Different Configurations of the Non-Minimal Prismatic Tensegrities
Abstract
1. Introduction
2. Theory
2.1. Basic Assumptions and Limitations
2.2. The Elastic Energy Approach
2.3. The Prestressing
2.4. Simple Model of Behavior During Prestressing
3. Verification
3.1. Comparison to Different Solution
3.2. Physical Models
4. Examples
4.1. Quartex Module
4.2. Pentex Module
5. Discussion
6. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jiang, G.; Sun, X.; Xiao, G.; Xu, J. Deep space landing—Soft tensegrity is possible for its designable performances. Int. J. Mech. Sci. 2025, 300, 110455. [Google Scholar] [CrossRef]
- Wang, X.; Luo, A.; Liu, H. Design and analysis of a double-helix tensegrity spherical lander. Mech. Res. Commun. 2023, 129, 104091. [Google Scholar] [CrossRef]
- Li, S.; Hu, J.; Chen, L.; Zhang, Y.; Mi, X.; Huang, X.; Chen, W. Structural design and integral assembly procedure of rigid-flexible tensegrity airship structure. Eng. Struct. 2023, 284, 115803. [Google Scholar] [CrossRef]
- Khaled, M.S.; Chen, M.; Losoya, E.Z.; Rodriguez, L.A.; Gildin, E.; Skelton, R.E. Tensegrity laboratory drilling rig for earth and space drilling, mining, and exploration. Int. J. Solids Struct. 2022, 252, 111785. [Google Scholar] [CrossRef]
- Muñoz, K.; Porez, M.; Wenger, P. Modeling and analysis of a four-leg tensegrity mechanism. Mech. Mach. Theory 2025, 211, 106009. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Mei, R.; Liu, Z.; Xu, X. Motion behavior of a 30-strut locomotive tensegrity robot. Mech. Res. Commun. 2024, 137, 104270. [Google Scholar] [CrossRef]
- Mo, J.; Fang, H.; Yang, Q. Design and locomotion characteristic analysis of two kinds of tensegrity hopping robots. iScience 2024, 27, 109226. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Zhang, M.; Shen, L.; Guo, S. A jellyfish robot based on two-bar and four-spring tensegrity structures. Ocean. Eng. 2024, 300, 117472. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, M.; Skelton, R.E. Markov data-based reference tracking control to tensegrity morphing airfoils. Eng. Struct. 2023, 291, 116430. [Google Scholar] [CrossRef]
- Fraternali, F.; de Casto Motta, J.; Germano, G.; Babilio, E.; Amendola, A. Mechanical response of tensegrity-origami solar modules. Appl. Eng. Sci. 2024, 17, 100174. [Google Scholar] [CrossRef]
- Zou, H.; Boni, L.; Fu, Z.; Quarta, A.A.; Han, F.; Deng, Z. Thermal vibration analysis of cables in tensegrity during space deployment. J. Sound Vib. 2025, 616, 119208. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Guo, H.; Liu, R.; Kou, Z. Design of a deployable aerodynamic decelerator based on a tensegrity structure. Acta Astronaut. 2024, 215, 315–324. [Google Scholar] [CrossRef]
- Habibi, T.; Rhode-Barbarigos, L.; Keller, T. Effects of prestress implementation on self-stress state in large-scale tensegrity structure. Eng. Struct. 2023, 288, 116222. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Y.; Yin, X.; Zhang, S.; Li, H.; Xu, G. A tensegrity-based morphing module for assembling various deployable structures. Mech. Mach. Theory 2022, 173, 104870. [Google Scholar] [CrossRef]
- Hrazmi, I.; Averseng, A.; Quirant, J.; Jamin, F. Deployable double layer tensegrity grid platforms for sea accessibility. Eng. Struct. 2021, 231, 111706. [Google Scholar] [CrossRef]
- Yang, S.; Sultan, C. Deployment of foldable tensegrity-membrane systems via transition between tensegrity configurations and tensegrity-membrane configurations. Int. J. Solids Struct. 2019, 160, 103–119. [Google Scholar] [CrossRef]
- Charandabi, R.N.; Babilio, E.; Carpentieri, G.; Spagunolo, G.; Amendola, A.; Fraternali, F. A tensegrity structure for a solar stadium roof with sun-tracking capability. Thin-Walled Struct. 2025, 210, 113033. [Google Scholar] [CrossRef]
- Fraternali, F.; Babilio, E.; Charandabi, R.N.; Germano, G.; Luciano, R.; Spaguno, G. Dynamic origami solar eyes with tensegrity architecture for energy harvesting Mashrabiyas. Appl. Eng. Sci. 2024, 19, 100190. [Google Scholar] [CrossRef]
- Vumiliya, A.; Luo, A.; Liu, H. Investigation of static and dynamic responses of tensegrity-based footbridge structures with integrated deck plates subjected to time-independent load. Mech. Res. Commun. 2025, 146, 104405. [Google Scholar] [CrossRef]
- Heping, L.; Jian, S.; Yupeng, Q.; Ani, L. Analysis for a novel folding frame tensegrity tent. Structures 2023, 57, 105085. [Google Scholar] [CrossRef]
- Obara, P.; Tomasik, J. Influence of the support conditions on dynamic response of tensegrity grids built with Quartex modules. Arch. Civ. Eng. 2023, 69, 629–644. [Google Scholar] [CrossRef]
- de Albuquerque, N.B.; Gaspar, C.M.R.; Seixas, M.; Santana, M.V.B.; Cardoso, D.C.T. Design, fabrication and analysis of a bio-based tensegrity structure using non-destructive testing. Eng. Struct. 2022, 265, 114457. [Google Scholar] [CrossRef]
- Logzit, N.; Kebiche, K. Biaxial fatigue analysis model under non-proportional phase loading of tensegrity cable domes. Eng. Struct. 2021, 245, 112791. [Google Scholar] [CrossRef]
- Marchione, F.; Chiappini, G.; Rossi, M.; Scoccia, C.; Munfo, P. Experimental assessment of the static mechanical behaviour of the steel-glass adhesive joint on a 1:2 scale tensegrity floor prototype. J. Build. Eng. 2022, 53, 104572. [Google Scholar] [CrossRef]
- Cimmino, M.C.; Miranda, R.; Sicignano, E.; Ferreira, A.J.M.; Skelton, R.E.; Fraternali, F. Composite solar facades and wind generators with tensegrity architecture. Compos. Part B 2017, 115, 275–281. [Google Scholar] [CrossRef]
- Zhang, Z.; Viscuso, S.; Zanelli, A.; Chen, J. Experimental Structural Template on Tensegrity and Textile Architecture Integrating Physical and Digital Approaches. Materials 2025, 18, 1721. [Google Scholar] [CrossRef]
- Gomez-Jauregui, V.; Carrillo-Rodriguez, A.; Manchado, C.; Lastra-Gonzalez, P. Tensegrity Applications to Architecture, Engineering and Robotics: A Review. Appl. Sci. 2023, 13, 8669. [Google Scholar] [CrossRef]
- Micheletti, A.; Podio-Guidugli, P. Seventy years of tensegrities (and counting). Arch. Appl. Mech. 2022, 92, 2525–2548. [Google Scholar] [CrossRef]
- Hearney, E.; Snelson, K. Kenneth Snelson—Art and Ideas; Marlborough Gallery: New York, NY, USA, 2013. [Google Scholar]
- Fuller, R.B. Tensile-Integrity Structures. No. 3,063,521, 13 November 1962. [Google Scholar]
- Emmerich, D.G. Construction de Reseaux Autotendants. Brevet D’invention. No. 1.377.290, 28 September 1963. [Google Scholar]
- Snelson, K. Continuous Tension, Discontinuous Compression Structures. No. 3,169,611, 2 February 1965. [Google Scholar]
- Skelton, R.E.; de Oliveira, M.C. Tensegrity Systems; Springer: London, UK, 2009. [Google Scholar]
- Motro, R. Tensegrity. Structural Systems for the Future; Kogan Page Science: London, UK, 2003. [Google Scholar]
- Hinrichs, L.A. Prismic Tensigrids. Struct. Topol. 1984, 9, 3–14. [Google Scholar]
- Connelly, R.; Terrell, M. Globally rigid Symmetric Tensegrities. Topol. Struct. 1995, 1995, 21. [Google Scholar]
- Zhang, J.Y.; Guest, S.D.; Ohsaki, M. Symmetric prismatic tensegrity structures: Part I. Configuration and stability. Int. J. Solids Struct. 2009, 46, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, S.X.; Zhu, S.X.; Zhang, B.Y.; Xu, G.K. Automatically assembled large-scale tensegrities by truncated regular polyhedral and prismatic elementary cells. Compos. Struct. 2018, 184, 30–40. [Google Scholar] [CrossRef]
- Paiva, V.A.S.M.; Kurka, P.R.G.; Izuka, J.H. Analytical definitions of connectivity, incidence and node matrices for t-struts tensegrity prisms. Mechanics Res. Commun. 2024, 137, 104271. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Liu, H.; Wang, Z.; Zhang, M. Morphogenesis analysis of icosahedral and prismatic tensegrity modules. Thin-Walled Struct. Part B 2024, 205, 112500. [Google Scholar] [CrossRef]
- Cao, Z.; Luo, A.; Liu, H.; Feng, Y. Stiffness properties of regular p-bars tensegrity prisms under the compressive loading. Mech. Adv. Mater. Struct. 2024, 1–9. [Google Scholar] [CrossRef]
- Rutkiewicz, A. Tensegrity Simplex column analysis with different support conditions. Eng. Struct. 2024, 317, 118655. [Google Scholar] [CrossRef]
- Obara, P.; Tomasik, J. Dynamic Stability of Tensegrity Structures—Part II: The Periodic External Load. Materials 2023, 16, 4564. [Google Scholar] [CrossRef]
- Obara, P.; Tomasik, J. Dynamic Stability of Tensegrity Structures—Part I: The Time-Independent External Load. Materials 2023, 16, 580. [Google Scholar] [CrossRef]
- Feron, J.; Latteur, P. Implementation and propagation of prestress forces in pin-jointed and tensegrity structures. Eng. Struct. 2023, 289, 116152. [Google Scholar] [CrossRef]
- Yuan, S.; Zhu, W. A Cartesian spatial discretization method for nonlinear dynamic modeling and vibration analysis of tensegrity structures. Int. J. Solids Struct. 2023, 270, 112179. [Google Scholar] [CrossRef]
- Rutkiewicz, A.; Małyszko, L. Experimental and numerical static tests of tensegrity triplex modules. Bull. Pol. Acad. Sci. Tech. Sci. 2024, 72, e151674. [Google Scholar] [CrossRef]
- Obara, P.; Kłosowska, J.; Gilewski, W. Truth and Myths about 2D Tensegrity Trusses. Appl. Sci. 2019, 9, 179. [Google Scholar] [CrossRef]
- Kłosowska, J. Assessment of the Possibility of Applying Tensegrity Structures to Building Construction. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2018. [Google Scholar]
- Sattar, M.; Rahman, N.U.; Ahmad, N. Design, kinematics and dynamic analysis of a novel double—Scissors link deployable mechanism for space antenna truss. Results Eng. 2024, 22, 102251. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, R.; Liu, S.; Cai, J.; Li, B. Design of deployable mesh reflector antenna based on cable-dome tensegrity structure. Structures 2024, 68, 107150. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Xu, X. Experimental study on a novel cable-strut truss. Eng. Struct. 2022, 265, 114491. [Google Scholar] [CrossRef]
- Schlaich, M. The Messeturm in Rostock—A Tensegrity Tower. J. Int. Assoc. Shell Spat. Struct. 2004, 45, 93–98. [Google Scholar]
- Kawaguchi, K.; Ohya, S.; Vormus, S. Long-Term Monitoring of White Rhino, Building with Tensegrity Skeletons. In Proceedings of the 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures: Taller, Longer, Lighter—Meeting Growing Demand with Limited Resources, London, UK, 20–23 September 2011. [Google Scholar]
- Kawaguchi, K.; Ohya, S. Monitoring of full-scale tensegrity skeletons under temperature change. In Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Valencia, Spain, 28 September–2 October 2009. [Google Scholar]
- Obara, P.; Solovei, M.; Tomasik, J. Qualitative and quantitative analysisof tensegrity domes. Bull. Pol. Acad. Sci. Tech. Sci. 2023, 71, e144574. [Google Scholar] [CrossRef]
- Gilewski, W.; Kłosowska, J.; Obara, P. Verification of Tensegrity Properties of Kono Structure and Blur Building. Procedia Eng. 2016, 153, 173–179. [Google Scholar] [CrossRef]
- Ogunsote, O.O.; Arum, C.; Prucnal-Ogunsote, B. Aesthetic and economic imperatives in the design of the Kurilpa Pedestrian Bridge as a functional tensegrity structure. In Infrastructure, Economic Development and Built Environment: A Book of Readings; School of Environmental Technology, Federal University of Technology: Akure, Nigeria, 2020. [Google Scholar]
- Micheletii, A. Modular Tensegrity Structures: The “Tor Vergata” Footbridge. In Mechanics, Models and Methods, LNACM; Fremond, M., Maceri, F., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; Volume 61, pp. 375–384. [Google Scholar]
- Veuve, N.; Safaei, S.D.; Smith, I.F.C. Active control for mid-span connection of a deployable tensegrity footbridge. Eng. Struct. 2016, 112, 245–255. [Google Scholar] [CrossRef]
- Zhang, P.; Kawaguchi, K.; Feng, J. Prismatic tensegrity structures with additional cables: Integral symmetric states of self-stress and cable-controlled reconfiguration procedure. Int. J. Solids Struct. 2014, 51, 4294–4306. [Google Scholar] [CrossRef]
- Sultan, C.; Corless, M.; Skelton, R.E. Symmetrical reconfiguration of tensegrity structures. Int. J. Solids Struct. 2002, 39, 2215–2234. [Google Scholar] [CrossRef]
- Tang, Y.; Lv, Q.; Li, T.; Shao, M. Self-equilibrium, stability, and accuracy degradation of imperfect prismatic tensegrities with additional cable nets. Eng. Struct. 2023, 284, 115981. [Google Scholar] [CrossRef]
- Wu, L.; Cai, J. Generalized prismatic tensegrity derived by dihedral symmetric lines. Int. J. Solids Struct. 2024, 205, 113068. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Ohsaki, M. New 3-bar prismatic tensegrity units. Compos. Struct. 2018, 184, 306–313. [Google Scholar] [CrossRef]
- Gilewski, W.; Kłosowska, J.; Obara, P. Applications of Tensegrity Structures in Civil Engineering. Procedia Eng. 2015, 111, 242–248. [Google Scholar] [CrossRef]
- Oppenheim, I.J.; Williams, W.O. Geometric Efffects in an Elastic Tensegrity Structure. J. Elast. 2000, 59, 51–65. [Google Scholar] [CrossRef]
- Oppenheim, I.J.; Williams, W.O. Vibration of an elastic tenserity structure. Eur. J. Mech. A Solids 2001, 20, 1023–1031. [Google Scholar] [CrossRef]
- Oppenheim, I.J.; Williams, W.O. Vibration and damping in three-bar tensegrity structure. J. Aerosp. Eng. 2001, 14, 85–91. [Google Scholar] [CrossRef]
- Schek, H.J. The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 1974, 3, 115–134. [Google Scholar] [CrossRef]
- Fraternali, F.; Carpentieri, G.; Amendola, A. On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms. J. Mech. Phys. Solids 2015, 74, 136–157. [Google Scholar] [CrossRef]
- Tran, H.C.; Lee, J. Initial self-stress design of tensegrity grid structures. Comput. Struct. 2010, 88, 558–566. [Google Scholar] [CrossRef]
- Tran, H.C.; Lee, J. Self-stress design of tensegrity grid structures with exostresses. Int. J. Solids Struct. 2010, 47, 2660–2671. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, Y.; Cao, Y.P.; Feng, X.Q.; Gao, H. Self-equilibrium and super-stability of truncated regular polyhedral tensegrity structures: A unified analytical solution. Proc. R. Soc. A 2012, 468, 3323. [Google Scholar] [CrossRef]
- Carstens, S.; Kuhl, D. Non-linear static and dynamic analysis of tensegrity structures by spatial and temporal Galerkin methods. J. Int. Assoc. Shell Spat. Struct. 2005, 46, 148. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method; Butterworth-Heinemann: London, UK, 2000. [Google Scholar]
- Małyszko, L.; Rutkiewicz, A. Response of a Tensegrity Simplex in Experimental Tests of a Modal Hammer at Different Self-Stress Levels. Appl. Sci. 2020, 10, 8733. [Google Scholar] [CrossRef]
- EN 1993-1-8; Eurocode 3: Design of Steel Structures—Part 1–8: Design of Joints. European Union: Brussels, Belgium, 2005.
Prestress level | ca = 0.9440 (e/l0 = 0.056) | ca = 0.9070 (e/l0 = 0.093) | ca = 0.8130 (e/l0 = 0.187) | ca = 0.5369 * (e/l0 = 0.4632) |
---|---|---|---|---|
Additional cables’ natural length (m) | 10.108 | 9.712 | 8.706 | 5.749 |
Prestressed configuration (no index) | ||||
angle θ (deg) | 10.54 (10.67) | 17.07 (17.66) | 29.58 (31.01) | 45.00 (45) * |
radius (m) | 5.01 (5.01) | 5.03 (5.03) | 5.13 (5.16) | 5.66 (5.78) |
height (m) | 9.68 (9.67) | 9.47 (9.46) | 8.99 (8.92) | 7.10 (6.91) |
Model | Angle θ [deg] | Horizontal Cable [mm] | Cross Cable [mm] | Bar [mm] | Additional Member [mm] | Height [mm] |
---|---|---|---|---|---|---|
Minimal | 0 | 226.3 | 420.2 | 499.0 | 420.2 * | 402.0 |
Non-minimal | −10 | 226.3 | 421.5 | 499.0 | 436.2 | 410.4 |
Prestress Level | ca = 1.05 | ca = 1.1 | ca = 1.15 | ca = 1.2 |
---|---|---|---|---|
Additional struts natural lengths (m) | 11.243 | 11.779 | 12.314 | 12.849 |
Prestressed configuration (no index) | ||||
Angle θ (deg) | −8.93 | −17.06 | −24.38 | −30.97 |
Struts (m) | 13.613 | 13.609 | 13.605 | 13.600 |
Base cables (m) | 7.079 | 7.099 | 7.125 | 7.154 |
Cross cables (m) | 10.738 | 10.821 | 10.941 | 11.086 |
Added cables (m) | 11.239 | 11.747 | 12.221 | 12.655 |
Radius (m) | 5.006 | 5.020 | 5.038 | 5.059 |
Height (m) | 10.281 | 10.546 | 10.792 | 11.017 |
Scenarios | |||||
---|---|---|---|---|---|
Prestressing coefficients | 1 | 2 | 3 | 4 | 5 |
cs (-) | 0.98 | 1.0 | 1.0 | 1.0 | 1.0 |
cb (-) | 1.0 | 1.02 | 1.0 | 1.0 | 1.0 |
ca (-) | 1.0 | 1.0 | 1.0 | 0.98 | 1.02 |
cl (-) | 1.0 | 1.0 | 0.98 | 1.0 | 1.0 |
Scenario | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
θ (deg) | −6.69 | 5.88 | 1.80 | 14.22 | −12.27 |
r (mm) | 501.13 | 501.50 | 490.20 | 500.20 | 500.10 |
b (mm) | 1981.51 | 2016.35 | 1996.73 | 1997.19 | 1998.31 |
s (mm) | 1827.55 | 1864.80 | 1849.93 | 1848.93 | 1848.97 |
a (mm) | 1795.59 | 1799.47 | 1797.47 | 1762.07 | 1833.03 |
l (mm) | 589.12 | 589.55 | 576.26 | 588.02 | 587.90 |
h (mm) | 1782.76 | 1796.35 | 1792.15 | 1761.76 | 1814.33 |
Ns (N) | 9.54 | 9.52 | 1.47 | 0.92 | 0.95 |
Nb (N) | −9.25 | −11.59 | −1.64 | −1.41 | −0.84 |
Na (N) | −1.00 | 1.16 | 0.05 | 0.36 | −0.17 |
Nl (N) | 2.27 | 3.00 | 0.41 | 0.40 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkiewicz, A. Different Configurations of the Non-Minimal Prismatic Tensegrities. Appl. Sci. 2025, 15, 7140. https://doi.org/10.3390/app15137140
Rutkiewicz A. Different Configurations of the Non-Minimal Prismatic Tensegrities. Applied Sciences. 2025; 15(13):7140. https://doi.org/10.3390/app15137140
Chicago/Turabian StyleRutkiewicz, Andrzej. 2025. "Different Configurations of the Non-Minimal Prismatic Tensegrities" Applied Sciences 15, no. 13: 7140. https://doi.org/10.3390/app15137140
APA StyleRutkiewicz, A. (2025). Different Configurations of the Non-Minimal Prismatic Tensegrities. Applied Sciences, 15(13), 7140. https://doi.org/10.3390/app15137140