Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = burial space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 - 1 Aug 2025
Viewed by 140
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 133
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 17095 KiB  
Article
Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
by Huaiyu Xue, Jianping Qian and Wentan Xu
Minerals 2025, 15(7), 717; https://doi.org/10.3390/min15070717 - 8 Jul 2025
Viewed by 320
Abstract
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes [...] Read more.
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes its genetic process. The research is based on the measured geological section and conducts high-precision analysis and testing, encompassing major and trace elements, rare earth elements, stable carbon and oxygen isotopes, strontium isotopes, crystal structure parameters, and micro-area elements of dolomite. Analysis of V/(V + Ni), Th/U, Sr/Ba, Mn/Sr, (Eu/Eu*) N, (Ce/Ce*) N, and the dolomite crystal parameters indicates that the formation of dolomite is related to evaporation. Furthermore, REE and micro-area characteristics of dolomite, as well as the significant negative deviation of δ13C and δ18O, in conjunction with 87Sr/86Sr deviating from the standard values of Ordovician seawater, suggest an origin of the dolomite in this formation with mixed-water dolomitization and burial dolomitization. A comprehensive assessment of dolomite formation suggests three distinct stages: early-stage evaporation dolomitization, subsequent mixed-water dolomitization, and later-stage burial dolomitization. The research further corroborated that dolomite formation is a complex outcome resulting from the interplay of various geological processes over space and time. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 5474 KiB  
Article
Structure and Fractal Characteristics of Organic Matter Pores in Wufeng–Lower Longmaxi Formations in Southern Sichuan Basin, China
by Quanzhong Guan, Dazhong Dong, Bin Deng, Cheng Chen, Chongda Li, Kun Jiao, Yuehao Ye, Haoran Liang and Huiwen Yue
Fractal Fract. 2025, 9(7), 410; https://doi.org/10.3390/fractalfract9070410 - 25 Jun 2025
Viewed by 611
Abstract
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively [...] Read more.
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively characterize the structure and complexity of organic matter pores in the Wufeng–lower Longmaxi Formations (WLLFs). The WLLFs exhibit a high organic matter content, averaging 3.20%. Organic matter pores are typically well-developed, predominantly observed within organic matter clusters, organic matter–clay mineral complexes, and the internal organic matter of pyrite framboid. The morphology of these pores is generally elliptical and spindle-shaped, with the primary pore diameter displaying a bimodal distribution at 10~40 nm and 100~160 nm, potentially influenced by the observational limit of scanning electron microscopy. Shales from greater burial depths within the same gas well contain more organic matter pores; however, the development of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. Fractal dimension values can be utilized to characterize the complexity of organic matter pores, with organic matter macropores (D>50) being more complex than organic matter mesopores (D2–50), which in turn are more complex than organic matter micropores (D<2). The development of macropores and mesopores is a key factor in the heterogeneity of organic matter pores. The complexity of organic matter pores in the same well increases gradually with the burial depth of the shale, and the complexity of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. The structure and fractal characteristics of organic matter pores in shale are primarily controlled by components, diagenesis, tectonism, etc. The lower Longmaxi shale exhibit a high biogenic quartz content and robust hydrocarbon generation from organic matter. This composition effectively shields organic matter pores from multi-directional extrusion, leading to the formation of macropores and mesopores without specific orientation. High-quality shale sections (one and two sublayers) have relatively high fractal dimension D2–50 and D>50 values of organic matter pores and gas content. Consequently, the quality parameters of shale and fractal dimension characteristics can be comprehensively evaluated to identify high-quality shale sections. Full article
Show Figures

Figure 1

17 pages, 23135 KiB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 258
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

36 pages, 15003 KiB  
Article
Underground Space and Climate Synergy Wind–Heat Environmental Response in Cold Zones
by Lufeng Nie, Heng Liu, Jiuxin Wang, Shuai Tong and Xiang Ji
Buildings 2025, 15(13), 2151; https://doi.org/10.3390/buildings15132151 - 20 Jun 2025
Viewed by 456
Abstract
Underground spaces offer significant potential for sustainable urban development, particularly in cold climate regions where surface thermal fluctuations are extreme. However, optimizing the wind–heat environmental performance of such spaces remains insufficiently explored, especially in relation to spatial morphology. This study addresses this gap [...] Read more.
Underground spaces offer significant potential for sustainable urban development, particularly in cold climate regions where surface thermal fluctuations are extreme. However, optimizing the wind–heat environmental performance of such spaces remains insufficiently explored, especially in relation to spatial morphology. This study addresses this gap by investigating how underground spatial configurations influence thermal comfort and ventilation efficiency. Six representative spatial prototypes—fully enclosed, single-side open, double-side open, central atrium, wind tower, and earth kiln—were constructed based on common underground design typologies. Computational fluid dynamics (CFD) simulations were conducted to evaluate airflow patterns and thermal responses under winter and summer conditions, incorporating relevant geotechnical properties into the boundary setup. The results indicate that deeper burial depths enhance thermal stability, while central atrium and wind tower prototypes offer the most balanced performance in both ventilation and heat regulation. These findings provide valuable design guidance for climate-responsive underground developments and contribute to the interdisciplinary integration of building physics, spatial design, and geotechnical engineering. Full article
Show Figures

Figure 1

22 pages, 4099 KiB  
Article
The Abrahamic Stand at Nabī Yaqin: The Conversion Process of Holy Place
by Amichay Schwartz
Religions 2025, 16(6), 791; https://doi.org/10.3390/rel16060791 - 18 Jun 2025
Viewed by 722
Abstract
The site of Nabi Yaqin preserves an ancient tradition of Abraham’s prayer over Sodom. The landscape that stretches from the ridge of Nabi Yaqin facing east to the Dead Sea and the Jordan River serves as the backdrop for the formation of this [...] Read more.
The site of Nabi Yaqin preserves an ancient tradition of Abraham’s prayer over Sodom. The landscape that stretches from the ridge of Nabi Yaqin facing east to the Dead Sea and the Jordan River serves as the backdrop for the formation of this tradition. In this paper, we will show that the tradition regarding Abraham’s prayer apparently began during the Byzantine period as indicated by the writings of Egeria and St. Jerome. Although the exact location they identify cannot be determined from the sources, it seems that the region of Bani Na’im and Nabi Yaqin should be regarded as one space connected to the story of the destruction of Sodom. During the Middle Ages under Muslim rule Nabi Yaqin area became associated with Abraham’s prayer and a hollow in the ground at that location was marked as the place of his prayer. At a later stage, towards the end of the 17th century, two footprints were added to that socket. During the 18th and 19th centuries, an additional pair of footprints was added, which marked Lot’s prayer outside the compound. In Bani Na’im the neighboring village the burial place of the prophet Lot was identified. In fact, both sites are extensions of the story of the destruction of Sodom, with the former associated with its beginning and the latter with its end. We proposed that the process leading to these identifications was influenced by a site overlooking Lot’s Sea and Lot’s Cave, and the site itself became the burial place of Lot and the prayer site of Abraham. Full article
Show Figures

Figure 1

21 pages, 16644 KiB  
Article
The Ancient miḥrāb of the Friday Mosque in Ronda (Malaga, Spain): Historical Evolution and Future Perspective
by María Marcos Cobaleda and Sergio Ramírez González
Arts 2025, 14(3), 63; https://doi.org/10.3390/arts14030063 - 30 May 2025
Viewed by 1054
Abstract
The aim of this article is to analyse the material remains of the ancient mirāb of the Friday Mosque in Ronda (Malaga, Spain), preserved in the present-day church of Santa María de la Encarnación la Mayor, and to propose preservation and [...] Read more.
The aim of this article is to analyse the material remains of the ancient mirāb of the Friday Mosque in Ronda (Malaga, Spain), preserved in the present-day church of Santa María de la Encarnación la Mayor, and to propose preservation and valorisation measures to bring these remains to light. After the Christian conquest of Ronda, the church of Santa María de la Encarnación la Mayor was built on the site of the former Friday Mosque. In the 16th century, an altarpiece featuring niches and wall paintings was built, covering the plasterworks of the ancient mirāb. The primitive altarpiece was replaced by a Baroque one in the 17th century (El Sagrario altarpiece). At the beginning of the 20th century, the remains of the ancient mirāb and the 16th-century altarpiece were discovered while preparing the space for burial sites. Since then, a section of the plasterworks was recovered, although part of them remains covered by the 17th-century altarpiece. In this article, we analyse in detail the remains of the Islamic plasterworks that covered the qibla wall and the ancient mirāb, and propose a series of preservation and valorisation measures aimed at restoring these remains, without damaging the 17th-century altarpiece. Full article
(This article belongs to the Special Issue Islamic Art and Architecture in Europe)
Show Figures

Figure 1

21 pages, 3041 KiB  
Article
Optimizing Subsurface Drainage Pipe Layout Parameters in Southern Xinjiang’s Saline–Alkali Soils: Impacts on Soil Salinity Dynamics and Oil Sunflower Growth Performance
by Guangning Wang, Han Guo, Qing Zhu, Dong An, Zhenliang Song and Liang Ma
Sustainability 2025, 17(11), 4797; https://doi.org/10.3390/su17114797 - 23 May 2025
Viewed by 481
Abstract
This study addresses secondary soil salinization driven by shallow groundwater in the Yanqi Basin of southern Xinjiang, focusing on subsurface drainage system (SDS) optimization for salt regulation and oil sunflower productivity improvement in severe saline–alkali soils. Through controlled field experiments conducted (May–October 2024), [...] Read more.
This study addresses secondary soil salinization driven by shallow groundwater in the Yanqi Basin of southern Xinjiang, focusing on subsurface drainage system (SDS) optimization for salt regulation and oil sunflower productivity improvement in severe saline–alkali soils. Through controlled field experiments conducted (May–October 2024), we evaluated five SDS configurations: control (CK, no drainage) and four drain spacing/depth combinations (20/40 m × 1.2/1.5 m). Comprehensive monitoring revealed distinct spatiotemporal patterns, with surface salt accumulation (0–20 cm: 18.59–32.94 g·kg−1) consistently exceeding subsurface levels (>20–200 cm: 6.79–17.69 g·kg−1). The A3 configuration (20 m spacing, 1.5 m depth) demonstrated optimal root zone desalination (0–60 cm: 14.118 g·kg−1), achieving 39.02% salinity reduction compared to CK (p < 0.01). Multivariate analysis revealed strong depth-dependent inverse correlations between groundwater level and soil salinity (R2 = 0.529–0.919), with burial depth exhibiting 1.7-fold greater regulatory influence than spacing parameters (p < 0.01). Crop performance followed salinity gradients (A3 > A1 > A4 > A2 > CK), showing significant yield improvements across all SDS treatments versus CK (p < 0.05). Multi-criteria optimization integrating TOPSIS modeling and genetic algorithms identified A3 as the Pareto-optimal solution. The optimized configuration (20 m spacing, 1.5 m depth) effectively stabilized aquifer dynamics, reduced topsoil salinization (0–60 cm), and enhanced crop adaptability in silt loam soils. This research establishes an engineering framework for sustainable saline–alkali soil remediation in arid basin agroecosystems, providing critical insights for water–soil management in similar ecoregions. Full article
Show Figures

Figure 1

24 pages, 4083 KiB  
Review
The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
by Yun Luo, Wei Liu, Hongxing Wang and Keyao Li
Energies 2025, 18(10), 2634; https://doi.org/10.3390/en18102634 - 20 May 2025
Viewed by 651
Abstract
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been [...] Read more.
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been proposed both currently and in the future, mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns, the storage media, such as gas, oil, compressed air and hydrogen, have been introduced respectively in terms of the current development and future implementation, with site-selection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m, while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness, and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes, including low-level nuclear waste and industrial waste, the applicable conditions, technical difficulties, and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally, but in China, policy and technical research require strengthening to promote its application. Furthermore, considering the recovery of salt mines and the development of salt industries, the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally. Full article
Show Figures

Figure 1

17 pages, 4187 KiB  
Article
Optimization of Subsurface Drainage Parameters in Saline–Alkali Soils to Improve Salt Leaching Efficiency in Farmland in Southern Xinjiang
by Han Guo, Guangning Wang, Zhenliang Song, Pengfei Xu, Xia Li and Liang Ma
Agronomy 2025, 15(5), 1222; https://doi.org/10.3390/agronomy15051222 - 17 May 2025
Viewed by 628
Abstract
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of [...] Read more.
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of varying subsurface drainage configurations—specifically, burial depths (1.0–1.5 m) and pipe spacings (20–40 m)—on drainage and salt removal efficiency in silty loam soils of southern Xinjiang, aiming to develop an optimized scheme balancing water conservation and desalination. Five treatments (A1–A5) were established to measure evaporation, drainage, and salt discharge during both spring and winter irrigation. These variables were analyzed using a water balance model and multifactorial ANOVA to quantify the interactive effects of drainage depth and spacing. The results indicated that treatment A5 (1.5 m depth, 20 m spacing) outperformed all the others in terms of both the drainage-to-irrigation ratio (Rd/i) and the drainage salt efficiency coefficient (DSEC), with a two-year average Rd/i of 32.35% across two spring and two winter irrigation events, and a mean DSEC of 3.28 kg·m−3. The 1.5 m burial depth significantly improved salt leaching efficiency by increasing the salt control volume and reducing capillary rise. The main effect of burial depth on both Rd/i and DSEC was highly significant (p < 0.01), whereas the effect of spacing was not statistically significant (p > 0.05). Although the limited experimental duration and the use of a single soil type may affect the generalizability of the findings, the recommended configuration (1.5 m burial depth, 20 m spacing) shows strong potential for broader application in silty loam regions of southern Xinjiang and provides technical support for subsurface drainage projects aimed at reclaiming saline soils in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

31 pages, 105996 KiB  
Article
Archaeological Analysis of the Newly Discovered Tomb with a Relief of a Couple at the Funerary Area of Porta Sarno in Pompeii
by Llorenç Alapont, Rachele Cava, Joaquin Alfonso Llorens, Juan José Ruiz Lopez, Ana Miguélez González, Pilar Mas Hurtuna, Tomas Hurtado Mullor, Victor Revilla, Antoni Puig Palerm, Silvia Alfayé Vila, Altea Gadea Matamoros, Esther Alba Pagan and Sophie Hay
Heritage 2025, 8(5), 174; https://doi.org/10.3390/heritage8050174 - 16 May 2025
Viewed by 1598
Abstract
In July 2024, the “Investigating the Archaeology of Death in Pompeii Research Project” carried out a scientific and methodical excavation of the areas outside two of the gates to the city of Pompeii. One of them is the funerary area of Porta Nola [...] Read more.
In July 2024, the “Investigating the Archaeology of Death in Pompeii Research Project” carried out a scientific and methodical excavation of the areas outside two of the gates to the city of Pompeii. One of them is the funerary area of Porta Nola (next to the tomb of Obellio Firmo) and the other is outside Porta Sarno area (east of the tomb of Marcus Venerius Secundius). The investigated funerary area to the east of Porta Sarno corresponds with the area excavated in 1998 for the construction of the double Circumvesuviana rails. The 1998 excavations recorded the presence of more than 50 cremation burial sites, marked by stelae (columelle) and a monument with an arch, which are delineated by a boundary wall. The tombs were initially dated to the Late Republican period. In order to carry out comprehensive studies of the funerary area uncovered in 1998, a four metre by four metre trench was stratigraphically excavated. This investigation allowed mapping of the area and the carrying out of archaeological analysis and bioarchaeological studies in order to answer the questions that guided our archaeological research, such as whether the funerary area was abandoned and, if so, when? What was the chronological succession, monumentality, and prestige of this funerary space? Was it a single family and private funerary enclosure, or was it an open public space? How were this funerary area and the spaces destined to preserve the memory of the deceased managed? How were the funerary and mortuary rituals and gestures articulated and what did they consist of? Our methodical excavation discovered a monumental tomb which allows us to answer many of the questions raised by our research. This extraordinary monument consists of a wide wall with several niches containing the cremated remains of the deceased built into its structure and which is crowned by a relief of a young couple. The symbolism of the carved accessories of the wife may identify her as a priestess of Ceres. Additionally, the quality of the carving in the sculptures and their archaic characteristics suggest a Republic period dating, which is uncommon in southern Italy. Full article
(This article belongs to the Special Issue Advances in Archaeology and Anthropology of the Ancient World)
Show Figures

Figure 1

18 pages, 12080 KiB  
Article
Synergistic Regulation of Soil Salinity and Ion Transport in Arid Agroecosystems: A Field Study on Drip Irrigation and Subsurface Drainage in Xinjiang, China
by Qianqian Zhu, Hui Wang, Honghong Ma, Feng Ding, Wanli Xu, Xiaopeng Ma and Yanbo Fu
Water 2025, 17(9), 1388; https://doi.org/10.3390/w17091388 - 5 May 2025
Viewed by 587
Abstract
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating [...] Read more.
The salinization of cultivated soil in arid zones is a core obstacle restricting the sustainable development of agriculture, particularly in regions like Xinjiang, China, where extreme aridity and intensive irrigation practices exacerbate salt accumulation through evaporation–crystallization cycles. Conventional drip irrigation, while temporarily mitigating surface salinity, often leads to secondary salinization due to elevated water tables and inefficient leaching. Recent studies highlight the potential of integrating drip irrigation with subsurface drainage systems to address these challenges, yet the synergistic mechanisms governing ion transport dynamics, hydrochemical thresholds, and their interaction with crop physiology remain poorly understood. In this study, we analyzed the effects of spring irrigation during the non-fertile period, soil hydrochemistry variations, and salt ion dynamics across three arid agroecosystems in Xinjiang. By coupling drip irrigation with optimized subsurface drainage configurations (burial depths: 1.4–1.6 m; lateral spacing: 20–40 m), we reveal a layer-domain differentiation in salt migration, Cl and Na+ were leached to 40–60 cm depths, while SO42− formed a “stagnant salt layer” at 20–40 cm due to soil colloid adsorption. Post-irrigation hydrochemical shifts included a 40% decline in conductivity, emphasizing the risk of adsorbed ion retention. Subsurface drainage systems suppressed capillary-driven salinity resurgence, maintaining salinity at 8–12 g·kg−1 in root zones during critical growth stages. This study establishes a “surface suppression–middle blocking–deep leaching” three-dimensional salinity control model, providing actionable insights for mitigating secondary salinization in arid agroecosystems. Full article
(This article belongs to the Special Issue Advanced Technologies in Agricultural Water-Saving Irrigation)
Show Figures

Figure 1

21 pages, 7700 KiB  
Article
Reservoir Characteristics and Diagenetic Evolution of Lower Cretaceous in Baibei Sag, Erlian Basin, Northern China
by Hongwei Tian, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Zhuo Han, Juwen Yao and Lijun Zhu
Processes 2025, 13(5), 1391; https://doi.org/10.3390/pr13051391 - 2 May 2025
Viewed by 419
Abstract
In recent years, the exploration of the Baibei Sag, located in the west of the Erlian Basin, has remained relatively underdeveloped. The Lower Cretaceous of the Baibei Sag hosts multiple tight sandstone reservoirs; however, research on the macro- and micro-characteristics, as well as [...] Read more.
In recent years, the exploration of the Baibei Sag, located in the west of the Erlian Basin, has remained relatively underdeveloped. The Lower Cretaceous of the Baibei Sag hosts multiple tight sandstone reservoirs; however, research on the macro- and micro-characteristics, as well as the controlling factors of these reservoirs, is relatively limited. This study selected 105 Lower Cretaceous sandstone samples from the Baibei Sag for core observation, casting thin sections, scanning electron microscopy, X-ray diffraction, and high-pressure mercury intrusion analysis. The reservoir’s physical properties, pore throat structure, and diagenesis process were studied. The results indicate that the reservoir lithology is mainly composed of feldspar lithic sandstone, with an average composition of 44.3% lithic, 34.6% quartz, and 21.2% feldspar. The clay minerals in the interstitial material are primarily illite (69.3%) and illite–smectite mixed layers (12.7%), with smaller amounts of chlorite (10.9%) and kaolinite (7.2%), while smectite content is very low. The physical property analysis results indicate that the average effective porosity of the Tengger Formation sandstone is 3.3%. The average permeability is 0.01 × 10−3 μm2. The average effective porosity of the Aershan Formation sandstone is 0.86%, and the average permeability is 0.05 × 10−3 μm2. The Tengger Formation and Aershan Formation are both tight sandstone reservoirs. The analysis of pore throat structure shows that the reservoir space is mainly composed of dissolution pores. Three types of pore throat structures were identified, and corresponding pore models were established. Based on burial history and organic matter evolution characteristics, this study establishes a diagenetic evolution sequence of the Lower Cretaceous sandstone reservoir. Analysis suggests that the pore throat structure of different reservoir types is mainly controlled by material composition. In the process of diagenetic evolution, the Tengger Formation and Aershan Formation are in the Middle diagenetic stage A. Compaction and cementation are the main reasons for low porosity, while the dissolution improves reservoir performance. The intergranular and intragranular dissolution pores formed by dissolution are the main storage spaces of the reservoir. The early tectonic fractures are filled with calcite, and the residual small-scale fractures play a role in improving permeability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 5895 KiB  
Article
Neural-Network-Based Prediction of Non-Burial Overwintering Material Covering Height for Wine Grapes
by Yunlong Ma, Jinyue Yang, Yibo Chen, Ping Wang and Qinming Sun
Agronomy 2025, 15(5), 1060; https://doi.org/10.3390/agronomy15051060 - 27 Apr 2025
Viewed by 365
Abstract
Grapevines in cold regions are prone to frost damage in winter. Due to its adverse effects on soil structure, plant damage, high operational costs, and limited mechanization feasibility, buried soil overwintering has been gradually replaced by no-burial overwintering techniques, which are now the [...] Read more.
Grapevines in cold regions are prone to frost damage in winter. Due to its adverse effects on soil structure, plant damage, high operational costs, and limited mechanization feasibility, buried soil overwintering has been gradually replaced by no-burial overwintering techniques, which are now the primary focus for mitigating frost damage in wine grapes. While current research focuses on the selection of thermal insulation materials, less attention has been paid to the insulation mechanism of covering materials and covering methods. In this study, we investigated the insulation performance of two covering materials (tarpaulin and insulation blanket) combined with six height treatments (5–30 cm) to analyze the effect of insulation space volume on no-buried-soil overwintering. The results show that the thermal insulation performance of the insulation blanket is significantly better than that of the tarpaulin. The 5 cm height treatment under the tarpaulin cover and the 25 cm height treatment under the insulation blanket cover exhibited the best thermal insulation performance. Using a neural network machine learning approach, we constructed a model related to the height of the insulation material and facilitate the model’s accurate predictions, in which tarpaulin R2branches = 0.92, R220 cm = 0.99, and R240 cm = 0.99 and insulation blanket R2branches = 0.89, R220 cm = 0.98, and R240 cm = 0.99. The model predicted optimal insulation heights of 6 cm for the tarpaulin and 22 cm for the insulation blanket. Factors like solar radiation within the insulation space, ground radiation, airflow, and material thermal conductivity affect the optimal insulation height for different materials. This study used a neural network model to predict the optimal insulation heights for different materials, providing systematic theoretical guidance for the overwintering cultivation of wine grapes and aiding the safe development of the wine grape industry in cold regions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop