Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = bus accessibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

22 pages, 4707 KiB  
Article
Dynamic Performance Design and Validation in Large, IBR-Heavy Synthetic Grids
by Jongoh Baek and Adam B. Birchfield
Energies 2025, 18(15), 3953; https://doi.org/10.3390/en18153953 - 24 Jul 2025
Viewed by 212
Abstract
Cross-validation and open research on future electric grids, particularly in their stability modeling and dynamic performance, can greatly benefit from high-fidelity, publicly available test cases, since access to dynamic response models of actual grid models is often limited due to legitimate security concerns. [...] Read more.
Cross-validation and open research on future electric grids, particularly in their stability modeling and dynamic performance, can greatly benefit from high-fidelity, publicly available test cases, since access to dynamic response models of actual grid models is often limited due to legitimate security concerns. This paper presents a methodology for designing and validating the dynamic performance of large, IBR-heavy synthetic grids, that is, realistic but fictitious test cases. The methodology offers a comprehensive framework for creating dynamic models for both synchronous generators (SGs) and inverter-based resources (IBRs), focusing on realism, controllability, and flexibility. For realistic dynamic performance, the parameters in each dynamic model are sampled based on statistical data from benchmark actual grids, considering power system dynamics such as frequency and voltage control, as well as oscillation response. The paper introduces system-wide governor design, which improves the controllability of parameters in dynamic models, resulting in a more realistic frequency response. As an example, multiple case studies on a 2000-bus Texas synthetic grid are shown; these represent realistic dynamic performance under different transmission conditions in terms of frequency, voltage control, and oscillation response. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 847 KiB  
Article
Modeling Public Transportation Use Among Short-Term Rental Guests in Madrid
by Daniel Gálvez-Pérez, Begoña Guirao and Armando Ortuño
Appl. Sci. 2025, 15(14), 7828; https://doi.org/10.3390/app15147828 - 12 Jul 2025
Viewed by 382
Abstract
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property [...] Read more.
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property managers and luggage-storage services to examine factors influencing public transport (PT) use. Responses on bus and metro usage were combined into a three-level ordinal variable and modeled using ordered logistic regression against tourist demographics, trip characteristics, and accommodation attributes, including geocoded location zones. The results indicate that first-time and international visitors are less likely to use PT at high levels, while tourists visiting more points of interest and those who rated PT importance highly when choosing accommodation are significantly more frequent users. Accommodation in the central almond or periphery correlates positively with higher PT use compared to the city center. Distances to transit stops were not significant predictors, reflecting overall network accessibility. These findings suggest that enhancing PT connectivity in peripheral areas could support the spatial dispersion of tourism benefits and improve sustainable mobility for STR guests. Full article
Show Figures

Figure 1

13 pages, 1574 KiB  
Article
SnapStick: Merging AI and Accessibility to Enhance Navigation for Blind Users
by Shehzaib Shafique, Gian Luca Bailo, Silvia Zanchi, Mattia Barbieri, Walter Setti, Giulio Sciortino, Carlos Beltran, Alice De Luca, Alessio Del Bue and Monica Gori
Technologies 2025, 13(7), 297; https://doi.org/10.3390/technologies13070297 - 11 Jul 2025
Viewed by 378
Abstract
Navigational aids play a vital role in enhancing the mobility and independence of blind and visually impaired (VI) individuals. However, existing solutions often present challenges related to discomfort, complexity, and limited ability to provide detailed environmental awareness. To address these limitations, we introduce [...] Read more.
Navigational aids play a vital role in enhancing the mobility and independence of blind and visually impaired (VI) individuals. However, existing solutions often present challenges related to discomfort, complexity, and limited ability to provide detailed environmental awareness. To address these limitations, we introduce SnapStick, an innovative assistive technology designed to improve spatial perception and navigation. SnapStick integrates a Bluetooth-enabled smart cane, bone-conduction headphones, and a smartphone application powered by the Florence-2 Vision Language Model (VLM) to deliver real-time object recognition, text reading, bus route detection, and detailed scene descriptions. To assess the system’s effectiveness and user experience, eleven blind participants evaluated SnapStick, and usability was measured using the System Usability Scale (SUS). In addition to the 94% accuracy, the device received an SUS score of 84.7%, indicating high user satisfaction, ease of use, and comfort. Participants reported that SnapStick significantly improved their ability to navigate, recognize objects, identify text, and detect landmarks with greater confidence. The system’s ability to provide accurate and accessible auditory feedback proved essential for real-world applications, making it a practical and user-friendly solution. These findings highlight SnapStick’s potential to serve as an effective assistive device for blind individuals, enhancing autonomy, safety, and navigation capabilities in daily life. Future work will explore further refinements to optimize user experience and adaptability across different environments. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

20 pages, 3691 KiB  
Article
Distributed Voltage Optimal Control Method for Energy Storage Systems in Active Distribution Network
by Yang Liu, Wenbin Liu, Ying Wu and Haidong Yu
Energies 2025, 18(14), 3670; https://doi.org/10.3390/en18143670 - 11 Jul 2025
Viewed by 295
Abstract
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this [...] Read more.
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this regard, this paper proposes a distributed fast voltage regulation method for energy storage systems (ESSs) in distribution networks. Firstly, to reduce the communication burden, the distribution network cluster is divided according to the electrical distance modularity index. Secondly, the distributed control model of active distribution network with the goal of voltage recovery and ESS power balance is established, and a distributed controller is designed. The feedback-control gains are optimized to improve the convergence rate. Finally, the IEEE33 bus system and IEEE69 bus system are applied for simulation. The results show that the proposed distributed optimal control method can effectively improve the voltage level of the distribution network under the condition of ensuring the ESS power balance. Full article
Show Figures

Figure 1

27 pages, 5427 KiB  
Article
Beyond Traditional Public Transport: A Cost–Benefit Analysis of First and Last-Mile AV Solutions in Periurban Environment
by Félix Carreyre, Tarek Chouaki, Nicolas Coulombel, Jaâfar Berrada, Laurent Bouillaut and Sebastian Hörl
Sustainability 2025, 17(14), 6282; https://doi.org/10.3390/su17146282 - 9 Jul 2025
Viewed by 337
Abstract
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. [...] Read more.
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. In this work, a cost–benefit analysis (CBA) is applied to the introduction of AV services in Paris-Saclay, an intercommunity, south of Paris, simulated through MATSim, an agent-based model capable of capturing complex travel behaviors and dynamic traffic interactions. AVs would be implemented as a feeder service, first- and last-mile service to public transit, allowing intermodal trips for travelers. The system is designed to target the challenges of public transport accessibility in periurban areas and high private car use, which the AV feeder service is designed to mitigate. To our knowledge, this study is one of the first CBA analyses of an intermodal AV system relying on an agent-based simulation. The introduction of AV in a periurban environment would generate more pressure on the road network (0.8% to 1.7% increase in VKT for all modes, and significant congestion around train stations) but would improve traveler utilities. The utility gains from the new AV users benefiting from a more comfortable mode offsets the longer travel times from private car users. A Stop-Based routing service generates less congestion than a Door-to-Door routing service, but the access/egress time counterbalances this gain. Finally, in a periurban environment where on-demand AV feeder service would be added to reduce the access and egress cost of public transit, the social impact would be nuanced for travelers (over 99% of gains captured by the 10% of most benefiting agents), but externality would increase. This would benefit some travelers but would also involve additional congestion. In that case, a Stop-Based routing on a constrained network (e.g., existing bus network) significantly improves economic viability and reduces infrastructure costs and would be less impacting than a Door-to-Door service. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 819 KiB  
Article
The Impact of the Built Environment on Resident Well-Being: The Mediating Role of Multidimensional Life Satisfaction
by Tunan Deng, Chun-Ming Hsieh, Anan Guan and Xueying Wu
Buildings 2025, 15(13), 2242; https://doi.org/10.3390/buildings15132242 - 26 Jun 2025
Viewed by 327
Abstract
Well-being is an important goal pursued by humans, and the living environment has a profound impact on various aspects of human health. The objective of this study is to explore the mechanism by which the built environment affects the well-being of residents, specifically [...] Read more.
Well-being is an important goal pursued by humans, and the living environment has a profound impact on various aspects of human health. The objective of this study is to explore the mechanism by which the built environment affects the well-being of residents, specifically how multiple, distinct domains of life satisfaction mediate the effects of diverse built environment features on well-being—a nuanced pathway not yet comprehensively examined. Based on questionnaire data collected from 22 statistical districts in Macau, with a sample size of 1313 individuals, a multilevel linear regression model and mediation analysis were applied (model R2 ≈ 47%). When leisure satisfaction is used as a mediator variable alone, the explanatory power of the original model increases the most (from 7.6% to 32%). Complete Mediation via Specific Domains: Health satisfaction fully mediated the effects of intersection density (p < 0.05) and bus stop accessibility (p < 0.05). All four satisfaction domains collectively fully mediated income diversity (Shannon index, p < 0.01). The 14 built environment metrics (5 socioeconomic, 9 morphological) exhibited differential mediation mechanisms: while transportation-related metrics (intersection density, bus stops) primarily operated through health/social satisfaction, diversity indices (income, education, land use) and unemployment rate engaged all satisfaction domains. Some variables showed partial mediation through various satisfaction pathways (p < 0.01–0.05). These findings underscore the necessity of considering multidimensional life satisfaction as critical pathways in urban well-being research and policy. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 6043 KiB  
Article
Coordinated Control of Photovoltaic Resources and Electric Vehicles in a Power Distribution System to Balance Technical, Environmental, and Energy Justice Objectives
by Abdulrahman Almazroui and Salman Mohagheghi
Processes 2025, 13(7), 1979; https://doi.org/10.3390/pr13071979 - 23 Jun 2025
Cited by 1 | Viewed by 539
Abstract
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to [...] Read more.
Recent advancements in photovoltaic (PV) and battery technologies, combined with improvements in power electronic converters, have accelerated the adoption of rooftop PV systems and electric vehicles (EVs) in distribution networks, while these technologies offer economic and environmental benefits and support the transition to sustainable energy systems, they also introduce operational challenges, including voltage fluctuations, increased system losses, and voltage regulation issues under high penetration levels. Traditional Voltage and Var Control (VVC) strategies, which rely on substation on-load tap changers, voltage regulators, and shunt capacitors, are insufficient to fully manage these challenges. This study proposes a novel Voltage, Var, and Watt Control (VVWC) framework that coordinates the operation of PV and EV resources, conventional devices, and demand responsive loads. A mixed-integer nonlinear multi-objective optimization model is developed, applying a Chebyshev goal programming approach to balance objectives that include minimizing PV curtailment, reducing system losses, flattening voltage profile, and minimizing demand not met. Unserved demand has, in particular, been modeled while incorporating the concepts of distributional and recognition energy justice. The proposed method is validated using a modified version of the IEEE 123-bus test distribution system. The results indicate that the proposed framework allows for high levels of PV and EV integration in the grid, while ensuring that EV demand is met and PV curtailment is negligible. This demonstrates an equitable access to energy, while maximizing renewable energy usage. Full article
Show Figures

Figure 1

19 pages, 739 KiB  
Article
Urban Built Environment Perceptions and Female Cycling Behavior: A Gender-Comparative Study of E-bike and Bicycle Riders in Nanjing, China
by Yayun Qu, Qianwen Wang and Hui Wang
Urban Sci. 2025, 9(6), 230; https://doi.org/10.3390/urbansci9060230 - 17 Jun 2025
Viewed by 419
Abstract
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the [...] Read more.
As cities globally prioritize sustainable transportation, understanding gender-differentiated responses to the urban built environment is critical for equitable mobility planning. This study combined the Social Ecological Model (SEM) with the theoretical perspective of Gendered Spatial Experience to explore the differentiated impacts of the Perceived Street Built Environment (PSBE) on the cycling behavior of men and women. Questionnaire data from 285 e-bike and traditional bicycle riders (236 e-bike riders and 49 traditional cyclists, 138 males and 147 females) from Gulou District, Nanjing, between May and October 2023, were used to investigate gender differences in cycling behavior and PSBE using the Mann–Whitney U-test and crossover analysis. Linear regression and logistic regression analyses examined the PSBE impact on gender differences in cycling probability and route choice. The cycling frequency of women was significantly higher than that of men, and their cycling behavior was obviously driven by family responsibilities. Greater gender differences were observed in the PSBE among e-bike riders. Women rated facility accessibility, road accessibility, sense of safety, and spatial comfort significantly lower than men. Clear traffic signals and zebra crossings positively influenced women’s cycling probability. Women were more sensitive to the width of bicycle lanes and street noise, while men’s detours were mainly driven by the convenience of bus connections. We recommend constructing a gender-inclusive cycling environment through intersection optimization, family-friendly routes, lane widening, and noise reduction. This study advances urban science by identifying gendered barriers in cycling infrastructure, providing actionable strategies for equitable transport planning and urban design. Full article
Show Figures

Figure 1

22 pages, 1291 KiB  
Review
Small but Significant: A Review of Research on the Potential of Bus Shelters as Resilient Infrastructure
by Sarah Briant, Debra Cushing, Tracy Washington and Monique Swart
Appl. Sci. 2025, 15(12), 6724; https://doi.org/10.3390/app15126724 - 16 Jun 2025
Viewed by 603
Abstract
Bus stops are an essential component of public transportation systems, significantly impacting human health, wellbeing, and overall user experience. As primary interaction points for passengers, they are integral to the urban landscape and, as such, their designs influence people’s experiences within the public [...] Read more.
Bus stops are an essential component of public transportation systems, significantly impacting human health, wellbeing, and overall user experience. As primary interaction points for passengers, they are integral to the urban landscape and, as such, their designs influence people’s experiences within the public realm. Despite their importance, the design of bus stops and bus shelters remains an under-researched area. This paper aims to review the existing peer-reviewed research on bus-stop design, identifying areas for future inquiry. Twenty-two peer-reviewed journal articles were selected and included in this study. The most common theme in the published research was the manner in which bus stops could address extreme weather and heat, along with other themes, including accessibility, sustainable energy, air pollution, and noise. Further empirical research is necessary to understand how bus-stop design affects the user experience, emphasizing qualitative methods to explore human experiences, perceptions, motivations, and challenges related to bus-stop usage and public transportation. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

29 pages, 8586 KiB  
Article
Exploring the Determinants of Spatial Vitality in High-Speed Rail Station Areas in China: A Multi-Source Data Analysis Using LightGBM
by Pengpeng Liang, Xu Cui, Jiexi Ma, Wen Song and Yao Xu
Land 2025, 14(6), 1262; https://doi.org/10.3390/land14061262 - 12 Jun 2025
Viewed by 1313
Abstract
High-speed rail (HSR) station areas play a vital role in shaping urban form, stimulating economic activity, and enhancing spatial vitality. Understanding the factors that influence this vitality is key to supporting sustainable urban development and transit-oriented planning. This study investigates 66 HSR station [...] Read more.
High-speed rail (HSR) station areas play a vital role in shaping urban form, stimulating economic activity, and enhancing spatial vitality. Understanding the factors that influence this vitality is key to supporting sustainable urban development and transit-oriented planning. This study investigates 66 HSR station areas in 35 Chinese cities by integrating multi-source data—Sina Weibo check-in records, urban support indicators, station attributes, and built environment variables—within a city–node–place analytical framework. Using Multiple Linear Regression (MLR) and Light Gradient Boosting Machine (LightGBM) models, we identify key drivers of spatial vitality, while SHAP analysis reveals nonlinear and interaction effects. The results show that city population size, urbanization level, commercial land use, transit accessibility, and parking facilities significantly enhance station area vitality. However, diminishing returns are observed when commercial land and bus stop densities exceed certain thresholds. The station location index shows a negative correlation with spatial vitality. The analysis of interaction effects highlights strong synergies between urban development and functional configuration, as well as between accessibility and service infrastructure. Different station types exhibit varied spatial patterns and require differentiated strategies. This study offers empirical insights for aligning transport infrastructure and land use planning, supporting the development of vibrant, accessible, and sustainable HSR station areas. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

18 pages, 2025 KiB  
Article
Optimized Submodule Capacitor Ripple Voltage Suppression of an MMC-Based Power Electronic Transformer
by Jinmu Lai, Zijian Wu, Xianyi Jia, Yaoqiang Wang, Yongxiang Liu and Xinbing Zhu
Electronics 2025, 14(12), 2385; https://doi.org/10.3390/electronics14122385 - 11 Jun 2025
Viewed by 352
Abstract
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution [...] Read more.
Modular multilevel converter (MMC)-based power electronic transformers (PETs) present a promising solution for connecting AC/DC microgrids to facilitate renewable energy access. However, the capacitor ripple voltage in MMC-based PET submodules hinders volume optimization and power density enhancement, significantly limiting their application in distribution networks. To address this issue, this study introduces an optimized method for suppressing the submodule capacitor ripple voltage in MMC-based PET systems under normal and grid fault conditions. First, an MMC–PET topology featuring upper and lower arm coupling is proposed. Subsequently, a double-frequency circulating current injection strategy is incorporated on the MMC side to eliminate the double-frequency ripple voltage of the submodule capacitor. Furthermore, a phase-shifting control strategy is applied in the isolation stage of the dual-active bridge (DAB) to transfer the submodule capacitor selective ripple voltages to the isolation stage coupling link, effectively eliminating the fundamental frequency ripple voltage. The optimized approach successfully suppresses capacitor ripples without increasing current stress on the isolated-stage DAB switches, even under grid fault conditions, which are not addressed by existing ripple suppression methods, thereby reducing device size and cost while ensuring reliable operation. Specifically, the peak-to-peak submodule capacitor ripple voltage is reduced from 232 V to 10 V, and the peak current of the isolation-stage secondary-side switch is limited to ±90 A. The second harmonic ripple voltage on the LVDC bus can be decreased from ±5 V to ±1 V with the proposed method under the asymmetric grid voltage condition. Subsequently, a system simulation model is developed in MATLAB/Simulink. The simulation results validated the accuracy of the theoretical analysis and demonstrated the effectiveness of the proposed method. Full article
Show Figures

Figure 1

27 pages, 9628 KiB  
Article
Exploring the Nonlinear Impacts of Built Environment on Urban Vitality from a Spatiotemporal Perspective at the Block Scale in Chongqing
by Jiayu Yang and Enxu Wang
ISPRS Int. J. Geo-Inf. 2025, 14(6), 225; https://doi.org/10.3390/ijgi14060225 - 7 Jun 2025
Viewed by 631
Abstract
Examining the relationship between built environment (BE) and urban vitality (UV) is beneficial for promoting urban planning, as it deepens the understanding of how spatial design shapes urban life and activity patterns. However, the nonlinear effects of BE on UV from a spatiotemporal [...] Read more.
Examining the relationship between built environment (BE) and urban vitality (UV) is beneficial for promoting urban planning, as it deepens the understanding of how spatial design shapes urban life and activity patterns. However, the nonlinear effects of BE on UV from a spatiotemporal perspective have not been fully explored. In this study, the central urban area of Chongqing at the block scale is selected as a research case. The Gradient Boosting Decision Tree with SHapley Additive exPlanations (GBDT-SHAP) model is used to examine the nonlinear impacts of BE on UV. The results show the following: (1) The BE has a stronger overall impact on UV during holidays. Road intersection density (RID) has the greatest impact on UV on weekdays and holidays, building density (BD) has the greatest impact on weekend mornings, cultural and leisure accessibility (CLA) has the greatest impact on weekend afternoons, and commercial accessibility (CA) has the most significant impact on weekend evenings; (2) the impacts of the BE on UV exhibit significant nonlinear characteristics, with BD and park and square accessibility (PSA) showing a first increasing and then inhibiting effect on UV; lower CA, CLA, and MSA have inhibitory effects on UV, with higher normalized difference vegetation index (NDVI) values similarly demonstrating such effects; building height (BH), bus stop density (BSD), road network density (RD), and RID have enhancing effects on UV; functional mix degree (FMD) and water proximity index (WPI) show different trends in different time periods; (3) there are significant interactive effects among BE such as BD and BH, CA; RD and WPI, MSA; FMD and BH, PSA; PSA and CLA. A comprehensive understanding of these interactive relationships is crucial for optimizing the BE to enhance UV. This study provides a theoretical basis for urban planners to develop more effective, time-sensitive strategies. Future research should explore these nonlinear and interactive effects across different cities and scales to further generalize the findings. Full article
Show Figures

Figure 1

13 pages, 3477 KiB  
Article
Cache-Based Design of Spaceborne Solid-State Storage Systems
by Chang Liu, Junshe An, Qiang Yan and Zhenxing Dong
Electronics 2025, 14(10), 2041; https://doi.org/10.3390/electronics14102041 - 17 May 2025
Viewed by 338
Abstract
To address the current limitations of spaceborne solid-state storage systems that cannot effectively support the parallel storage of multiple high-speed data streams, the throughput bottleneck of NAND FLASH-based solid-state storage systems was analyzed in relation to the high-speed data input requirements of payloads. [...] Read more.
To address the current limitations of spaceborne solid-state storage systems that cannot effectively support the parallel storage of multiple high-speed data streams, the throughput bottleneck of NAND FLASH-based solid-state storage systems was analyzed in relation to the high-speed data input requirements of payloads. A four-stage pipeline operation and bus parallel expansion scheme was proposed to enhance the throughput. Additionally, to support the parallel storage of multichannel data and continuity of pipeline loading, the shortcomings of existing caching schemes were analyzed, leading to the design of a storage system based on Synchronous Dynamic Random Access Memory (SDRAM). Model simulations indicate that, under extreme conditions, the proposed scheme could continuously receive and cache multiple high-speed file data streams into the SDRAM. File data were dynamically written into FLASH based on the priority and status of each partition cache autonomously, without overflow during caching. The system eventually entered a regular dynamic balance scheduling state to achieve parallel reception, caching, and autonomous scheduling of storage for multiple high-speed payload data streams. The data throughput rate of the storage system can reach 4 Gbps, thus satisfying future requirements for multichannel high-speed payload data storage in spaceborne solid-state storage systems. Full article
(This article belongs to the Special Issue Parallel and Distributed Computing for Emerging Applications)
Show Figures

Figure 1

Back to TopTop