide-coupled Superconducting Nanowire Single-photon Detectors. Appl. Phys. Lett. 2013, 102, 191104. [Google Scholar]
- Deng, S.J.; Zhang, H.; Yang, S.T.; Chen, M.; Cheng, Y.; Deng, H.; Liu, H.; Yuan, L.; Teng, C. A Photon-counting Optical Time-domain Reflectometry Based Optical Fiber Temperature Sensor System. IEEE Photonics J. 2022, 14, 7142207. [Google Scholar]
- Wegmuller, M.; Scholder, F.; Gisin, N. Photon-counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment. J. Light. Technol. 2004, 22, 390–400. [Google Scholar]
- Amaral, G.C.; Herrera, L.E.; Vitoreti, D.; Temporão, G.P.; Urban, P.J.; der von Weid, J.P. WDM-PON Monitoring with Tunable Photon Counting OTDR. IEEE Photonics Technol. Lett. 2014, 26, 1279–1282. [Google Scholar]
- Herrera, L.; Amaral, G.C.; von der Weid, J.P. Ultra-high-resolution Tunable PC-OTDR for PON Monitoring in Avionics. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; W2A.39. [Google Scholar]
- Li, B.; Zhou, Q.; Zhang, R.M.; Li, J.; Zhou, H.; Li, H.; Ling, Y.; Wang, Y.; Deng, G.; Wang, Y. Cost-effective High-spatial-resolution Photon-counting Optical Time-domain Reflectometry at 850 nm. Appl. Opt. 2018, 57, 8824–8828. [Google Scholar] [PubMed]
- Liu, H.; Dong, G.M.; Zhao, T. Monitoring Distance Enhancement with Chaotic Laser for OTDR System. IEEE Sens. J. 2024, 24, 2822–2827. [Google Scholar]
- Wang, Y.C.; Wang, B.J.; Wang, A.B. Chaotic Correlation Optical Time Domain Reflectometer Utilizing Laser Diode. IEEE Photonics Technol. Lett. 2008, 20, 1636–1638. [Google Scholar]
- Dong, X.Y.; Wang, A.B.; Zhang, J.G.; Han, H.; Zhao, T.; Liu, X.L.; Wang, Y.C. Combined Attenuation and High-resolution Fault Measurements Using Chaos-OTDR. IEEE Photonics J. 2015, 7, 6804006. [Google Scholar]
- Yang, S.; Zou, W.W.; Long, X. Pulse-compression Optical Time Domain Reflectometer. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; Volume 9157, pp. 445–448. [Google Scholar]
- Zou, W.W.; Yang, S.; Long, X.; Chen, J. Optical Pulse Compression Reflectometry: Proposal and Proof-of-concept Experiment. Opt. Express 2015, 23, 512–522. [Google Scholar]
- Wang, Y.Y.; Zheng, H.; Wu, H.; Huang, D.M.; Yu, C.Y.; Lu, C. Coherent OTDR With Large Dynamic Range Based on Double-sideband Linear Frequency Modulation Pulse. Opt. Express 2023, 31, 17165–17174. [Google Scholar]
- Zhang, P.; Feng, Q.G.; Li, W.; Zheng, Q.; Wang, Y. Simultaneous OTDR Dynamic Range and Spatial Resolution Enhancement by Digital LFM Pulse and Short-time FrFT. Appl. Sci. 2019, 9, 668. [Google Scholar]
- Wang, Q.; Ren, X.L.; Yi, S.H.; Yu, J.K.; Zhang, P.; Li, W. Long-distance and High-precision LFM Optical Time Domain Reflectometer. Study Opt. Commun. 2020, 1, 7–10. [Google Scholar]
- Liu, C.; Li, W.H.; Yuan, Y.B.; Guan, C.; Geng, D.H. A Scheme for Long-distance High-resolution Detection of Fiber Link. Study Opt. Commun. 2021, 6, 52–56. [Google Scholar]
- Wang, Z.N.; Fan, M.Q.; Zhang, L.; Wu, H.; Churkin, D.V.; Li, Y.; Qian, X.Y.; Rao, Y.J. Long-range and High-precision Correlation Optical Time-domain Reflectometry Utilizing an All-fiber Chaotic Source. Opt. Express 2015, 23, 15514–15520. [Google Scholar] [PubMed]
- Li, B.; Wu, R.; Hong, W.; Liu, H. Correlation Optical Time Domain Reflectometry Based on Broadband Random Optoelectronic Oscillator. Opt. Laser Technol. 2023, 167, 109835. [Google Scholar]
- Li, J.C.; Dong, Y.X.; Lei, B.J.; Xiao, J.L.; Yang, Y.D.; Huang, Y.Z. Optical Time Domain Reflectometry Based on a Self-chaotic Circular-sided Microcavity Laser. Appl. Opt. 2023, 63, 154–158. [Google Scholar]
- Zhang, L.M.; Pan, B.W.; Chen, G.C.; Lu, D.; Zhao, L. Long-range and High-resolution Correlation Optical Time-domain Reflectometry Using a Monolithic Integrated Broadband Chaotic Laser. Appl. Opt. 2017, 56, 1253–1256. [Google Scholar]
- Li, M.W.; Zhang, X.C.; Zhang, J.Z.; Zhang, M.; Qiao, L.; Wang, T. Long-range and High-precision Fault Measurement Based on Hybrid Integrated Chaotic Laser. IEEE Photonics Technol. Lett. 2019, 31, 1389–1392. [Google Scholar]
- Hu, Z.H.; Zhao, T.; He, P.X.; Wang, B.J.; Wang, A.B.; Wang, Y.C. Improving Dynamic Range of Chaos Optical Time Domain Reflectometry Using Fiber Ring. Chin. J. Lasers 2019, 46, 268–274. [Google Scholar]
- Zhao, T.; Han, H.; Zhang, J. Precise Fault Location in TDM-PON by Utilizing Chaotic Laser Subject to Optical Feedback. IEEE Photonics J. 2015, 7, 6803909. [Google Scholar]
- Shi, Z.; Zhao, T.; Wang, Y. High-Sensitivity Fiber Fault Detection Method Using Feedback-Delay Signature of a Modulated Semiconductor Laser. Photonics 2022, 9, 454. [Google Scholar]
- Guo, S.Q.; Ma, J.; Zhang, J.G.; Xu, H. Chaotic-pulse Hybrid Signal Optical Time Domain Reflectometer. J. Appl. Opt. 2017, 38, 569–574. [Google Scholar]
- Liu, H.; Zhao, T.; Zhang, M.J. Synchronously Realizing High Spatial Resolution and Precise Location for Fiber Fault Attenuation Event Detection. Opt. Lett. 2025, 50, 3732–3735. [Google Scholar]
- Wang, S.; Fan, X.Y.; He, Z.Y. Ultrahigh Resolution Optical Reflectometry Based on Linear Optical Sampling Technique with Digital Dispersion Compensation. IEEE Photonics J. 2017, 9, 6804710. [Google Scholar]
- Li, X.R.; Li, Y.Q.; Zhang, S. The LabView Implement of Synchronization Overlapping Average Algorithm to Suppress Noise. J. North China Electr. Power Univ. 2009, 36, 73–76. [Google Scholar]
- Tang, L.R.; Qi, B.; Chen, C.H.; Zhang, G.B. Algorithm of Fiber Fault Analysis Based on Wavelet Transform. Chin. Soc. Electr. Eng. 2006, 26, 101–105. [Google Scholar]
- Bahrampour, A.R.; Maasoumi, F. Resolution Enhancement in Long Pulse OTDR for Application in Structural Health Monitoring. Opt. Fiber Technol. 2010, 16, 240–249. [Google Scholar]
- Yu, L.H.; Jia, C.M.; Hou, G.G. A UDWT Technique to Improve the Optical Signal Denoising Effect. Appl. Mech. Mater. 2013, 411–414, 1139–1142. [Google Scholar]
- Peng, H.M.; Zhang, C.; Ni, Y.H.; Yao, F. Research on OTDR Denoise Algorithm Based on Wavelet Transform. Opt. Commun. Technol. 2019, 43, 17–20. [Google Scholar]
- Zhou, L.; Miao, P. A New Real-time Signal Denoising Method for Optical Time Domain Reflectometry. Ind. Control Comput. 2019, 32, 102–103, 106. [Google Scholar]
- Qu, Z.G. Study on the Leakage Detection and Pre-warning Techniques Based on the Distributed Optical Fiber for the Long-distance Oil and Gas Pipelines. Master’s Thesis, Tianjin University, Tianjin, China, 2007. [Google Scholar]
- Han, Q.; Zhang, Z.H.; Wang, D.S.; Liu, L.; Hou, X. An OTDR Event Analysis Algorithm Based on EMD-based Denoising and Wavelet Transform. In Proceedings of the 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 16–18 July 2015; Volume 2, pp. 1034–1038. [Google Scholar]
- Hao, H.; Wang, H.L.; Rehman, N.U. A Joint Framework for Multivariate Signal Denoising Using Multivariate Empirical Mode Decomposition. Signal Process. 2017, 135, 263–273. [Google Scholar]
- Han, Q.; Zhang, Z.H.; Huang, H.W.; Zhang, Z.Y.; Yan, B.D. OTDR Signal Denoising Algorithm Based on VMD and SSA. Infrared 2020, 41, 26–30. [Google Scholar]
- Yang, Z.M.; Hong, D.K.; Feng, X.F. A Novel Event Detection Method for OTDR Trace with High Sensitivity Based on Machine Learning. In Proceedings of the 2nd Information Communication Technologies Conference (ICTC), Nanjing, China, 7–9 May 2021; pp. 265–269. [Google Scholar]
- Abdelli, K.; Grießer, H.; Ehrle, P.; Tropschug, C.; Pachnicke, S. Reflective Fiber Fault Detection and Characterization Using Long Short-term Memory. J. Opt. Commun. Netw. 2021, 13, E32–E41. [Google Scholar]
- Abdelli, K.; Grieser, H.; Tropschug, C.; Pachnicke, S. Optical Fiber Fault Detection and Localization in A Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-term Memory. J. Light. Technol. 2022, 40, 2254–2264. [Google Scholar]
- Amaral, G.C.; Garcia, G.D.; Herrera, L.E.Y.; Temporao, G.P.; Urban, P.J. Automatic Fault Detection in WDM-PON with Tunable Photon Counting OTDR. J. Light. Technol. 2015, 33, 5025–5031. [Google Scholar]
- Liu, F.; Zhang, W.P.; Wu, P.; He, Z.X. Fault Detection Sensitivity Enhancement Based on High-order Spatial Mode Trend Filtering for Few-mode Fiber Link. Opt. Express 2021, 29, 5226–5235. [Google Scholar] [PubMed]
- Zabihi, M.; Chen, Y.S.; Zhou, T. Continuous Fading Suppression Method for Φ-OTDR Systems Using Optimum Tracking Over Multiple Probe Frequencies. J. Light. Technol. 2019, 37, 3602–3610. [Google Scholar]
- Suh, K.; Lee, C. Auto-correction Method for Differential Attenuation in a Fiber-optic Distributed-temperature Sensor. Opt. Lett. 2008, 33, 1845–1847. [Google Scholar]
- Zhang, B.; Gu, S.; Lian, Z.G.; Pi, Y.B. The Characteristics and Fiber Test of Micro-structure Hollow Core Fiber and Its Engineering Application. Study Opt. Commun. 2023, 2, 9–19. [Google Scholar]
- Chen, M.; Chang, J.H.; Xu, Y.; Jin, A.B.; Hu, Z.Y. Optical Fiber Sensor for Simultaneous Measurement of Temperature, Humidity, and Strain Based on Hollow Core Fiber. Acta Opt. Sin. 2023, 43, 2306001. [Google Scholar]
- Sun, Y.Z.; Wu, H.L.; Gao, S.F.; Wang, Y.Y.; Ding, W. Recent Progress on Thermal Sensitivity of Hollow Core Fibers (invited). Infrared Laser Eng. 2025, 54, 20240561. [Google Scholar]
- Wu, P.; Liu, F.; He, Z.X. Fault Detection Sensitivity Analysis and Optimization of the Few-Mode Fiber Link under a Dynamic Spatial Mode Crosstalk Cumulative Effect. Appl. Opt. 2022, 61, 8273–8280. [Google Scholar]
- Song, C.C.; Liu, X.H.; Liu, F.; Zhang, M.L.; Hu, G.J. Fault Detection of Few-mode Fiber Based on High-order Mode with High Fault Detection Sensitivity. Opt. Lett. 2019, 44, 4487–4490. [Google Scholar]
- Chen, W.C.; Ma, W.Q.; Wang, S.; Qin, Y.; Liang, S.; Hu, G.J. Advances in Key Techniques of Few-Mode Fiber Communications. Acta Opt. Sin. 2025, 1–47. Available online: https://link.cnki.net/urlid/31.1252.o4.20250603.1139.006 (accessed on 6 June 2025).
- Hua, Z.M.; Zhao, L.J.; Xie, Z.Y.; Xu, Z.N. Analysis of Full-mode Acousto-optic Coupling in Stimulated Brillouin Scattering of Few-mode Fibers. Acta Opt. Sin. 2025, 54, 0406003. [Google Scholar]
- Zhang, L.X.; Tian, M.; Li, Y.Q.; Liu, Z.J.; Wang, J.J.; Geng, H.J. Research on Single-ended BOTDA Temperature Sensing System Based on Few-mode Fiber. Semicond. Optoelectron. 2023, 44, 938–941. [Google Scholar]
- Pan, T.Q.; Ma, Z.H.; Li, W.W.; Xiong, Y.W.; Xie, W.P.; Xu, Y.; Qin, Y.W. Deep Neural Network-based High-throughput Information Transmission Technology Using Multimode Fibers. Laser Optoelectron. Prog. 2025, 1–18. Available online: https://link.cnki.net/urlid/31.1690.TN.20250526.1036.014 (accessed on 6 June 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhao, T.; Zhang, M. OTDR Development Based on Single-Mode Fiber Fault Detection. Sensors 2025, 25, 4284. https://doi.org/10.3390/s25144284
Liu H, Zhao T, Zhang M. OTDR Development Based on Single-Mode Fiber Fault Detection. Sensors. 2025; 25(14):4284. https://doi.org/10.3390/s25144284
Chicago/Turabian StyleLiu, Hui, Tong Zhao, and Mingjiang Zhang. 2025. "OTDR Development Based on Single-Mode Fiber Fault Detection" Sensors 25, no. 14: 4284. https://doi.org/10.3390/s25144284
APA StyleLiu, H., Zhao, T., & Zhang, M. (2025). OTDR Development Based on Single-Mode Fiber Fault Detection. Sensors, 25(14), 4284. https://doi.org/10.3390/s25144284