Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,363)

Search Parameters:
Keywords = cMET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

38 pages, 5003 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
Show Figures

Figure 1

23 pages, 2663 KiB  
Article
Antimicrobial and Anticancer Activities of Lactiplantibacillus plantarum Probio87 Isolated from Human Breast Milk
by Pei Xu, Mageswaran Uma Mageswary, Azka Ainun Nisaa, Xiang Li, Yi-Jer Tan, Chern-Ein Oon, Cheng-Siang Tan, Wen Luo and Min-Tze Liong
Nutrients 2025, 17(15), 2554; https://doi.org/10.3390/nu17152554 - 5 Aug 2025
Abstract
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and [...] Read more.
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and carbohydrate utilization. Prebiotic preferences were assessed using FOS, GOS, and inulin. Antibiotic susceptibility was evaluated per EFSA standards. Antimicrobial activity of the cell-free supernatant (CFS) was tested against Staphylococcus aureus, Escherichia coli, and Candida species. Effects on Lactobacillus iners and L. crispatus were analyzed. Anticancer properties were assessed in HeLa, CaSki (HPV-positive), and C-33A (HPV-negative) cervical cancer cell lines through proliferation, apoptosis, angiogenesis, and cell cycle assays. Results: Probio87 showed strong acid and bile tolerance, efficient mucin adhesion, and broad carbohydrate utilization, favoring short-chain prebiotics like FOS and GOS over inulin. It met EFSA antibiotic safety standards. The CFS exhibited potent antimicrobial activity, including complete inhibition of Candida albicans. Probio87 selectively inhibited L. iners without affecting L. crispatus, indicating positive modulation of vaginal microbiota. In cervical cancer cells, the CFS significantly reduced proliferation and angiogenesis markers (p < 0.05), and induced apoptosis and cell cycle arrest in HPV-positive cells, with minimal effects on HPV-negative C-33A cells. Conclusions: Probio87 demonstrates strong probiotic potential, with safe, selective antimicrobial and anticancer effects. Its ability to modulate key microbial and cancer-related pathways supports its application in functional foods or therapeutic strategies for vaginal and cervical health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

20 pages, 3390 KiB  
Article
Effects of cRG-I Prebiotic Treatment on Gut Microbiota Composition and Metabolic Activity in Dogs In Vitro
by Sue McKay, Helen Churchill, Matthew R. Hayward, Brian A. Klein, Lieven Van Meulebroek, Jonas Ghyselinck and Massimo Marzorati
Microorganisms 2025, 13(8), 1825; https://doi.org/10.3390/microorganisms13081825 - 5 Aug 2025
Abstract
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), [...] Read more.
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), and large (27–45 kg) dogs, using inulin and xanthan as comparators. Fecal samples from six dogs of each size group were evaluated. Overall microbiome composition, assessed using metagenomic sequencing, was shown to be driven mostly by dog size and not treatment. There was a clear segregation in the metabolic profile of the gut microbiota of small dogs versus medium-sized and large dogs. The fermentation of cRG-I specifically increased the levels of acetate/propionate-producing Phocaeicola vulgatus. cRG-I and inulin were fermented by all donors, while xanthan fermentation was donor-dependent. cRG-I and inulin increased acetate and propionate levels. The responses of the gut microbiota of different sized dogs to cRG-I were generally consistent across donors, and interindividual differences were reduced. This, together with the significant increase in P. vulgatus during fermentation in both this study and an earlier human ex vivo study, suggests that this abundant and prevalent commensal species has a core capacity to selectively utilize cRG-I. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 881 KiB  
Systematic Review
Association of Single Nucleotide Polymorphisms in the Cyclooxygenase-2 (COX-2) Gene with Periodontal Disease—A Systematic Review with Meta-Analysis and Implications for Personalized Dentistry
by Vasiliki Savva, Ioannis Fragkioudakis and Dimitra Sakellari
J. Pers. Med. 2025, 15(8), 351; https://doi.org/10.3390/jpm15080351 - 3 Aug 2025
Viewed by 138
Abstract
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. [...] Read more.
Background: Genetic polymorphisms in the cyclooxygenase-2 (COX-2) gene may contribute to individual susceptibility to periodontal disease. A meta-analysis assessed the association between three COX-2 single-nucleotide polymorphisms (SNPs) namely, −765 G/C (rs20417), −1195 G/A (rs689466), and 8473 T/C (rs5275), and the risk of CP. Methods: Following the PRISMA 2020 guidelines, we conducted a comprehensive search of five electronic databases and additional sources. The eligible studies were observational (case–control or cohort) with genotypic data comparing individuals with periodontal disease and periodontally healthy controls. Methodological quality was assessed using the Newcastle–Ottawa Scale (NOS), and the certainty of evidence was evaluated via the GRADE framework. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated under dominant genetic models. Results: Seven studies (n = 1467 participants) met the inclusion criteria. No eligible studies evaluated the 8473 T/C SNP. The meta-analysis of the −765 G/C variant revealed a significant association with periodontal disease (OR = 1.61; 95% CI: 1.12–2.32, p = 0.03; I2 = 0%). For the −1195 G/A variant, the pooled OR was 1.86 (95% CI: 1.00–3.43, p = 0.05; I2 = 35%), suggesting a borderline significant association. The certainty of evidence was graded as moderate for −765 G/C and low for −1195 G/A. Conclusions: The COX-2 −765 G/C polymorphism is significantly associated with increased CP risk, while the −1195 G/A variant shows a potential, though less certain, link. Larger, high-quality studies using standardized classifications are needed to confirm these associations. Full article
(This article belongs to the Section Omics/Informatics)
Show Figures

Figure 1

14 pages, 3410 KiB  
Article
Gut Hormones and Postprandial Metabolic Effects of Isomaltulose vs. Saccharose Consumption in People with Metabolic Syndrome
by Jiudan Zhang, Dominik Sonnenburg, Stefan Kabisch, Stephan Theis, Margrit Kemper, Olga Pivovarova-Ramich, Domenico Tricò, Sascha Rohn and Andreas F. H. Pfeiffer
Nutrients 2025, 17(15), 2539; https://doi.org/10.3390/nu17152539 - 1 Aug 2025
Viewed by 137
Abstract
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). [...] Read more.
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). This study aimed to assess the most effective preprandial interval of ISO- or saccharose (SUC) snacks (1 h vs. 3 h preload) to enhance prandial incretin responses to a subsequent meal. Methods: In a randomized crossover design, 15 participants with MetS completed four experimental conditions on four non-consecutive days, combining two preload types (ISO or SUC) and two preload timings (Intervention A: 3 h preload; Intervention B: 1 h preload). Specifically, the four conditions were (1) ISO + Intervention A, (2) SUC + Intervention A, (3) ISO + Intervention B, and (4) SUC + Intervention B. The order of conditions was randomized and separated by a 3–7-day washout period to minimize carryover effects. On each study day, participants consumed two mixed meal tests (MMT-1 and MMT-2) with a standardized preload (50 g ISO or SUC) administered either 3 h or 1 h prior to MMT-2. Blood samples were collected over 9 h at 15 predefined time points for analysis of glucose, insulin, C-peptide, and incretin hormones (GLP-1, GIP, and PYY). Results: The unique digestion profile of ISO resulted in a blunted glucose ascent rate (ΔG/Δt: 0.28 vs. 0.53 mmol/L/min for SUC, p < 0.01), paralleled by synonyms PYY elevation over 540 min monitoring, compared with SUC. ISO also led to higher and more sustained GLP-1 and PYY levels, while SUC induced a stronger GIP response. Notably, the timing of ISO consumption significantly influenced PYY secretion, with the 3 h preload showing enhanced PYY responses and a more favorable SME compared to the 1 h preload. Conclusions: ISO, particularly when consumed 3 h before a meal (vs. 1 h), offers significant advantages over SUC by elevating PYY levels, blunting the glucose ascent rate, and sustaining GLP-1 release. This synergy enhances the second meal effect, suggesting ISO’s potential for managing postprandial glycemic excursions in MetS. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 6016 KiB  
Article
Role of Kindlin-2 in Cutaneous Squamous Carcinoma Cell Migration and Proliferation: Implications for Tumour Progression
by Anamika Dutta, Michele Calder and Lina Dagnino
Int. J. Mol. Sci. 2025, 26(15), 7426; https://doi.org/10.3390/ijms26157426 - 1 Aug 2025
Viewed by 105
Abstract
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal [...] Read more.
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal keratinocytes. However, the role of Kindlin-2 in transformed epidermal keratinocytes has remained virtually unexplored. In this study, we used siRNA approaches to generate Kindlin-2-depleted cells in three isogenic transformed keratinocyte lines. PM1, MET1, and MET4 cells model, respectively, a precancerous lesion, a primary cSCC, and a metastatic lesion of the latter. MET1 cells express both Kindlin-1 and -2. However, Kindlin-1 was not detectable in PM1 and MET4 cells. FERMT2 silencing in PM1 and MET4, but not in MET1 cells, reduced proliferation and the ability to adhere to culture surfaces and spreading. Furthermore, Kindlin-2-depleted PM1 and MET4, but not MET1 cells, exhibited decreased numbers of focal adhesions, as well as an altered F-actin and microtubule cytoskeletal organization. Significantly, FERMT2 silencing reduced the directional migration in all three cell types. These findings are consistent with the concept that, in the absence of other Kindlin orthologues, Kindlin-2 plays a prominent role in the modulation of the proliferation, spreading, focal adhesion assembly, and motility of transformed keratinocytes, as exemplified by PM1 and MET4 cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 131
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 2593 KiB  
Review
Mobile Health Interventions for Individuals with Type 2 Diabetes and Overweight or Obesity—A Systematic Review and Meta-Analysis
by Carlos Gomez-Garcia, Carol A. Maher, Borja Sañudo and Jose Manuel Jurado-Castro
J. Funct. Morphol. Kinesiol. 2025, 10(3), 292; https://doi.org/10.3390/jfmk10030292 - 29 Jul 2025
Viewed by 414
Abstract
Background: Type 2 diabetes (T2D) and overweight or obesity are strongly associated, with a high prevalence of these concomitant conditions contributing significantly to global healthcare costs. Given this burden, there is an urgent need for effective interventions. Mobile health (mHealth) technologies represent [...] Read more.
Background: Type 2 diabetes (T2D) and overweight or obesity are strongly associated, with a high prevalence of these concomitant conditions contributing significantly to global healthcare costs. Given this burden, there is an urgent need for effective interventions. Mobile health (mHealth) technologies represent a promising strategy to address both conditions simultaneously. Objectives: This systematic review and meta-analysis aimed to evaluate the effectiveness of mHealth-based interventions for the management of adults with T2D and overweight/obesity. Specifically, it assessed the quantitative impact of these interventions on glycosylated hemoglobin (HbA1c), body weight, triglycerides, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. Methods: A systematic search was conducted in PubMed, Web of Science, and Scopus databases from inception to 9 July 2025. The inclusion criteria focused on randomized controlled trials (RCTs) using mHealth interventions in adults with T2D and overweight/obesity, reporting HbA1c or weight as primary or secondary outcomes. The risk of bias was assessed using the Cochrane Risk of Bias tool 2. A total of 13 RCTs met the inclusion criteria. Results: Meta-analysis indicated significant improvements after 6–12 months of intervention in HbA1c (MD −0.23; 95% CI −0.36 to −0.10; p < 0.001; I2 = 72%), body weight (MD −2.47 kg; 95% CI −3.69 to −1.24; p < 0.001; I2 = 79%), total cholesterol (MD −0.23; 95% CI −0.39 to −0.07; p = 0.004; I2 = 0%), and LDL (MD −0.27; 95% CI −0.42 to −0.12; p < 0.001; I2 = 0%). Conclusions: mHealth interventions are effective and scalable for managing T2D and obesity, particularly when incorporating wearable technologies to improve adherence. Future research should focus on optimizing personalization, engagement strategies, and long-term implementation. Full article
Show Figures

Figure 1

19 pages, 6644 KiB  
Article
HGF Overexpression in Mesenchymal Stromal Cell-Based Cell Sheets Enhances Autophagy-Dependent Cytoprotection and Proliferation to Guard the Epicardial Mesothelium
by Konstantin Dergilev, Irina Beloglazova, Zoya Tsokolaeva, Ekaterina Azimova, Aleria Dolgodvorova, Yulia Goltseva, Maria Boldyreva, Mikhail Menshikov, Dmitry Penkov and Yelena Parfyonova
Int. J. Mol. Sci. 2025, 26(15), 7298; https://doi.org/10.3390/ijms26157298 - 28 Jul 2025
Viewed by 216
Abstract
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC [...] Read more.
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC activation and subsequent regulation remain poorly understood. We hypothesized that hepatocyte growth factor (HGF), a pleiotropic regulator of various cellular functions, could modulate EMC activity. To verify this hypothesis, we developed HGF-overexpressing mesenchymal stromal cell sheets (HGF-MSC CSs) and evaluated their effects on EMCs in vitro and in vivo. This study has revealed, for the first time, that EMCs express the c-Met (HGF receptor) on their surface and that both recombinant HGF and HGF-MSC CSs secretome cause c-Met phosphorylation, triggering downstream intracellular signaling. Our findings demonstrate that the HGF-MSC CSs secretome promotes cell survival under hypoxic conditions by modulating the level of autophagy. At the same time, HGF-MSC CSs stimulate EMC proliferation, promoting their amplification in the damage zone. These data demonstrate that HGF-MSC CSs can be considered a promising regulator of epicardial cell activity involved in heart repair after ischemic damage. Full article
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Viewed by 315
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption [...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

20 pages, 407 KiB  
Article
Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES)
by Jimi Kim
Diseases 2025, 13(8), 239; https://doi.org/10.3390/diseases13080239 - 28 Jul 2025
Viewed by 354
Abstract
Background: Metabolic syndrome (MetS) is a multifactorial condition involving central obesity, dyslipidemia, hypertension, and impaired glucose metabolism, significantly increasing the risk of type 2 diabetes and cardiovascular disease. Objectives: Given the clinical heterogeneity of MetS, this study aimed to identify distinct metabolic phenotypes, [...] Read more.
Background: Metabolic syndrome (MetS) is a multifactorial condition involving central obesity, dyslipidemia, hypertension, and impaired glucose metabolism, significantly increasing the risk of type 2 diabetes and cardiovascular disease. Objectives: Given the clinical heterogeneity of MetS, this study aimed to identify distinct metabolic phenotypes, referred to as metabotypes, using validated biomarkers and to examine their association with MetS. Materials and Methods: A total of 1245 Korean adults aged 19–79 years were selected from the 2016–2023 Korea National Health and Nutrition Examination Survey. Metabotype risk clusters were derived using k-means clustering based on five biomarkers: body mass index (BMI), uric acid, fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDLc), and non-HDL cholesterol (non-HDLc). Multivariable logistic regression was used to assess associations with MetS. Results: Three distinct metabotype risk clusters (low, intermediate, and high risk) were identified. The high-risk cluster exhibited significantly worse metabolic profiles, including elevated BMI, FBG, HbA1c, triglyceride, and reduced HDLc. The prevalence of MetS increased progressively across metabotype risk clusters (OR: 5.46, 95% CI: 2.89–10.30, p < 0.001). In sex-stratified analyses, the high-risk cluster was strongly associated with MetS in both men (OR: 9.22, 95% CI: 3.49–24.36, p < 0.001) and women (OR: 3.70, 95% CI: 1.56–8.75, p = 0.003), with notable sex-specific differences in lipid profiles, particularly in HDLc. Conclusion: These findings support the utility of metabotyping using routine biomarkers as a tool for early identification of high-risk individuals and the development of personalized prevention strategies in clinical and public health settings. Full article
Show Figures

Figure 1

19 pages, 2002 KiB  
Article
A Dual-Payload Bispecific ADC Improved Potency and Efficacy over Single-Payload Bispecific ADCs
by Nicole A. Wilski, Peter Haytko, Zhengxia Zha, Simin Wu, Ying Jin, Peng Chen, Chao Han and Mark L. Chiu
Pharmaceutics 2025, 17(8), 967; https://doi.org/10.3390/pharmaceutics17080967 - 25 Jul 2025
Viewed by 676
Abstract
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the [...] Read more.
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the likelihood of patient relapse. Methods: We developed a dual-targeting, dual-payload ADC by conjugating a bispecific EGFR x cMET antibody to two payloads (MMAF and SN38) that had separate mechanisms of action using a novel tri-functional linker. This dual-payload ADC was tested for potency and efficacy in dividing and nondividing in vitro cell models using multiple tumor cell types. Efficacy of the dual-payload ADC was confirmed using in vivo models. Results: Our ADC with dual MMAF and SN38 payloads was more efficacious in inhibiting cell proliferation than single-payload ADCs across multiple cancer cell lines. In addition, the dual-payload molecule inhibited nondividing cells, which were more resistant to traditional ADC payloads. The dual-payload ADC also exhibited more potent tumor growth inhibition in vivo compared to that of single-payload ADCs. Conclusions: Overall, the bispecific antibody conjugated with both the MMAF and SN38 payloads inhibited tumor growth more strongly than ADCs conjugated with MMAF or SN38 alone. Developing dual-payload ADCs could limit the impact of acquired resistance in patients as well as lower the effective dose of each payload. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

12 pages, 1044 KiB  
Article
Serum 25-Hydroxyvitamin D Is Decreased with Metabolic Syndrome Following Anterior Cruciate Ligament Reconstruction
by Sonu Bae, Anthony Mantor, Hayden Price, Christopher C. Kaeding, Robert A. Magnussen, David C. Flanigan and Tyler Barker
Nutrients 2025, 17(15), 2410; https://doi.org/10.3390/nu17152410 - 24 Jul 2025
Viewed by 290
Abstract
Background/Objectives: Serum 25-hydroxyvitamin D (25(OH)D) concentrations are decreased with metabolic syndrome (MetSy), and low serum 25(OH)D concentrations are associated with poor outcomes following anterior cruciate ligament (ACL) reconstruction (ACLR). It is unknown whether serum 25(OH)D concentrations are decreased in patients with MetSy [...] Read more.
Background/Objectives: Serum 25-hydroxyvitamin D (25(OH)D) concentrations are decreased with metabolic syndrome (MetSy), and low serum 25(OH)D concentrations are associated with poor outcomes following anterior cruciate ligament (ACL) reconstruction (ACLR). It is unknown whether serum 25(OH)D concentrations are decreased in patients with MetSy following ACLR. The purpose of this study was to investigate whether serum 25(OH)D concentrations are decreased with MetSy following ACLR. Methods: This retrospective case–control study consisted of patients (≥18 years) who underwent ACLR. MetSy was defined as meeting any three of the five criteria (cases): (1) body mass index ≥ 30 kg/m2, (2) triglycerides ≥ 150 mg/dL, (3) HDL < 40 mg/dL in men and <50 mg/dL in women, (4) systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, or (5) estimated (from hemoglobin A1c% [HbA1c]) fasting glucose ≥ 100 mg/dL. Participants without MetSy (meeting <3 criteria) served as controls. The first blood lipid, HbA1c, and 25(OH)D assessed ≥90 d after ACLR were included in this study. Results: The final analysis consisted of 219 patients (cases (with MetSy), n = 84; controls (without MetSy), n = 135). Serum 25(OH)D was significantly (p < 0.01) decreased (15.8%) in cases (mean [SD]; 25.1 [11.3] ng/mL) compared to controls (29.8 [14.8] ng/mL). An increasing number of MetSy components was associated with a decreased prevalence of vitamin D sufficiency (p < 0.01). Conclusions: We conclude that serum 25(OH)D concentrations are significantly lower with MetSy. These preliminary findings could provide justification for assessing serum 25(OH)D following ACLR in patients with MetSy and assist with risk stratification. Full article
(This article belongs to the Special Issue Vitamins and Human Health: 3rd Edition)
Show Figures

Figure 1

Back to TopTop