Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = buried arc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6867 KiB  
Article
A Closed-Form Solution for Water Inflow into Deeply Buried Arched Tunnels
by Yunbo Wei, Qiang Chang and Kexun Zheng
Water 2025, 17(14), 2121; https://doi.org/10.3390/w17142121 - 16 Jul 2025
Viewed by 211
Abstract
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To [...] Read more.
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To address this gap, this study developed a closed-form analytical solution for water inflow into a deeply buried arched tunnel using the conformal mapping method. When the tunnel circumference degenerates to a circle, the analytical solution degenerates to the widely used Goodman’s equation. The solution also showed excellent agreement with numerical simulations carried out using COMSOL. Based on the analytical solution, the impact of various factors on water inflow Q was further discussed: (1) Q decreases as the boundary distance D increases. And the boundary inclination angle (απ/2) significantly affects Q only when the boundary is close to the tunnel (D<20); (2) Q increases quickly with the upper arc radius r1, while it shows minimal variation with the change in the lower arc radius r2. The findings provide a theoretical foundation for characterizing water inflow into arched tunnels, thereby supporting improved tunnel planning and grouting system design. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

22 pages, 14191 KiB  
Article
The Technological, Economic, and Strength Aspects of High-Frequency Buried Arc Welding Using the GMAW Rapid HF Process
by Krzysztof Kudła, Krzysztof Makles and Józef Iwaszko
Materials 2025, 18(7), 1490; https://doi.org/10.3390/ma18071490 - 26 Mar 2025
Viewed by 388
Abstract
One of the prospective methods of robotic welding with a consumable electrode in shield gas metal arc welding is the GMAW Rapid HF process (GRHF, HF-high frequency), in which welded joints with deep penetration welds are obtained thanks to the specially programmed welding [...] Read more.
One of the prospective methods of robotic welding with a consumable electrode in shield gas metal arc welding is the GMAW Rapid HF process (GRHF, HF-high frequency), in which welded joints with deep penetration welds are obtained thanks to the specially programmed welding characteristics of the arc. A pulsed frequency equalized to 5000 Hz was used to achieve consumable electrode arc stabilization and improve penetration. This work consists of two main sections, including the research and analysis of wire electrode melting and weld pool formation in the innovative GRHF process and its influences on joint strength and the economic advantages of welding. As a result of our research and strength tests, as well as an image analysis of phenomena occurring in the welding arc and weld pool, assumptions were developed about the use of the GRHF process, which is characterized by deep penetration welds without welding imperfections that reduce the quality of the welded joints and their strength. Welding conditions and parameters leading to welded joints characterized by high relative strength related to the weight of the used filler material were proposed. As a result of our research, it was found that the use of welding processes with deep penetration leads to material savings related to the reduced consumption of filler materials while maintaining the required high strength of welded joints. Savings of filler materials reaching 80% were achieved compared with hitherto used methods. At the same time, the maximum load-carrying capacity of welding joints was maintained. Full article
(This article belongs to the Special Issue Advances in the Welding of Materials)
Show Figures

Figure 1

14 pages, 3354 KiB  
Article
Failure Mode of Deep-Buried Rectangular Chamber and Upper Bound Solution of Surrounding Rock Pressure
by Daobing Zhang, Linhai Zeng, Zhilin Lv, Xiaochuan Yu, Chang Liu, Anming Jiang, Xianyong Jiang, Qi Li and Yongxiang Yang
Mathematics 2025, 13(1), 69; https://doi.org/10.3390/math13010069 - 28 Dec 2024
Cited by 1 | Viewed by 704
Abstract
In order to obtain more reasonable failure modes and more precise surrounding rock pressures of deep-buried underground rectangular chambers, the failure mode of a “wedge-shaped collapse body + arc rotator + logarithmic spiral rotator” deep-buried chamber is constructed based on the analysis of [...] Read more.
In order to obtain more reasonable failure modes and more precise surrounding rock pressures of deep-buried underground rectangular chambers, the failure mode of a “wedge-shaped collapse body + arc rotator + logarithmic spiral rotator” deep-buried chamber is constructed based on the analysis of existing failure mode. The upper bound solution of the surrounding rock pressure is derived based on limit analysis. The validity of the proposed failure model and the reliability of the limit analysis approach are demonstrated through numerical simulations, theoretical verification, and comparisons with engineering practices. The influence of various parameters on surrounding rock pressure is analyzed. The results show that each parameter has different influence on the surrounding rock pressure. The surrounding rock pressure q and e increases linearly with the increase in rock gravity γ and chamber size, and decreases with the increase in cohesion c and internal friction angle φ. The surrounding rock pressure q decreases with the increase in lateral pressure coefficient K, while surrounding rock pressure e increases with the increase in lateral pressure coefficient K. Full article
Show Figures

Figure 1

15 pages, 8400 KiB  
Article
Performance Evaluation of Biomimetic-Designed Rotary Blades for Straw Incorporation in an Intensive Tillage System
by Xinxin Chen, Gaoming Xu, Xiaoyu Zhang, Weichao Tan, Qishuo Ding and Ahmad Ali Tagar
Agriculture 2024, 14(8), 1426; https://doi.org/10.3390/agriculture14081426 - 22 Aug 2024
Cited by 3 | Viewed by 1107
Abstract
A rotary tiller is a common tillage tool for straw incorporation in an intensive tillage system. However, rotary tillage for seedbed preparation in dense-straw mulching conditions experiences high torque and poor performance of straw incorporation. Nowadays, a great deal of studies have been [...] Read more.
A rotary tiller is a common tillage tool for straw incorporation in an intensive tillage system. However, rotary tillage for seedbed preparation in dense-straw mulching conditions experiences high torque and poor performance of straw incorporation. Nowadays, a great deal of studies have been focused on mimicking the morphological features of low-resistance animals to improve the performance of soil-engaging tools. Accordingly, the present study investigated the performance of three C-type rotary blades (i.e., conventional, serrated, and biomimetic) under three straw lengths (50, 100, and 150 mm) for incorporation of straw into the field using an in situ field tillage testing bench. Compared to the conventional and serrated blades, the biomimetic blade had lower straw displacement (decreased by an average of 50 mm and 7 mm, respectively), higher straw burying rate (increased by an average of 5.2% and 7.8%, respectively), better straw distribution (decreased by an average of 9.1% and 10.4% on the coefficient of variation, respectively), as well as lower torque and power (decreased by an average of 3.3 N·m and 4.4 N·m, respectively) under all straw lengths. The improved performance of the biomimetic blade could be attributed to the fact that its typical teeth configuration was designed by mimicking the smooth arc of the mole-rat’s claw. These results demonstrated that the biomimetic-designed blade could be a better option for incorporating dense straw into the field conditions. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

40 pages, 31280 KiB  
Article
Integrated Shallow Geophysical Surveys at Two Caddo Period Archaeological Sites within the Limits of a Water Reservoir in Northeastern Texas, USA
by Hector R. Hinojosa-Prieto, Allen M. Rutherford and Jesse D. Brown
Heritage 2024, 7(8), 4045-4084; https://doi.org/10.3390/heritage7080191 - 31 Jul 2024
Cited by 1 | Viewed by 1922
Abstract
The newly constructed Bois d’Arc Lake Reservoir in Fannin County, Texas, USA, inevitably flooded a large ground surface area (67.34 km2) when the reservoir began impounding water in April 2021. Inside this (now) flooded area, land-based archaeological data recovery investigations discovered [...] Read more.
The newly constructed Bois d’Arc Lake Reservoir in Fannin County, Texas, USA, inevitably flooded a large ground surface area (67.34 km2) when the reservoir began impounding water in April 2021. Inside this (now) flooded area, land-based archaeological data recovery investigations discovered and documented several archaeological sites, now registered in the state of Texas; though, only two neighboring sites, namely, 41FN178 and 41FN244, are examined here. The first phase of archaeological testing at these sites included shovel testing, test unit excavations, and geoarchaeological trenching that yielded archaeological artifacts suggesting that Middle Caddo Indian peoples (AD 1200–1400) might have occupied this landscape. As the sites were recognized before the reservoir’s impoundment phase, this merited a non-invasive, non-destructive, high-resolution near-surface geophysical study to map strategic areas within sites 41FN178 and 41FN244 that might yield potential shallow targets of archaeological context. The adopted geophysical survey comprised 3D direct current electrical resistivity imaging (ERI) and land horizontal magnetic gradiometry (HMG), each mapping a total surface area of 2133 and 15,640 m2, respectively. The combination of 3D ERI and land HMG surveys was instrumental in rapidly mapping the horizontal and vertical extent of shallowly buried anomalies within a large area prior to the completion of the dam and the beginning of water impoundment. Based on the geophysical insights, the outline of several Caddo houses with functional internal and external features (e.g., burnt cooking surfaces, storage pits, refuse pits, fired soil, ditches, a dump site, and a compound fence) are thought to exist within the uppermost 2 m of the Quaternary stratigraphy at both sites. At site 41FN244, 3D ERI found numerous resistive anomalies surrounding a conductive anomaly, collectively interpreted as a group of post-holes surrounding the remains of a Caddo house’s inner clay floor. It also found a cluster of several resistive anomalies interpreted as midden or middens. The HMG survey carried across areas from which archaeological test units also yielded positive findings, at sites 41FN178 and 41FN244, identified numerous scattered monopolar and dipolar anomalies interpreted as post-molds of Caddo houses, compound enclosures or fences, and adjacent middens. Archaeological excavations guided by the geophysical results yielded significant cultural material and post-mold features at site 244, which validate the geophysical interpretation in a preliminary context. Additionally, several dispersed magnetic anomalies are thought to be shallowly buried hearths, burn cooking surfaces, storage pits, and ditches. The mapped magnetic anomalies agree with the location and distribution of previously found archaeological artifacts and the extent of resistive and conductive resistivity anomalies. Follow-up archaeological excavations of these geophysical anomalies have preliminarily confirmed interpretations. Full article
(This article belongs to the Special Issue Unveiling the Past: Multidisciplinary Investigations in Archaeology)
Show Figures

Figure 1

15 pages, 2248 KiB  
Review
Capturing Unstable Metallofullerenes
by Fupin Liu and Alexey A. Popov
Inorganics 2024, 12(2), 48; https://doi.org/10.3390/inorganics12020048 - 31 Jan 2024
Cited by 3 | Viewed by 2320
Abstract
Metallofullerenes are interesting molecules with unique structures and physicochemical properties. After they are formed in the arc-discharge process, they are first buried in the carbon soot, which requires solvent extraction to fish them out, normally followed by HPLC separation. In this minireview, we [...] Read more.
Metallofullerenes are interesting molecules with unique structures and physicochemical properties. After they are formed in the arc-discharge process, they are first buried in the carbon soot, which requires solvent extraction to fish them out, normally followed by HPLC separation. In this minireview, we summarize the main procedures developed to obtain pure metallofullerenes, including well-established extraction with conventional fullerene solvents followed by HPLC (procedure (I) as well as several methods developed for isolation and purification of unstable fullerenes insoluble in conventional fullerene solvents, including chemical modification followed by dissolution (II.1), chemical functionalization during extraction followed by HPLC (II.2), and chemical functionalization of ionic EMFs after redox-extraction followed by HPLC (procedure II.3). The main focus here is on procedure II.3, for which the current status and future perspective are discussed. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Graphical abstract

17 pages, 5416 KiB  
Article
Heat-Flow Coupling Law for Freezing a Pipe Reinforcement with Varying Curvatures
by Kun Yang, Jun Hu and Tao Wang
Appl. Sci. 2023, 13(19), 10932; https://doi.org/10.3390/app131910932 - 2 Oct 2023
Cited by 1 | Viewed by 1580
Abstract
Using the temperature and seepage field-coupling module within COMSOL Multiphysics software, we examined freezing behavior and its evolving patterns in curved underground freezing pipes. This study employed transient states, with the Darcy’s law and porous-media heat-transfer options activated in the Physical Field Interface [...] Read more.
Using the temperature and seepage field-coupling module within COMSOL Multiphysics software, we examined freezing behavior and its evolving patterns in curved underground freezing pipes. This study employed transient states, with the Darcy’s law and porous-media heat-transfer options activated in the Physical Field Interface of the Physical Field and Variable Selection column. The models were created to establish numerical models of freezing reinforcement for both single and multiple pipes with various curvatures. These models were designed to simulate the evolving temperature and seepage fields of soil under diverse freezing conditions. Subsequently, this research utilized the models to simulate the freezing and consolidation conditions of a shallowly buried tunnel within the context of shallow tunnel conditions. The study reveals that after freezing a single pipe using water flow, the change in thickness of the frozen wall in curved pipes is notably smaller than that in straight pipes. This difference is particularly pronounced in the upstream section. Specifically, at a distance of −2000 mm from the main surface, the change in thickness of the frozen wall in straight pipes exceeds that in s = 7 curved pipes by approximately 350 mm. The smaller the long arc ratio s, the greater the arc of the freezing tube and the better the water-blocking effect. In the multi-pipe freezing model, the s = 7 curved pipes exhibit a frozen-wall thickness approximately 120 mm greater than that of straight pipes at a distance of −2000 mm from the main surface. Under the condition of a shallow buried concealed excavation with surging water, a pipe with a long arc ratio s = 7 arc freezing at 46 d attains a permafrost curtain thickness that is equivalent to that achieved by the straight pipe freezing at 58 d. This reduction in thickness shortens the working period by 12 days, resulting in a more efficient process. The successful application of the freezing method in the water-rich aquifer is expected to be a valuable reference for similar projects in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Earth Sciences and Geography in China)
Show Figures

Figure 1

16 pages, 3602 KiB  
Article
Multiple-Level Tectonic Control of Coalbed Methane Occurrence in the Huaibei Coalfield of Anhui Province, China
by Zhigen Zhao and Sheng Xue
Energies 2022, 15(14), 4977; https://doi.org/10.3390/en15144977 - 7 Jul 2022
Cited by 5 | Viewed by 1796
Abstract
The Huaibei coalfield is an important coal base and one of the hot spots of coalbed methane development in China. Therefore, a detailed understanding of gas occurrence in the Huaibei coalfield is of great significance. This paper analyzes the gas occurrence from the [...] Read more.
The Huaibei coalfield is an important coal base and one of the hot spots of coalbed methane development in China. Therefore, a detailed understanding of gas occurrence in the Huaibei coalfield is of great significance. This paper analyzes the gas occurrence from the perspective of multiple-level tectonic control, i.e., the regional tectonic level, the coalfield tectonic level, the mining area tectonic level, and the coal mine tectonic level. This study deduces that gas occurrence in the Huaibei coalfield is characterized by multiple-level tectonic control. At the regional level, the Huaibei coalfield is located in the southeast margin of the North China plate, affected by the tectonic evolution of the North China plate and by the evolution of the Dabie–Tanlu–Sulu orogenic belt. Therefore, the regional geological tectonic is complex, leading to the high gas content and serious gas hazard. At the coalfield level, gas occurrence in the Huaibei coalfield is controlled by east–west faults, NNE faults, and the Xuzhou–Suzhou arc nappe tectonic, which results in the highest gas occurrence in the Suxian mining area, followed by the Linhuan mining area and the Suixiao mining area, while the lowest amount of gas occurs in the Guoyang mining area. At the mining area level, considering the Suxian mining area as an example, the gas occurrence is controlled by the distance from the Tancheng–Lujiang fault zone and the intensity of tectonic compression, i.e., coal mine gas in the east is the highest, followed by coal mines in the south, while coal mine gas in the west is the lowest. At the coal mine level, gas occurrence is controlled by the buried depth of the coal seam, the tensional normal fault, magmatic activity, and uplift and erosion of strata. Finally, the findings of this study may help in the prevention of gas hazard and the exploration and development of coalbed methane in the Huaibei coalfield and other coalfields of similar geological characteristics. Full article
(This article belongs to the Special Issue Advances in Unconventional Oil and Gas)
Show Figures

Figure 1

14 pages, 7261 KiB  
Article
Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure
by Mato Perić, Ivica Garašić, Nenad Gubeljak, Zdenko Tonković, Sandro Nižetić and Krešimir Osman
Metals 2022, 12(7), 1102; https://doi.org/10.3390/met12071102 - 28 Jun 2022
Cited by 16 | Viewed by 3442
Abstract
In this study, a numerical simulation of a single pass welding of two thick-walled pipes with the buried-arc method was performed in order to determine the residual stresses caused by welding. The numerical simulation procedure in the thermal analysis was performed by the [...] Read more.
In this study, a numerical simulation of a single pass welding of two thick-walled pipes with the buried-arc method was performed in order to determine the residual stresses caused by welding. The numerical simulation procedure in the thermal analysis was performed by the element birth and death method while the structural analysis was performed simultaneously, without the application of the element birth and death technique in order to reduce the duration of the numerical simulation. The simulation results were validated by experimental residual stress measurements on the outside surfaces of the welded model using the X-ray diffraction technique. A good agreement between the results of the numerical simulation and experimental measurements was confirmed. Full article
(This article belongs to the Special Issue Numerical Simulation of Metals Welding Process)
Show Figures

Figure 1

16 pages, 3937 KiB  
Article
Numerical Calculation of Stress Intensity Factors for Semi-Elliptical Surface Cracks in Buried-Arc Welded Thick Plates
by Krešimir Jukić, Mato Perić, Zdenko Tonković, Ivica Skozrit and Tomislav Jarak
Metals 2021, 11(11), 1809; https://doi.org/10.3390/met11111809 - 10 Nov 2021
Cited by 7 | Viewed by 2953
Abstract
The present study deals with the influence of residual stresses induced by the buried-arc welding on the crack behavior in two butt-welded 20 mm thick plates. The following steps were undertaken: the thermo-mechanical simulation of the welding process, the mapping of stress results [...] Read more.
The present study deals with the influence of residual stresses induced by the buried-arc welding on the crack behavior in two butt-welded 20 mm thick plates. The following steps were undertaken: the thermo-mechanical simulation of the welding process, the mapping of stress results from a finite element (FE) mesh used for the welding simulation to a new FE mesh with a crack, the stress balancing, and the stress intensity factor (SIF) calculation. The FE and weight function (WF) methods were used to investigate the SIFs at the deepest point of semi-elliptical surface cracks with different geometries, orientations, and positions in relation to the weld line. In the case of cracks perpendicular to the weld line, the FE and WF results showed a good agreement for smaller cracks, while deviation between the results increases with the size of the crack. Considering the SIF solutions for the cracks of arbitrary orientation, it was observed that for some cases, the SIF value for mode III of crack opening can be of significant influence. Full article
(This article belongs to the Special Issue Numerical Simulation of Metals Welding Process)
Show Figures

Figure 1

23 pages, 7483 KiB  
Article
Sediment-Peridotite Reaction Controls Fore-Arc Metasomatism and Arc Magma Geochemical Signatures
by Michael W. Förster, Yannick Bussweiler, Dejan Prelević, Nathan R. Daczko, Stephan Buhre, Regina Mertz-Kraus and Stephen F. Foley
Geosciences 2021, 11(9), 372; https://doi.org/10.3390/geosciences11090372 - 3 Sep 2021
Cited by 16 | Viewed by 4511
Abstract
Subduction of oceanic crust buries an average thickness of 300–500 m of sediment that eventually dehydrates or partially melts. Progressive release of fluid/melt metasomatizes the fore-arc mantle, forming serpentinite at low temperatures and phlogopite-bearing pyroxenite where slab surface reaches 700–900 °C. This is [...] Read more.
Subduction of oceanic crust buries an average thickness of 300–500 m of sediment that eventually dehydrates or partially melts. Progressive release of fluid/melt metasomatizes the fore-arc mantle, forming serpentinite at low temperatures and phlogopite-bearing pyroxenite where slab surface reaches 700–900 °C. This is sufficiently high to partially melt subducted sediments before they approach the depths where arc magmas are formed. Here, we present experiments on reactions between melts of subducted sediments and peridotite at 2–6 GPa/750–1100 °C, which correspond to the surface of a subducting slab. The reaction of volatile-bearing partial melts derived from sediments with depleted peridotite leads to separation of elements and a layered arrangement of metasomatic phases, with layers consisting of orthopyroxene, mica-pyroxenite, and clinopyroxenite. The selective incorporation of elements in these metasomatic layers closely resembles chemical patterns found in K-rich magmas. Trace elements were imaged using LA-ICP-TOFMS, which is applied here to investigate the distribution of trace elements within the metasomatic layers. Experiments of different duration enabled estimates of the growth of the metasomatic front, which ranges from 1–5 m/ky. These experiments explain the low contents of high-field strength elements in arc magmas as being due to their loss during melting of sedimentary materials in the fore-arc. Full article
Show Figures

Figure 1

21 pages, 12179 KiB  
Article
3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula
by Mónica Arias, Pablo Nuñez, Daniel Arias, Pablo Gumiel, Cesar Castañón, Jorge Fuertes-Blanco and Agustin Martin-Izard
Minerals 2021, 11(1), 85; https://doi.org/10.3390/min11010085 - 16 Jan 2021
Cited by 10 | Viewed by 4548
Abstract
The Touro volcanogenic massive sulfide (VMS) deposit is located in the NW of the Iberian Variscan massif in the Galicia-Trás-os-Montes Zone, an amalgamation of several allochthonous terrains. The Órdenes complex is the most extensive of the allochthone complexes, and amphibolites and paragneisses host [...] Read more.
The Touro volcanogenic massive sulfide (VMS) deposit is located in the NW of the Iberian Variscan massif in the Galicia-Trás-os-Montes Zone, an amalgamation of several allochthonous terrains. The Órdenes complex is the most extensive of the allochthone complexes, and amphibolites and paragneisses host the deposit, characterized as being massive or semimassive (stringers) sulfides, mostly made up of pyrrhotite and chalcopyrite. The total resources are 103 Mt, containing 0.41% copper. A 3D model of the different orebodies and host rocks was generated using data from 1090 drill core logs. The model revealed that the structure of the area is a N–S-trending antiform. The orebodies crop out in the limbs and in the hinge zone. The mineralized structures are mostly tabular, up to 100 m in thickness and subhorizontal. Based on the petrography, geochemistry and the 3D model, the Touro deposit is classified as a VMS of the mafic-siliciclastic type formed in an Ordovician back-arc setting, which was buried and metamorphosed in Middle Devonian. Full article
(This article belongs to the Special Issue 3D-Modelling of Crustal Structures and Mineral Deposit Systems)
Show Figures

Figure 1

11 pages, 2514 KiB  
Article
Numerical Simulation and Experimental Investigation of Temperature and Residual Stress Distributions in a Circular Patch Welded Structure
by Mato Perić, Sandro Nižetić, Zdenko Tonković, Ivica Garašić, Ivan Horvat and Ivanka Boras
Energies 2020, 13(20), 5423; https://doi.org/10.3390/en13205423 - 17 Oct 2020
Cited by 12 | Viewed by 3095
Abstract
In this study, we performed a numerical simulation and experimental measurements on a steel circular patch welded structure to investigate the temperature and residual stress field distributions caused by the application of buried-arc welding technology. The temperature histories during the welding and subsequent [...] Read more.
In this study, we performed a numerical simulation and experimental measurements on a steel circular patch welded structure to investigate the temperature and residual stress field distributions caused by the application of buried-arc welding technology. The temperature histories during the welding and subsequent cooling process were recorded for two locations, with the thermocouples mounted inside the plate close to the weld bead. On the upper surface of the welded model, the temperature-time changes during the cooling process were monitored using an infrared camera. The numerically calculated temperature values correlated well with the experimentally measured ones, while the maximum deviation of the measured and calculated temperatures was within 9%. Based on the numerical result analysis regarding circumferential and radial stresses after the completion of the welding process, it is concluded that both stresses are primarily tensile within the circular disk. Outside the disk, the circumferential stresses turn from tensile to compressive, while on the other hand the radial stresses disappear towards the ends of the plate. Full article
(This article belongs to the Special Issue Numerical Modeling and Machine Learning Techniques)
Show Figures

Figure 1

22 pages, 24007 KiB  
Article
Research on Overburden Movement Characteristics of Large Mining Height Working Face in Shallow Buried Thin Bedrock
by Qingxiang Huang and Yanpeng He
Energies 2019, 12(21), 4208; https://doi.org/10.3390/en12214208 - 4 Nov 2019
Cited by 24 | Viewed by 3309
Abstract
The overburden movement of the large mining height working face of shallow buried thin bedrock (SBTB) is a complex engineering problem with “time-space-intension”, which is of great significance to realize efficient and safe mining in the northern Shaanxi mining area. Based on the [...] Read more.
The overburden movement of the large mining height working face of shallow buried thin bedrock (SBTB) is a complex engineering problem with “time-space-intension”, which is of great significance to realize efficient and safe mining in the northern Shaanxi mining area. Based on the research object of No. 22201 working face in Zhangjiamao Coal Mine, the roof structure characteristics of large mining height working face in SBTB are researched by field drilling measurement, laboratory test, physical and numerical simulation. The results show that: (1) Based on the measured data of the drillholes, it is concluded that under the mining conditions of SBTB with large mining height, the roof movement is ahead of the weighting of the working face, and the working resistance has a significant time effect. The advanced movement distance is about 20 m, which can be used as an early warning index of the weighting. The lag movement distance in the roof with horizon of 30 m is two periodic weighting intervals, which are about 26 m. (2) The first weighting interval of the working face is 32 m. The roof first break has obvious step sinking phenomenon, and the measured surface appears at a position 45 m away from the transport slot. It is statistically concluded that the periodic weighting interval is 9.5~16.5 m, the average weighting interval is 13 m, which is equivalent to the periodic dynamic crack spacing of the surface. (3) The results of field measurement and physical simulation show that the breaking angle of the roof of the No. 22201 large mining height is about 66°, and the periodic stepping distance of the T-junction suspension area is 6~8m. Along the strike of the working face, the roof breaking is mainly arc arched. The research results ensure the safe and green mining of shallow coal seam. Full article
Show Figures

Figure 1

28 pages, 11557 KiB  
Article
Thermal Effects of Magmatism on Surrounding Sediments and Petroleum Systems in the Northern Offshore Taranaki Basin, New Zealand
by Anna Kutovaya, Karsten F. Kroeger, Hannu Seebeck, Stefan Back and Ralf Littke
Geosciences 2019, 9(7), 288; https://doi.org/10.3390/geosciences9070288 - 29 Jun 2019
Cited by 20 | Viewed by 9131
Abstract
In the past two decades, numerical forward modeling of petroleum systems has been extensively used in exploration geology. However, modeling of petroleum systems influenced by magmatic activity has not been a common practice, because it is often associated with additional uncertainties and thus [...] Read more.
In the past two decades, numerical forward modeling of petroleum systems has been extensively used in exploration geology. However, modeling of petroleum systems influenced by magmatic activity has not been a common practice, because it is often associated with additional uncertainties and thus is a high risk associated with exploration. Subsurface processes associated with volcanic activity extensively influence all the elements of petroleum systems and may have positive and negative effects on hydrocarbon formation and accumulation. This study integrates 3D seismic data, geochemical and well data to build detailed 1D and 3D models of the Kora Volcano—a buried Miocene arc volcano in the northern Taranaki Basin, New Zealand. It examines the impact of magmatism on the source rock maturation and burial history in the northern Taranaki Basin. The Kora field contains a sub-commercial oil accumulation in volcanoclastic rocks that has been encountered by a well drilled on the flank of the volcano. By comparing the results of distinct models, we concluded that magmatic activity had a local effect on the thermal regime in the study area and resulted in rapid thermal maturation of the surrounding organic matter-rich sediments. Scenarios of the magmatic activity age (18, 11 and 8 Ma) show that the re-equilibration of the temperature after intrusion takes longer (up to 5 Ma) in the scenarios with a younger emplacement age (8 Ma) due to an added insulation effect of the thicker overburden. Results of the modeling also suggest that most hydrocarbons expelled from the source rock during this magmatic event escaped to the surface due to the absence of a proper seal rock at that time. Full article
(This article belongs to the Special Issue Geostatistical Applications in Petroleum Geology)
Show Figures

Figure 1

Back to TopTop