Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = bundle shapes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 4247 KB  
Article
Wrapping Matters: Unpacking the Materiality of Votive Animal Mummies
by Maria Diletta Pubblico
Heritage 2025, 8(10), 415; https://doi.org/10.3390/heritage8100415 - 3 Oct 2025
Abstract
This study presents the first systematic investigation of ancient Egyptian votive animal mummy wrappings, based on the analysis of an extensive dataset encompassing specimens from various museum collections and archaeologicalcontexts. The research addresses the long-standing neglect and fragmented understanding of the wrapping chaîne [...] Read more.
This study presents the first systematic investigation of ancient Egyptian votive animal mummy wrappings, based on the analysis of an extensive dataset encompassing specimens from various museum collections and archaeologicalcontexts. The research addresses the long-standing neglect and fragmented understanding of the wrapping chaîne opératoire and aims to establish a consistent terminology, as the different stages of the wrapping sequence, bundle shapes, and decorative patterns have often been described vaguely. Through an interdisciplinary methodology that integrates photogrammetry, colorant identification, textile analysis, and experimental archeology, the study explores the complexity of wrapping practices across their different stages. This approach offers new insights into the structural logic, raw material selection, and design conventions behind this production. The analysis reveals that the bundles exhibit standardized shapes and decorative patterns grounded in well-established visual criteria and manufacturing sequences. These findings demonstrate that the wrappings reflect a codified visual language and a high level of technical knowledge, deeply rooted in Egyptian tradition. The study also emphasizes its economic implications: the wrapping significantly enhanced the perceived value of the offering, becoming the primary element influencing both its material and symbolic worth. Ultimately, this work provides an interpretative framework for understanding wrapping as an essential medium of ritual sacralization for votive animal mummies, allowing the individual prayer to be effectively conveyed to the intended deity. Consequently, this research marks a significant step forward in advancing the technical, aesthetic, and ritual insight of wrapping practices, which preserve a wealth of still-overlooked information. Full article
19 pages, 3475 KB  
Article
Tree-Based Surrogate Model for Predicting Aerodynamic Coefficients of Iced Transmission Conductor Lines
by Guoliang Ye, Zhiguo Li, Anjun Wang, Zhiyi Liu, Ruomei Tang and Guizao Huang
Infrastructures 2025, 10(9), 243; https://doi.org/10.3390/infrastructures10090243 - 15 Sep 2025
Viewed by 227
Abstract
Ultra-high-voltage (UHV) transmission lines are prone to galloping and oscillations under ice and wind loads, posing risks to system reliability and safety. Accurate aerodynamic coefficients are essential for evaluating these effects, but conventional wind tunnel and CFD methods are costly and inefficient for [...] Read more.
Ultra-high-voltage (UHV) transmission lines are prone to galloping and oscillations under ice and wind loads, posing risks to system reliability and safety. Accurate aerodynamic coefficients are essential for evaluating these effects, but conventional wind tunnel and CFD methods are costly and inefficient for practical applications. To address these challenges, this study develops a surrogate model for rapid and accurate prediction of aerodynamic coefficients for six-bundle conductors. Initially, a CFD model to calculate the aerodynamic coefficients of six-bundle conductors was proposed and validated against wind tunnel experimental results. Subsequently, Latin hypercube sampling (LHS) was employed to generate datasets covering wind speed, icing shape, icing thickness, and wind attack angle. High-throughput numerical simulations established a comprehensive aerodynamic database used to train and validate multiple tree-based surrogate models, including decision tree (DT), random forest (RF), extremely randomized trees (ERTs), gradient boosted decision tree (GBDT), and extreme gradient boosting (XGBoost). Comparative analysis revealed that the XGBoost-based model achieved the highest prediction accuracy, with an R2 of 0.855 and superior generalization performance. Feature importance analysis further highlighted wind speed and icing shape as the dominant influencing factors. The results confirmed the XGBoost surrogate as the most effective among the tested models, providing a fast and reliable tool for aerodynamic prediction, vibration risk assessment, and structural optimization in UHV transmission systems. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

25 pages, 942 KB  
Article
Visual eWOM and Brand Factors in Shaping Hotel Booking Decisions: A UK Hospitality Study
by WinnieSiewKoon Chu, Kim Piew Lai and Robert Jeyakumar Nathan
Tour. Hosp. 2025, 6(4), 171; https://doi.org/10.3390/tourhosp6040171 - 8 Sep 2025
Viewed by 648
Abstract
This study aims to bridge the research gap emerging from the relationships between Visual electronic Word-of-Mouth (VeWOM) and brand factors, and their impact on consumers’ behavior by exploring the causal effects of eWOM attributes on hotel brand factor spreading through Brand Awareness (BA) [...] Read more.
This study aims to bridge the research gap emerging from the relationships between Visual electronic Word-of-Mouth (VeWOM) and brand factors, and their impact on consumers’ behavior by exploring the causal effects of eWOM attributes on hotel brand factor spreading through Brand Awareness (BA) and Brand Perceived Value (BV) and its consequences on Purchase Decisions (PD) in the hospitality context. Attribution Theory was extended to incorporate brand-mediated effects and crisis-specific factors. The study investigates the impact of VeWOM on consumer Purchase Decisions (PD) in terms of hotel room bookings in the British hospitality market, emphasizing the mediating role of brand-related constructs. Drawing on Attribution Theory, the research proposes a structural model to assess both direct and indirect pathways through which VeWOM influences behavioral outcomes. A stratified, non-probability sampling approach yielded 443 valid responses from hotel bookers who engaged with user-generated visual content prior to booking. The Partial Least Squares Structural Equation Model (PLS-SEM) was employed to test the hypothesized relationships. The findings reveal that VeWOM significantly influences Brand Value (BV), eWOM Credibility, and Information Quality, which in turn shape consumer purchase behavior. Crucially, Brand Value emerges as a key mediating variable, bridging VeWOM and Purchase Decisions, while VeWOM alone does not directly affect booking behavior. Moreover, Brand Awareness showed no significant mediating effect. The study underscores the indirect attribution process in visual review contexts, demonstrating that the influence of VeWOM is channeled primarily through brand perception mechanisms rather than direct persuasion. These insights extend Attribution Theory by highlighting the distinct cognitive pathways activated by visual content compared to text-based reviews. Practically, the research suggests that hoteliers should focus on enhancing Brand Value via bundled offerings and relationship-based marketing rather than relying solely on visual appeal or awareness to drive bookings. The study contributes to the growing body of VeWOM literature by clarifying its nuanced effects on decision-making in digital hospitality environments. Full article
(This article belongs to the Special Issue Customer Behavior in Tourism and Hospitality)
Show Figures

Figure 1

24 pages, 1996 KB  
Article
Optimal Pricing Strategies and Inventory Management for Fresh Food Products in Sustainable Cold Chain: Analytical Modeling with Korean Market Validation
by Sunghee Lee and Jinsoo Park
Sustainability 2025, 17(17), 7680; https://doi.org/10.3390/su17177680 - 26 Aug 2025
Viewed by 875
Abstract
With rising consumer concerns regarding food safety, cold chain management—which preserves product freshness through low-temperature distribution—has emerged as a critical competitive factor for retailers. This study examines how retail firms can manage quality deterioration over time to maximize profits, with a focus on [...] Read more.
With rising consumer concerns regarding food safety, cold chain management—which preserves product freshness through low-temperature distribution—has emerged as a critical competitive factor for retailers. This study examines how retail firms can manage quality deterioration over time to maximize profits, with a focus on pricing strategies and discard rates. Through game-theoretic modeling and empirical data analysis of milk products, we find that while individual items exhibit no consistent pattern, bundled fresh food items demonstrate an inverted U-shaped relationship between discount rates and profits, indicating an optimal discount level. Furthermore, we identify a U-shaped relationship between order quantity and disposal rate, highlighting the importance of determining optimal inventory levels to minimize waste and maximize efficiency for a sustainable competitiveness. Full article
(This article belongs to the Special Issue Food, Supply Chains, and Sustainable Development—Second Edition)
Show Figures

Figure 1

18 pages, 864 KB  
Article
Rights Interactions of Forest Tenure and Carbon Sequestration in China
by Ying Lin, Lei Li, Wenjian He and Yuan Zhao
Forests 2025, 16(9), 1367; https://doi.org/10.3390/f16091367 - 23 Aug 2025
Viewed by 492
Abstract
Although forest tenure devolution has been widely implemented, limited research has examined the carbon sequestration effects of property rights, particularly the interactions among rights within the tenure bundle. This research quantifies the structure of forest tenure at the village level over a 20-year [...] Read more.
Although forest tenure devolution has been widely implemented, limited research has examined the carbon sequestration effects of property rights, particularly the interactions among rights within the tenure bundle. This research quantifies the structure of forest tenure at the village level over a 20-year period (2000–2019) and links it with village-year satellite observations of forest carbon sequestration. Using two-way fixed effects regression, interaction effect models, and mediation analysis, the research examines the carbon responses to devolved forest tenure, with particular attention to the interactions among tenure rights and the heterogeneity across forest types. Empirical results indicate that the logging right constitutes the core component of the tenure bundle that promotes carbon sequestration in mature forests and shrublands. When the logging right was completely absent, the impact of ownership on carbon sequestration became insignificant. Tenure rights bundles interact significantly in shaping carbon sequestration outcomes in mature forests. Specifically, longer tenure duration reinforces the effects of ownership and logging rights, whereas transferability tends to substitute for their returns. In terms of young plantations, only official certification of ownership would promote their carbon sequestration and there are no interaction impacts between rights. Further analyses combining farmer behavior find that the reduction in logging intensity, rather than frequency, is a significant channel for logging rights to promote carbon sequestration of mature stands. Ownership increases the frequency but the intensity of afforestation/reforestation, which in turn increases carbon sequestration of young plantations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

21 pages, 6621 KB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 577
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

16 pages, 1234 KB  
Article
A Lightweight Soft Exosuit for Elbow Rehabilitation Powered by a Multi-Bundle SMA Actuator
by Janeth Arias Guadalupe, Alejandro Pereira-Cabral Perez, Dolores Blanco Rojas and Dorin Copaci
Actuators 2025, 14(7), 337; https://doi.org/10.3390/act14070337 - 6 Jul 2025
Viewed by 956
Abstract
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. [...] Read more.
Stroke is one of the leading causes of long-term disability worldwide, often resulting in motor impairments that limit the ability to perform daily activities independently. Conventional rehabilitation exoskeletons, while effective, are typically rigid, bulky, and expensive, limiting their usability outside of clinical settings. In response to these challenges, this work presents the development and validation of a novel soft exosuit designed for elbow flexion rehabilitation, incorporating a multi-wire Shape Memory Alloy (SMA) actuator capable of both position and force control. The proposed system features a lightweight and ergonomic textile-based design, optimized for user comfort, ease of use, and low manufacturing cost. A sequential activation strategy was implemented to improve the dynamic response of the actuator, particularly during the cooling phase, which is typically a major limitation in SMA-based systems. The performance of the multi-bundle actuator was compared with a single-bundle configuration, demonstrating superior trajectory tracking and reduced thermal accumulation. Surface electromyography tests confirmed a decrease in muscular effort during assisted flexion, validating the device’s assistive capabilities. With a total weight of 0.6 kg and a fabrication cost under EUR 500, the proposed exosuit offers a promising solution for accessible and effective home-based rehabilitation. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

19 pages, 2560 KB  
Article
Aerodynamic Instability Mechanisms of Iced Eight-Bundled Conductors: Frequency-Domain Analysis and Stability Assessment via Wind Tunnel–CFD Synergy
by Bolin Zhong, Minghao Qiao, Mengqi Cai and Maoming Hu
Sensors 2025, 25(13), 4120; https://doi.org/10.3390/s25134120 - 1 Jul 2025
Viewed by 462
Abstract
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped [...] Read more.
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped and sector-shaped iced eight-bundled conductors were systematically investigated over an angle of attack range from 0° to 180°. A combined approach involving wind tunnel tests and high-precision computational fluid dynamics (CFD) simulations was adopted. In the wind tunnel tests, static aerodynamic coefficients and dynamic time series data were obtained using a high-precision aerodynamic balance and a turbulence grid. In the CFD simulations, transient flow structures and vortex shedding mechanisms were analyzed based on the Reynolds-averaged Navier–Stokes (RANS) equations with the SST k-ω turbulence model. A comprehensive comparison between the two ice accretion geometries was conducted. The results revealed distinct aerodynamic instability mechanisms and frequency-domain characteristics. The analysis was supported by Fourier’s fourth-order harmonic decomposition and energy spectrum analysis. It was found that crescent-shaped ice, due to its streamlined leading edge, induced a dominant single vortex shedding. In this case, the first-order harmonic accounted for 67.7% of the total energy. In contrast, the prismatic shape of sector-shaped ice caused migration of the separation point and introduced broadband energy input. Stability thresholds were determined using the Den Hartog criterion. Sector-shaped iced conductors exhibited significant negative aerodynamic damping under ten distinct operating conditions. Compared to the crescent-shaped case, the instability risk range increased by 60%. The strong agreement between simulation and experimental results validated the reliability of the numerical approach. This study establishes a multiscale analytical framework for understanding galloping mechanisms of iced conductors. It also identifies early warning indicators in the frequency domain and provides essential guidance for the design of more effective anti-galloping control strategies in resilient power transmission systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

21 pages, 17847 KB  
Article
Tensile Behavior and Failure Mechanism of Bamboo Fiber Bundle and Its Scrimber Under Different Strain Rates
by Kai Zhang, Haoran Xia, Lizhi Xu, Shengbo Zhou, Li Gao, Gong Zuo, Xiaotao Zhang and Quan Li
Materials 2025, 18(11), 2550; https://doi.org/10.3390/ma18112550 - 29 May 2025
Viewed by 660
Abstract
In this study, bamboo fiber bundles were directly extracted from raw bamboo material to fabricate reconstituted bamboo using the traditional hot-pressing method. The tensile behaviors and failure mechanisms of both the bamboo fiber bundle and its bamboo scrimber under various strain rates (quasi-static, [...] Read more.
In this study, bamboo fiber bundles were directly extracted from raw bamboo material to fabricate reconstituted bamboo using the traditional hot-pressing method. The tensile behaviors and failure mechanisms of both the bamboo fiber bundle and its bamboo scrimber under various strain rates (quasi-static, 350/s, 950/s and 1700/s) were investigated by the SHTB system (split-Hopkinson tensile bar, high-speed camera and digital image correlation method). The results showed that the bamboo scrimber exhibited an obvious positive strain rate effect. The ultimate tensile strength of the bamboo scrimber at a strain rate of 1700/s was close to 200 MPa, but it was only about 80 MPa under quasi-static loading. This experimental result was further validated by the tensile behaviors of single bamboo fiber bundles at different strain rates (quasi-static, 300/s, 700/s and 1500/s). In addition, as the strain rate increased, the fracture surface of the bamboo changed from a linear shape to a discontinuous folded shape. Full article
Show Figures

Figure 1

26 pages, 3366 KB  
Article
Two-Dimensional Fluid Flow Due to Blade-Shaped Waving of Cilia in Human Lungs
by Nisachon Kumankat and Nachayadar Kamolmitisom
Mathematics 2025, 13(11), 1703; https://doi.org/10.3390/math13111703 - 22 May 2025
Viewed by 720
Abstract
The mucociliary clearance system is an innate defense mechanism in the human respiratory tract, which plays a crucial role in protecting the airways from infections. The clearance system secretes mucus from the goblet cells, which scatters in the respiratory epithelium to trap foreign [...] Read more.
The mucociliary clearance system is an innate defense mechanism in the human respiratory tract, which plays a crucial role in protecting the airways from infections. The clearance system secretes mucus from the goblet cells, which scatters in the respiratory epithelium to trap foreign particles entering the airway, and then the mucus is removed from the body via the movement of cilia residing under the mucus and above the epithelium cells. The layer containing cilia is called the periciliary layer (PCL). This layer also contains an incompressible Newtonian fluid called PCL fluid. This study aims to determine the velocity of the PCL fluid driven by the cilia movement instead of a pressure gradient. We consider bundles of cilia, rather than an individual cilium. So, the generalized Brinkman equation in a macroscopic scale is used to predict the fluid velocity in the PCL. We apply a mixed finite element method to the governing equation and calculate the numerical solutions in a two-dimensional domain. The numerical domain is set up to be the shape of a fan blade, which is similar to the motion of the cilia. This problem can be applied to problems of fluid flow propelled via moving solid phases. Full article
Show Figures

Figure 1

19 pages, 12488 KB  
Article
Morphological and Anatomical Characterization of Stems in Lilium Taxa
by Peng Zhou, Kuangkuang Liao, Xiunian Feng, Rui Liang, Nianjun Teng and Fang Du
Horticulturae 2025, 11(5), 546; https://doi.org/10.3390/horticulturae11050546 - 18 May 2025
Viewed by 1142
Abstract
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, [...] Read more.
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, four distinct jigsaw-puzzle-shaped shapes of epidermal cells (Ep) in monocot stems, novel I-shaped and Co-xylem (O-, X-, W-, Q-shaped) vascular bundles (Vb) in Lilium stems, and quantitative characteristics (Vb density, xylem/phloem area ratio, etc.) were systematically discovered and analyzed. Asiatic (A) and Longiflorum × A (LA) hybrids displayed epidermal appendages, while Oritenal × Trumpet (OT) hybrids featured thicker sclerenchymatous rings (Sr). Collateral Vb in hybrids visually displayed bicollateral with degraded bundle sheaths (Bs), contrasting with intact circular Bs in wild species. Ward.D clustering categorized Lilium taxa into group A (Oritenal and OT hybrids) and B (A, LA, Trumpet, Longiflorum × Oriental hybrids and wild species), with Mantel’s test identified height, Ep shape, Ep length/width ratio, cortex/Sr thickness ratio and Bs integrity as key discriminators. Bending stems exhibited a higher Vb area. These findings establish a comprehensive pheno-anatomical framework for Lilium, which can guide future breeding programs and ecological studies. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

21 pages, 4530 KB  
Article
Leaf Morpho-Anatomy of Twelve Cymbidium (Orchidaceae) Species from China and Their Taxonomic Significance
by Xiangke Hu, Lei Tao, Jialin Huang, Kaifeng Tao, Dong Ma and Lu Li
Plants 2025, 14(9), 1396; https://doi.org/10.3390/plants14091396 - 6 May 2025
Viewed by 859
Abstract
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using [...] Read more.
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using light microscopy and paraffin sectioning. Based on a comparative analysis, some leaf morphological features that varied between species were selected and used for taxonomic differentiation as follows: (1) The shape and structure of leaves were varied and could be used for species delimitation. (2) Microscopic characteristics show that the leaves lacked trichomes and displayed polygonal to rectangular epidermal cells on both surfaces, with larger adaxial cells and more abaxial stigmata. Stomata were mostly distributed only on the abaxial side, but on both sides in Cymbidium mastersii, which exhibited a rare amphistomatic type. The stomatal complex was uniformly tetracytic in 11 species, while it was observed to be anomocytic in C. floribundum. (3) Anatomically, two distinct midrib configurations were identified, a shallow V-shape and V-shape. The mesophyll cells were homogeneous in 10 species, with the exception of a layer of parenchyma cells resembling palisade cells occurring in C. lancifolium and C. qiubeiense. The thickness of the cuticle varied between species, with the adaxial surface covered by a thicker cuticle than the abaxial surface and displaying either a smooth or corrugated surface. A fiber bundle was observed in six species, but absent in the other six. In the former group, the fiber bundle occurred adjacent to both epidermal cells in C. mastersii and C. hookerianum, while it was adjacent to the abaxial epidermis in four other species. The stegmata, with conical, spherical silica bodies, were associated with fiber bundles and mesophyll in seven species, but absent in the other five (C. kanran, C. defoliatum, C. floribundum, C. lancifolium, and C. serratum). Three kinds of crystals were identified, namely the terete bundle, the long tube bundle, and the raphide. (4) It was suggested that some of these variable features could be selected and used for the delimitation of the species and taxonomy of Cymbidium. In addition, a key to the 12 Cymbidium species based on their leaf morpho-anatomic features was proposed, which could lead to a better understanding of the taxonomy and conservation of Orchidaceae. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

17 pages, 8034 KB  
Article
Design and Evaluation of the Mechanical Performance of Hollow BCC Truss AlSi10Mg Lattice Structures
by Wanqi Ma, Yangwei Wang, Qingtang Li, Bingyue Jiang and Jingbo Zhu
Metals 2025, 15(4), 464; https://doi.org/10.3390/met15040464 - 20 Apr 2025
Cited by 1 | Viewed by 635
Abstract
Lattice materials demonstrate exceptional advantages in lightweight design applications due to their low mass density, high specific strength, and customizable topology. Inspired by the hollow vascular bundle structure of bamboo, this study develops four bio-inspired lattice configurations through two key modifications to conventional [...] Read more.
Lattice materials demonstrate exceptional advantages in lightweight design applications due to their low mass density, high specific strength, and customizable topology. Inspired by the hollow vascular bundle structure of bamboo, this study develops four bio-inspired lattice configurations through two key modifications to conventional body-centered cubic (BCC) structures: Z-axis (loading direction) strut reinforcement and strut hollowing. The specimens were fabricated using AlSi10Mg powder via selective laser melting (SLM) technology, followed by the systematic evaluation of the compressive properties and the energy absorption characteristics. The experimental results reveal that the synergistic combination of Z-strut reinforcement and hollow design significantly enhances both the compressive resistance and the energy absorption capacity. The optimized BCC-5ZH configuration (5 Z-struts with full hollowing) achieves remarkable performance metrics at 0.5 g/cm3 density: yield strength (16.78 MPa), compressive strength (27.91 MPa), and volumetric energy absorption (10.4 MJ/m3). These values represent 236.9%, 283.4%, and 239.3% enhancements, respectively, compared to the reference BCC lattices with an equivalent density. Z-strut integration induces homogeneous stiffness distribution throughout the lattice architecture, while strut hollowing increases the effective moment of inertia. This structural evolution induces a failure mode transition from single shear band deformation to dual X-shaped shear band propagation, resulting in enhanced deformation sequence regulation within the lattice system. Full article
Show Figures

Figure 1

16 pages, 5239 KB  
Article
Hyperhydricity-Induced Physiological Changes and Catechin Accumulation in Blueberry Hybrids (Vaccinium corymbosum × V. angustifolium)
by Rajesh Barua, Sayani Kundu, Abir U. Igamberdiev and Samir C. Debnath
Horticulturae 2025, 11(4), 418; https://doi.org/10.3390/horticulturae11040418 - 14 Apr 2025
Viewed by 742
Abstract
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, [...] Read more.
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, showed that a Growtek stationary bioreactor culture system containing a liquid medium exhibited a higher hyperhydricity percentage than a Sigma glass culture system with a semi-solid medium. The percentage of hyperhydricity (75.21 ± 1.89%) and water content (72%) of HB2 was more than that of HB1. A scanning electron microscopy study revealed that hyperhydric plantlets from both genotypes developed slowly, had closed stomata, and displayed enlarged intercellular spaces between the palisade and spongy parenchyma layers. Disrupted vascular bundles, underdeveloped sieve elements and a weak connection between phloem and xylem tissue were also observed in hyperhydric plantlets. An analysis of mesophyll and stem tissues highlighted a compressed adaxial epidermis, which led to compact palisade parenchyma, with irregularly shaped mesophyll cells. Hyperhydric plants showed strong nuclear magnetic resonance (NMR) signals in the aliphatic, aromatic, and sugar regions, specifically at peaks of 2.0, 2.5, 4.0, 4.5, 6.0, and 6.7 ppm. These signals were attributed to the presence of catechin (C15H14O6), a flavonoid compound, suggesting its significant role or accumulation in these plants under hyperhydric conditions. Despite the negative effects of hyperhydricity on commercial propagation, hyperhydric plants were found to contain higher levels of valuable untargeted metabolites, such as β-P-arbutin, chlorogenic acid, quercetin-3-O-glucoside, epicatechin, 2-O-caffeoyl arbutin, various fatty acids, β-glucose, linolenic acid, and acetyl than both in vitro and ex vitro conditions. The enrichment of bioactive compounds in blueberry enhances its antioxidant properties, nutritional profile, and potential health benefits, making them significant for plant defense mechanisms and stress adaptation. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

18 pages, 12981 KB  
Article
Galloping Performance of Transmission Line System Aeroelastic Model with Rime Through Wind-Tunnel Tests
by Mingguan Zhao, Meng Li, Shenglong Li, Yuanhao Wan, Yang Hai and Chunguang Li
Energies 2025, 18(5), 1203; https://doi.org/10.3390/en18051203 - 28 Feb 2025
Cited by 3 | Viewed by 1113
Abstract
This study presents an experimental investigation for the galloping performance of the transmission line system with rime under wind excitation. A full aeroelastic model wind-tunnel test is conducted to investigate the dynamic response of a two-bundled transmission line system with rime under different [...] Read more.
This study presents an experimental investigation for the galloping performance of the transmission line system with rime under wind excitation. A full aeroelastic model wind-tunnel test is conducted to investigate the dynamic response of a two-bundled transmission line system with rime under different conditions. The time histories of the displacement of the conductor and the acceleration of the tower are measured in detail to analyze the characteristic of the wind-induced response. A comprehensive parametric experiment is performed to explore the effects of wind speed, wind direction, the number of conductor spans and the coupling between the conductor and the tower on the galloping performance of the transmission line system with rime. The results showed that the wind speed, wind direction and the number of conductor spans have significant influence on the galloping performance of conductor. The zero-degree wind direction is the most dangerous direction for the conductor. The multi-span conductor has different galloping initiation wind speed and vibration characteristics compared to the single-span conductor. The coupling effect between the conductor and the tower has trivial influence on the response of tower. This study uses 3D-printing models to simulate the aerodynamic shape of ice-covered wires with different thicknesses for wind-tunnel tests and obtains the influence of a series of parameters on the galloping vibration of transmission tower line systems. Full article
Show Figures

Figure 1

Back to TopTop