Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES)
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Data
2.2. Study Population
2.3. Biochemical and Anthropometric Parameters
2.4. Demographic and Lifestyle Variables
2.5. MetS Classification and Diagnosis
2.6. Metabotype Risk Clusters
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Sociodemographic and Lifestyle Characteristics Across Metabotype Risk Clusters
3.3. Comparison of Metabolic Biomarkers Across Metabotype Risk Clusters
3.4. Comparison of MetS Components Among Metabotype Risk Clusters
3.5. Association Between Metabotype Risk Clusters and MetS
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444–470. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef]
- Jemal, A.; Girum, T.; Kedir, S.; Bedru, A.; Mosa, H.; Assfa, K.; Oumer, A. Metabolic syndrome and its predictors among adults seeking medical care: A trending public health concern. Clin. Nutr. ESPEN 2023, 54, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Wei, P.; Suzauddula, M.; Nime, I.; Feroz, F.; Acharjee, M.; Pan, F. The interplay of factors in metabolic syndrome: Understanding its roots and complexity. Mol. Med. 2024, 30, 279. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- Denys, K.; Cankurtaran, M.; Janssens, W.; Petrovic, M. Metabolic syndrome in the elderly: An overview of the evidence. Acta Clin. Belg. 2009, 64, 23–34. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Ide, H.; Furui, Y. Differences in the components of metabolic syndrome by age and sex: A cross-sectional and longitudinal analysis of a cohort of middle-aged and older Japanese adults. BMC Geriatr. 2023, 23, 438. [Google Scholar] [CrossRef]
- Merchant, R.A.; Chan, Y.H.; Lim, J.Y.; Morley, J.E. Prevalence of metabolic syndrome and association with grip strength in older adults: Findings from the HOPE study. Diabetes Metab. Syndr. Obes. 2020, 13, 2677–2686. [Google Scholar] [CrossRef]
- Wagner, A.; Dallongeville, J.; Haas, B.; Ruidavets, J.B.; Amouyel, P.; Ferrières, J.; Simon, C.; Arveiler, D. Sedentary behaviour, physical activity and dietary patterns are independently associated with the metabolic syndrome. Diabetes Metab. 2012, 38, 428–435. [Google Scholar] [CrossRef]
- Silveira, E.A.; Mendonça, C.R.; Delpino, F.M.; Elias Souza, G.V.; Pereira de Souza Rosa, L.; de Oliveira, C.; Noll, M. Sedentary behavior, physical inactivity, abdominal obesity and obesity in adults and older adults: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2022, 50, 63–73. [Google Scholar] [CrossRef]
- Codazzi, V.; Frontino, G.; Galimberti, L.; Giustina, A.; Petrelli, A. Mechanisms and risk factors of metabolic syndrome in children and adolescents. Endocrine 2024, 84, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, F.; Mosconi, E.; Debellis, M.G.; Provini, S.; Esposito, C.; Garolfi, M.; Oraka, S.; Kaloudi, O.; Mustafazade, G.; Marín-Baselga, R.; et al. A systematic review of metabolic syndrome: Key correlated pathologies and non-invasive diagnostic approaches. J. Clin. Med. 2024, 13, 5880. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Lonardo, A. The heterogeneity of metabolic syndrome presentation and challenges this causes in its pharmacological management: A narrative review focusing on principal risk modifiers. Expert. Rev. Clin. Pharmacol. 2023, 16, 891–911. [Google Scholar] [CrossRef]
- Wan, J.Y.; Goodman, D.; Makhnoon, S.; Norden-Krichmar, T.M.; Wu, B.; Edwards, K.L. Heterogeneity in familial clustering of metabolic syndrome components in the multiethnic GENNID study. Obesity 2024, 32, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Riedl, A.; Gieger, C.; Hauner, H.; Daniel, H.; Linseisen, J. Metabotyping and its application in targeted nutrition: An overview. Br. J. Nutr. 2017, 117, 1631–1644. [Google Scholar] [CrossRef]
- Hillesheim, E.; Brennan, L. Metabotyping: A tool for identifying subgroups for tailored nutrition advice. Proc. Nutr. Soc. 2023, 82, 130–141. [Google Scholar] [CrossRef]
- Hillesheim, E.; Ryan, M.F.; Gibney, E.; Roche, H.M.; Brennan, L. Optimisation of a metabotype approach to deliver targeted dietary advice. Nutr. Metab. 2020, 17, 82. [Google Scholar] [CrossRef]
- Hillesheim, E.; Brennan, L. Optimisation of a targeted approach to the delivery of personalised dietary advice. Proc. Nutr. Soc. 2020, 79, E680. [Google Scholar] [CrossRef]
- Dahal, C.; Wawro, N.; Meisinger, C.; Breuninger, T.A.; Thorand, B.; Rathmann, W.; Koenig, W.; Hauner, H.; Peters, A.; Linseisen, J. Optimized metabotype definition based on a limited number of standard clinical parameters in the population-based KORA study. Life 2022, 12, 1460. [Google Scholar] [CrossRef] [PubMed]
- Riedl, A.; Wawro, N.; Gieger, C.; Meisinger, C.; Peters, A.; Rathmann, W.; Koenig, W.; Strauch, K.; Quante, A.S.; Thorand, B.; et al. Modifying effect of metabotype on diet-diabetes associations. Eur. J. Nutr. 2020, 59, 1357–1369. [Google Scholar] [CrossRef]
- Oh, K.; Kim, Y.; Kweon, S.; Kim, S.; Yun, S.; Park, S.; Lee, Y.K.; Kim, Y.; Park, O.; Jeong, E.K. Korea National Health and Nutrition Examination Survey, 20th anniversary: Accomplishments and future directions. Epidemiol. Health 2021, 43, e2021025. [Google Scholar] [CrossRef]
- Han, J.H.; Park, H.S.; Kim, S.M.; Lee, S.Y.; Kim, D.J.; Choi, W.H. Visceral adipose tissue as a predictor for metabolic risk factors in the Korean population. Diabet. Med. 2008, 25, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.; Brunius, C.; Shi, L.; Rostgaard-Hansen, A.; Torres, N.E.; González-Domínguez, R.; Zamora-Ros, R.; Ye, Y.L.; Halkjær, J.; Tjønneland, A.; et al. Perspective: Metabotyping-a potential personalized nutrition strategy for precision prevention of cardiometabolic disease. Adv. Nutr. 2020, 11, 524–532. [Google Scholar] [CrossRef]
- Vázquez-Fresno, R.; Llorach, R.; Perera, A.; Mandal, R.; Feliz, M.; Tinahones, F.J.; Wishart, D.S.; Andres-Lacueva, C. Clinical phenotype clustering in cardiovascular risk patients for the identification of responsive metabotypes after red wine polyphenol intake. J. Nutr. Biochem. 2016, 28, 114–120. [Google Scholar] [CrossRef]
- Riedl, A.; Wawro, N.; Gieger, C.; Meisinger, C.; Peters, A.; Roden, M.; Kronenberg, F.; Herder, C.; Rathmann, W.; Völzke, H.; et al. Identification of comprehensive metabotypes associated with cardiometabolic diseases in the population-based KORA study. Mol. Nutr. Food Res. 2018, 62, e1800117. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Mañas, L.R.; Mattace Raso, F.U.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef]
- Scuteri, A.; Cunha, P.G.; Agabiti Rosei, E.; Badariere, J.; Bekaert, S.; Cockcroft, J.R.; Cotter, J.; Cucca, F.; De Buyzere, M.L.; De Meyer, T.; et al. Arterial stiffness and influences of the metabolic syndrome: A cross-countries study. Atherosclerosis 2014, 233, 654–660. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The role of adipokines in health and disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Johnson, R.J.; Rivard, C.; Nakagawa, T.; Sautin, Y.Y.; Sanchez-Lozada, L.G. Uric acid: More to learn, more experiments to do. Am. J. Hypertens. 2009, 22, 952–953. [Google Scholar] [CrossRef]
- Singh, C.; Jain, S.; Dhawan, V.; Kalra, N.; Kumari, S. Uric acid as a predictor of endothelial dysfunction in patients with metabolic syndrome. Arch. Endocrinol. Metab. 2021, 64, 810–815. [Google Scholar] [CrossRef]
- Alosaimi, N.; Sherar, L.B.; Griffiths, P.; Pearson, N. Clustering of diet, physical activity and sedentary behaviour and related physical and mental health outcomes: A systematic review. BMC Public Health 2023, 23, 1572. [Google Scholar] [CrossRef]
- Cui, Q.; Chen, Y.; Ye, X.; Cai, Y.; Qin, R.; Chen, T.; Yan, T.; Yu, D. Patterns of lifestyle behaviors and relevant metabolic profiles in Chinese adults: Latent class analysis from two independent surveys in urban and rural populations. Iran. J. Public Health 2022, 51, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Booker, R.; Jones, R.; Galloway, R.; Holmes, M.E. Differences of sedentary behavior, physical activity, and metabolic syndrome severity among metabolic syndrome clusters. Am. J. Lifestyle Med. 2025, 19, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Noerman, S.; Kolehmainen, M.; Hanhineva, K. Profiling of endogenous and gut microbial metabolites to indicate metabotype-specific dietary responses: A systematic review. Adv. Nutr. 2020, 11, 1237–1254. [Google Scholar] [CrossRef] [PubMed]
- Patino-Alonso, M.C.; Recio-Rodríguez, J.I.; Magdalena-Belio, J.F.; Giné-Garriga, M.; Martínez-Vizcaino, V.; Fernández-Alonso, C.; Arietaleanizbeaskoa, M.S.; Galindo-Villardon, M.P.; Gómez-Marcos, M.A.; García-Ortiz, L. Clustering of lifestyle characteristics and their association with cardio-metabolic health: The Lifestyles and Endothelial Dysfunction (EVIDENT) study. Br. J. Nutr. 2015, 114, 943–951. [Google Scholar] [CrossRef]
- Leis, R.; Jurado-Castro, J.M.; Llorente-Cantarero, F.J.; Anguita-Ruiz, A.; Iris-Rupérez, A.; Bedoya-Carpente, J.J.; Vázquez-Cobela, R.; Aguilera, C.M.; Bueno, G.; Gil-Campos, M. Cluster analysis of physical activity patterns, and relationship with sedentary behavior and healthy lifestyles in prepubertal children: Genobox cohort. Nutrients 2020, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Rabel, M.; Laxy, M.; Thorand, B.; Peters, A.; Schwettmann, L.; Mess, F. Clustering of health-related behavior patterns and demographics. Results from the population-based KORA S4/F4 cohort study. Front. Public Health 2018, 6, 387. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Adams-Huet, B.; Jialal, I. Correlates of insulin resistance in nascent metabolic syndrome. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231168279. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxid. Med. Cell Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef]
- Azarpazhooh, M.R.; Najafi, F.; Darbandi, M.; Kiarasi, S.; Oduyemi, T.; Spence, J.D. Triglyceride/high-density lipoprotein cholesterol ratio: A clue to metabolic syndrome, insulin resistance, and severe atherosclerosis. Lipids 2021, 56, 405–412. [Google Scholar] [CrossRef]
- Bonilha, I.; Luchiari, B.; Nadruz, W.; Sposito, A.C. Very low HDL levels: Clinical assessment and management. Arch. Endocrinol. Metab. 2023, 67, 3–18. [Google Scholar] [CrossRef]
- Ford, E.S. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005, 28, 2745–2749. [Google Scholar] [CrossRef]
- Aberra, T.; Peterson, E.D.; Pagidipati, N.J.; Mulder, H.; Wojdyla, D.M.; Philip, S.; Granowitz, C.; Navar, A.M. The association between triglycerides and incident cardiovascular disease: What is “optimal”? J. Clin. Lipidol. 2020, 14, 438–447.e433. [Google Scholar] [CrossRef]
- Baneu, P.; Văcărescu, C.; Drăgan, S.R.; Cirin, L.; Lazăr-Höcher, A.I.; Cozgarea, A.; Faur-Grigori, A.A.; Crișan, S.; Gaiță, D.; Luca, C.T.; et al. The triglyceride/HDL ratio as a surrogate biomarker for insulin resistance. Biomedicines 2024, 12, 1493. [Google Scholar] [CrossRef]
- Reaven, G.M. Insulin resistance: The link between obesity and cardiovascular disease. Med. Clin. N. Am. 2011, 95, 875–892. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Thamakaison, S.; Anothaisintawee, T.; Sukhato, K.; Unwanatham, N.; Rattanasiri, S.; Reutrakul, S.; Thakkinstian, A. Hemoglobin A1c in combination with fasting plasma glucose trumps fasting plasma glucose alone as predictive indicators for diabetes mellitus: An ambidirectional cohort study of Thai people with impaired fasting glucose. BMJ Open Diabetes Res. Care 2021, 9, e002427. [Google Scholar] [CrossRef]
- Panazzolo, D.G.; Sicuro, F.L.; Clapauch, R.; Maranhão, P.A.; Bouskela, E.; Kraemer-Aguiar, L.G. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: A principal component analysis approach. BMC Cardiovasc. Disord. 2012, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C.; Zhen, Y.Y.; Niu, S.W.; Lin, K.D.; Lin, H.Y.; Lee, J.J.; Chang, J.M.; Kuo, I.C. Predictive value of HbA1c and metabolic syndrome for renal outcome in non-diabetic CKD stage 1-4 patients. Biomedicines 2022, 10, 1858. [Google Scholar] [CrossRef]
- Bekbossynova, M.; Ivanova-Razumova, T.; Kali, A.; Sailybayeva, A.; Khamitov, S.; Daniyarova, G.; Akzholova, K.; Saliev, T. Apolipoprotein B and glycemic dysregulation: New predictors of type 2 diabetes in high-cardiovascular-risk populations. J. Pers. Med. 2025, 15, 163. [Google Scholar] [CrossRef]
- Jung, J.Y.; Ryoo, J.H.; Chung, P.W.; Oh, C.M.; Choi, J.M.; Park, S.K. Association of fasting glucose and glycated hemoglobin with the long-term risk of incident metabolic syndrome: Korean Genome and Epidemiology Study (KoGES). Acta Diabetol. 2019, 56, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Annani-Akollor, M.E.; Laing, E.F.; Osei, H.; Mensah, E.; Owiredu, E.W.; Afranie, B.O.; Anto, E.O. Prevalence of metabolic syndrome and the comparison of fasting plasma glucose and HbA1c as the glycemic criterion for MetS definition in non-diabetic population in Ghana. Diabetol. Metab. Syndr. 2019, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Emilia, P.; Vaia, L.; George, D.; Antonis, Z. Metabolic syndrome and cardiometabolic risk factors. Curr. Vasc. Pharmacol. 2013, 11, 858–879. [Google Scholar]
Total (n = 1245) | Men (n = 571) | Women (n = 683) | p-Value | |
---|---|---|---|---|
Age (years) | 64.2 ± 0.4 | 62.5 ± 0.6 | 66.1 ± 0.4 | <0.001 |
Education (n, %) | ||||
Less than middle school | 735 (52.1) | 245 (38.2) | 490 (66.9) | <0.001 |
High school | 329 (27.8) | 195 (33.3) | 134 (22.0) | |
Over college | 190 (20.1) | 131 (28.5) | 59 (11.1) | |
Occupation (n, %) | ||||
Professionals, administrative, management, office jobs | 109 (11.5) | 81 (17.3) | 28 (5.2) | <0.001 |
Sales and service positions | 100 (9.2) | 34 (7.7) | 66 (10.8) | |
Agriculture, manufacturing, mining, army service | 332 (25.1) | 198 (33.3) | 134 (17.3) | |
Housekeeping, unemployment, and others | 767 (52.6) | 258 (42.7) | 455 (66.7) | |
Alcohol consumption (n, %) | ||||
Past or current | 1025 (84.0) | 547 (95.7) | 478 (71.4) | <0.001 |
Never | 229 (16.0) | 24 (4.3) | 205 (28.6) | |
Smoking (n, %) | ||||
Past or current | 546 (47.8) | 480 (84.2) | 66 (8.9) | <0.001 |
Never | 708 (52.2) | 91 (15.8) | 617 (91.1) | |
Vigorous intensity of physical activity (n, %) | ||||
Yes | 29 (2.91) | 23 (4.5) | 6 (1.2) | <0.003 |
No | 1225 (97.1) | 548 (95.5) | 677 (98.8) | |
Moderate intensity of physical activity (n, %) | ||||
Yes | 209 (19.1) | 123 (24.5) | 86 (13.3) | <0.001 |
No | 1045 (80.9) | 448 (75.5) | 597 (86.7) | |
Antihypertensive medication use (n, %) | ||||
Yes | 1178 (93.9) | 528 (92.5) | 650 (95.2) | 0.046 |
No | 76 (6.1) | 43 (7.5) | 33 (4.8) | |
Lipid-lowering medication use (n, %) | ||||
Yes | 1095 (87.3) | 480 (84.1) | 615 (90.0) | 0.002 |
No | 159 (12.7) | 91 (15.9) | 68 (10.0) | |
Antidiabetic medication use (n, %) | ||||
Yes | 1191 (95.0) | 546 (95.6) | 645 (94.4) | 0.34 |
No | 63 (5.0) | 25 (4.38) | 38 (5.56) | |
Obesity (n, %) | ||||
Underweight | 8 (0.4) | 4 (0.5) | 4 (0.4) | 0.43 |
Normal | 281 (20.8) | 122 (19.4) | 159 (22.2) | |
Pre-obese | 356 (28.2) | 159 (27.2) | 197 (29.2) | |
Obese | 609 (50.7) | 286 (53.0) | 323 (48.2) | |
Total energy intake (kcal/day) | 1749.31 ± 32.12 | 2019.36 ± 55.03 | 1460.32 ± 23.94 | <0.001 |
MetS (n, %) | ||||
Yes | 709 (56.5) | 301 (52.7) | 408 (59.7) | 0.013 |
No | 545 (43.5) | 270 (47.3) | 275 (40.3) | |
Parameters of MetS | ||||
WC (cm) | 90.57 ± 9.23 | 93.09 ± 9.03 | 88.46 ± 8.86 | <0.001 |
TG (mg/dL) | 144.04 ± 87.63 | 151.96 ± 98.48 | 137.41 ± 76.85 | 0.004 |
HDLc (mg/dL) | 48.42 ± 12.45 | 46.33 ± 12.53 | 50.17 ± 12.13 | <0.001 |
SBP (mmHg) | 127.57 ± 15.50 | 125.97 ± 14.37 | 128.91 ± 16.27 | <0.001 |
DBP (mmHg) | 73.53 ± 9.21 | 74.22 ± 9.66 | 72.96 ± 8.79 | 0.017 |
FBG (mg/dL) | 131.75 ± 36.97 | 133.23 ± 37.89 | 130.52 ± 36.16 | 0.20 |
Metabotype Risk Clusters | ||||
---|---|---|---|---|
Low-Risk | Intermediate-Risk | High-Risk | p-Value | |
N | 881 | 295 | 78 | |
Age (years) | 65.42 ± 0.46 | 62.39 ± 0.69 | 58.88 ± 1.45 | <0.001 |
Sex (n, %) | ||||
Men | 398 (45.2) | 131 (44.4) | 42 (53.9) | 0.31 |
Women | 483 (54.8) | 164 (55.6) | 36 (46.2) | |
Education (n, %) | ||||
Less than middle school | 538 (54.7) | 155 (46.6) | 42 (44.9) | 0.08 |
High school | 220 (27.1) | 84 (27.4) | 25 (37.1) | |
Over college | 123 (18.2) | 56 (26.0) | 11 (18.0) | |
Occupation (n, %) | ||||
Professionals, administrative, management, office jobs | 72 (11.0) | 30 (13.6) | 7 (9.2) | 0.32 |
Sales and service positions | 62 (8.0) | 27 (10.6) | 11 (16.5) | |
Agriculture, manufacturing, mining, army service | 244 (25.3) | 69 (23.7) | 19 (27.3) | |
Housekeeping, unemployment, and others | 503 (55.8) | 169 (52.1) | 41 (47.0) | |
Alcohol consumption (n, %) | ||||
Past or current | 719 (83.7) | 240 (82.8) | 66 (90.7) | 0.24 |
Never | 162 (16.3) | 55 (17.2) | 12 (9.3) | |
Smoking (n, %) | ||||
Past or current | 375 (47.4) | 134(50.4) | 37 (43.7) | 0.59 |
Never | 506 (52.7) | 161 (49.6) | 41 (56.3) | |
Vigorous intensity of physical activity (n, %) | ||||
Yes | 17 (2.4) | 11 (4.7) | 1 (1.7) | 0.24 |
No | 864 (97.6) | 284 (95.3) | 77 (98.3) | |
Moderate intensity of physical activity (n, %) | ||||
Yes | 144 (18.3) | 55 (21.1) | 10 (20.0) | 0.71 |
No | 737 (81.7) | 240 (78.9) | 68 (80.0) | |
Antihypertensive medication use (n, %) | ||||
Yes | 836 (94.9) | 269 (91.2) | 73 (93.6) | 0.07 |
No | 45 (5.1) | 26 (8.8) | 5 (6.4) | |
Lipid-lowering medication use (n, %) | ||||
Yes | 813 (92.3) | 220 (74.6) | 62 (79.5) | <0.001 |
No | 68 (7.7) | 75 (25.4) | 16 (20.5) | |
Antidiabetic medication use (n, %) | ||||
Yes | 847 (96.1) | 267 (90.5) | 77 (98.7) | <0.001 |
No | 34 (3.9) | 28 (9.5) | 1 (1.3) | |
Obesity (n, %) | ||||
Underweight | 8 (0.6) | 0 (0) | 0 (0) | 0.05 |
Normal | 210 (23.2) | 60 (17.1) | 11 (9.6) | |
Pre-obese | 245 (27.3) | 84 (28.4) | 27 (36.4) | |
Obese | 418 (49.0) | 151 (54.5) | 40 (54.0) | |
Total energy intake (kcal/day) | 1708.23 ± 36.62 | 1745.47 ± 50.88 | 2066.94 ± 211.06 | 0.26 |
Metabotype Risk Clusters | ||||
---|---|---|---|---|
Low-Risk | Intermediate-Risk | High-Risk | p-Value | |
Biomarkers used for metabotype clusters | ||||
BMI (kg/m2) | 25.67 ± 0.16 | 26.47 ± 0.24 | 27.19 ± 0.54 | 0.002 |
Uric acid (mg/dL) | 5.03 ± 0.06 | 5.37 ± 0.09 | 5.13 ± 0.20 | 0.008 |
FBG (mg/dL) | 121.97 ± 0.81 | 133.15 ± 1.75 | 235.00 ± 5.83 | <0.001 |
HDLc (mg/dL) | 48.43 ± 0.46 | 46.93 ± 0.78 | 44.45 ± 1.76 | 0.039 |
Non-HDLc (mg/dL) | 92.04 ± 0.71 | 154.45 ± 1.91 | 119.52 ± 5.38 | <0.001 |
Other biomarkers | ||||
HbA1c (%) | 6.81 ± 0.03 | 7.17 ± 0.08 | 9.67 ± 0.23 | <0.001 |
TC (mg/dL) | 140.49 ± 0.81 | 201.41 ± 2.18 | 164.00 ± 5.40 | <0.001 |
TG (mg/dL) | 122.14 ± 2.15 | 206.02 ± 8.90 | 215.78 ± 20.38 | <0.001 |
AST (IU/L) | 26.18 ± 0.43 | 26.60 ± 0.95 | 27.74 ± 2.02 | 0.71 |
ALT (IU/L) | 26.35 ± 0.66 | 26.74 ± 1.14 | 31.92 ± 2.77 | 0.15 |
BUN (mg/dL) | 17.11 ± 0.21 | 17.15 ± 0.48 | 17.14 ± 0.69 | 0.99 |
Creatinine (mg/dL) | 1.03 ± 0.01 | 1.07 ± 0.03 | 1.02 ± 0.02 | 0.42 |
Hemoglobin (g/dL) | 13.47 ± 0.06 | 14.05 ± 0.10 | 14.53 ± 0.20 | <0.001 |
Hematocrit (%) | 41.58 ± 0.18 | 42.51 ± 0.27 | 43.33 ± 0.53 | 0.001 |
Metabotype Risk Clusters | ||||
---|---|---|---|---|
Low-Risk | Intermediate-Risk | High-Risk | p-Value | |
N | 881 | 295 | 78 | |
Components of MetS | ||||
WC (cm) | 90.03 ± 0.87 | 92.15 ± 0.69 | 93.98 ± 0.75 | <0.001 |
TG (mg/dL) | 122.14 ± 2.15 | 206.02 ± 8.90 | 215.78 ± 20.38 | <0.001 |
HDLc (mg/dL) | 48.43 ± 0.46 | 46.93 ± 0.78 | 44.45 ± 1.76 | 0.039 |
SBP (mmHg) | 125.45 ± 0.57 | 128.32 ± 0.49 | 129.87 ± 0.65 | 0.002 |
DBP (mmHg) | 71.38 ± 0.62 | 74.34 ± 0.56 | 74.63 ± 0.67 | <0.001 |
FBG (mg/dL) | 121.97 ± 0.81 | 133.15 ± 1.75 | 235.00 ± 5.83 | <0.001 |
MetS (n, %) | ||||
Yes | 434 (49.3) | 209 (70.9) | 66 (84.6) | <0.001 |
No | 447 (50.7) | 86 (29.2) | 12 (15.4) | |
Number of MetS components met (n, %) | ||||
Exactly three components | 262 (29.7) | 95 (32.2) | 25 (32.1) | <0.001 |
Four components | 133 (15.1) | 86 (29.2) | 26 (33.3) | |
All five components | 39 (4.4) | 28 (9.5) | 15 (19.2) |
Metabotype Risk Clusters | |||
---|---|---|---|
Low-Risk | Intermediate-Risk | High-Risk | |
MetS | |||
Prevalence (n, %) | 434 (49.3) | 209 (70.9) | 66 (84.6) |
Crude OR (95% CI) | 1.0 (ref) | 2.50 (1.89–3.32) | 5.67 (3.02–10.63) |
p-value | <0.001 | <0.001 | |
Multivariable OR (95% CI) | 1.0 (ref) | 2.43 (1.82–3.23) | 5.46 (2.89–10.30) |
p-value | <0.001 | <0.001 | |
Elevated WC | |||
Prevalence (n, %) | 546 (62.0) | 192 (65.1) | 62 (79.5) |
Crude OR (95% CI) | 1.0 (ref) | 1.14 (0.87–1.51) | 2.38 (1.35–4.19) |
p-value | 0.34 | 0.003 | |
Multivariable OR (95% CI) | 1.0 (ref) | 1.10 (0.83–1.46) | 2.19 (1.24–3.88) |
p-value | 0.49 | 0.007 | |
Elevated TG | |||
Prevalence (n, %) | 212 (24.1) | 174 (59.0) | 49 (62.8) |
Crude OR (95% CI) | 1.0 (ref) | 4.54 (3.43–5.99) | 5.33 (3.29–8.66) |
p-value | <0.001 | <0.001 | |
Multivariable OR (95% CI) | 1.0 (ref) | 4.38 (3.30–5.81) | 4.84 (2.95–7.93) |
p-value | <0.001 | <0.001 | |
Reduced HDLc | |||
Prevalence (n, %) | 367 (41.7) | 131 (44.4) | 46 (59.0) |
Crude OR (95% CI) | 1.0 (ref) | 1.12 (0.86–1.46) | 2.01 (1.26–3.22) |
p-value | 0.41 | 0.004 | |
Multivariable OR (95% CI) | 1.0 (ref) | 1.13 (0.86–1.49) | 2.24 (1.37–3.65) |
p-value | 0.37 | 0.001 | |
Elevated BP | |||
Prevalence (n, %) | 374 (42.5) | 148 (50.2) | 40 (51.3) |
Crude OR (95% CI) | 1.0 (ref) | 1.37 (1.05–1.78) | 1.43 (0.90–2.27) |
p-value | 0.021 | 0.13 | |
Multivariable OR (95% CI) | 1.0 (ref) | 1.42 (1.09–1.86) | 1.60 (0.99–2.56) |
p-value | 0.010 | 0.05 | |
Elevated FBG | |||
Prevalence (n, %) | 759 (86.2) | 266 (90.2) | 78 (100.0) |
Crude OR (95% CI) | 1.0 (ref) | 1.47 (0.96–2.26) | - |
p-value | 0.08 | - | |
Multivariable OR (95% CI) | 1.0 (ref) | 1.40 (0.91–2.16) | - |
p-value | 0.13 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J. Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES). Diseases 2025, 13, 239. https://doi.org/10.3390/diseases13080239
Kim J. Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES). Diseases. 2025; 13(8):239. https://doi.org/10.3390/diseases13080239
Chicago/Turabian StyleKim, Jimi. 2025. "Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES)" Diseases 13, no. 8: 239. https://doi.org/10.3390/diseases13080239
APA StyleKim, J. (2025). Metabotype Risk Clustering Based on Metabolic Disease Biomarkers and Its Association with Metabolic Syndrome in Korean Adults: Findings from the 2016–2023 Korea National Health and Nutrition Examination Survey (KNHANES). Diseases, 13(8), 239. https://doi.org/10.3390/diseases13080239