Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = bulk heterojunction organic solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4067 KiB  
Article
Thin Films of PNDI(2HD)2T and PCPDTBT Polymers Deposited Using the Spin Coater Technique for Use in Solar Cells
by Michał Sładek, Patryk Radek, Magdalena Monika Szindler and Marek Szindler
Coatings 2025, 15(5), 603; https://doi.org/10.3390/coatings15050603 - 18 May 2025
Viewed by 476
Abstract
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to [...] Read more.
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to traditional photovoltaic materials. This study investigates the properties of a polymer blend composed of PCPDTBT (donor) and PNDI(2HD)2T (acceptor), used as the active layer in bulk heterojunction (BHJ) solar cells. The motivation behind this research was the search for a novel n-type polymer material with potentially better properties than the commonly used P(NDI2OD-T2). Comprehensive characterization of thin films made from the individual polymers and their blend was conducted using Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), four-point probe conductivity measurements, and photovoltaic testing. The prepared films were continuous, uniform, and exhibited low surface roughness (Ra < 2.5 nm). Spectroscopic analysis showed that the blend absorbs light in a broad range of the spectrum, with slight bathochromic shifts compared to individual polymers. Electrical measurements indicated that the blend’s conductivity (9.1 µS/cm) was lower than that of pure PCPDTBT but higher than that of PNDI(2HD)2T, with an optical band gap of 1.34 eV. Photovoltaic devices fabricated using the blend demonstrated an average power conversion efficiency (PCE) of 6.45%, with a short-circuit current of 14.37 mA/cm2 and an open-circuit voltage of 0.89 V. These results confirm the feasibility of using PCPDTBT:PNDI(2HD)2T blends as active layers in BHJ solar cells and provide a promising direction for further optimization in terms of polymer ratio and processing conditions. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

21 pages, 4255 KiB  
Article
Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism
by Nathan A. Cooling, Krishna Feron, Timothy W. Jones, Warwick J. Belcher and Paul C. Dastoor
Electronics 2025, 14(8), 1655; https://doi.org/10.3390/electronics14081655 - 19 Apr 2025
Viewed by 326
Abstract
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified [...] Read more.
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified by the Hammett constant, systematically alters the device efficiency of ternary poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]:porphyrin:[6,6]-phenylC61-butyric acid methyl ester (MEH-PPV:porphyrin:PCBM) bulk heterojunction organic solar cells through alteration of the HOMO/LUMO levels and, thereby, the open-circuit voltage of the cell. We show that the porphyrin concentrates at the MEH-PPV:PCBM interface in these blends and that the devices operate via a cascade mechanism when the highest occupied molecular orbital (HOMO) of the porphyrin is higher in energy that that of MEH-PPV, but via a parallel/alloy device mechanism, when the HOMO of the porphyrin is lower in energy than that of MEH-PPV. As such, this work highlights how the energetics of the ternary component can determine device performance by switching between charge generation models simply by altering the electron-withdrawing character of the porphyrin ternary additive. Full article
(This article belongs to the Special Issue Materials and Properties for Solar Cell Application)
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells
by Ermioni Polydorou, Georgios Manginas, Georgios Chatzigiannakis, Zoi Georgiopoulou, Apostolis Verykios, Elias Sakellis, Maria Eleni Rizou, Vassilis Psycharis, Leonidas Palilis, Dimitris Davazoglou, Anastasia Soultati and Maria Vasilopoulou
Materials 2025, 18(8), 1767; https://doi.org/10.3390/ma18081767 - 12 Apr 2025
Viewed by 691
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used [...] Read more.
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used as an electron extraction layer (EEL) in inverted OSCs, suffers from surface defects that hinder device performance. Furthermore, the active control of its optoelectronic properties is highly desirable as the interfacial electron transport and extraction, exciton dissociation and non-radiative recombination are crucial for optimum solar cell operation. In this regard, this study investigates the sulfur doping of ZnO as a facile method to effectively increase ZnO conductivity, improve the interfacial electron transfer and, overall, enhance solar cell performance. ZnO films were sulfur-treated under various annealing temperatures, with the optimal condition found at 250 °C. Devices incorporating sulfur-doped ZnO (S-ZnO) exhibited a significant PCE improvement from 2.11% for the device with the pristine ZnO to 3.14% for the OSC based on the S-ZnO annealed at 250 °C, attributed to an enhanced short-circuit current density (Jsc) and fill factor (FF). Optical and structural analyses revealed that the sulfur treatment led to a small enhancement of the ZnO film crystallite size and an increased n-type transport capability. Additionally, the sulfurization of ZnO enhanced its electron extraction efficiency, exciton dissociation at the ZnO/photoactive layer interface and exciton/charge generation rate without altering the film morphology. These findings highlight the potential of sulfur doping as an easily implemented, straightforward approach to improving the performance of inverted OSCs. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

23 pages, 5126 KiB  
Article
Integration of Conductive SnO2 in Binary Organic Solar Cells with Fine-Tuned Nanostructured D18:L8-BO with Low Energy Loss for Efficient and Stable Structure by Optoelectronic Simulation
by Mohamed El Amine Boudia and Cunlu Zhao
Nanomaterials 2025, 15(5), 368; https://doi.org/10.3390/nano15050368 - 27 Feb 2025
Viewed by 1237
Abstract
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend [...] Read more.
Enhancing the performance of organic solar cells (OSCs) is essential for achieving sustainability in energy production. This study presents an innovative strategy that involves fine-tuning the thickness of the bulk heterojunction (BHJ) photoactive layer at the nanoscale to improve efficiency. The organic blend D18:L8-BO is utilized to capture a wide range of photons while addressing the challenge of minimizing optical losses from low-energy photons. The research incorporates SnO2 and ZnO as electron transport layers (ETLs), with PMMA functioning as a hole transport layer (HTL). A comprehensive analysis of photon absorption, charge carrier generation, localized energy fluctuations, and thermal stability reveals their critical role in enhancing the efficiency of D18:L8-BO active films. Notably, introducing SnO2 as an ETL significantly decreased losses and modified localized energy, achieving an impressive efficiency of 19.85% at an optimized blend thickness of 50 nm with low voltage loss (ΔVoc) of 0.4 V within a Jsc of 28 mA cm−2 by performing an optoelectronic simulation employing “Oghma-Nano 8.1.015” software. In addition, the SnO2-based structure conserved 88% of the PCE at 350 K compared to room temperature PCE, which describes the high thermal stability of this structure. These results demonstrate the potential of this methodology in improving the performance of OSCs. Full article
(This article belongs to the Special Issue Organic/Perovskite Solar Cell)
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells
by Xin Jing, Xuebing Li, Yong Zhao, Quanliang Wang, Xiao Kang, Xiaojie Liu, Aziz Saparbaev, Feng Li and Mingliang Sun
Polymers 2025, 17(2), 248; https://doi.org/10.3390/polym17020248 - 20 Jan 2025
Viewed by 949
Abstract
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and [...] Read more.
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance. The material and quantum chemical property investigations show that the selection and design of the blocks are important for the properties of the terpolymers, and the resulting polymer:Y6 devices achieve improvements in performance from 13.85% to 15.66% (especially for fill factors from 63.37% up to 69.81%). This result contributes to designing and optimizing efficient polymers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 4483 KiB  
Article
Achieving a Near-Infrared Absorption by A−DA’D−A Type Isoindigo-Based Small Molecular Acceptors for Organic Photovoltaics
by Hui Liu, Yu Wu, Dong-Nai Ye, Na Chen, Xu-Min Huang and Shi-Yong Liu
Molecules 2025, 30(2), 344; https://doi.org/10.3390/molecules30020344 - 16 Jan 2025
Viewed by 922
Abstract
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A−DA’D−A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and [...] Read more.
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A−DA’D−A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C–H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients. Notably, IDC6CP-IC exhibited stronger intermolecular charge transfer and J-aggregation. An organic solar cell (OSC) device based on IDC6CP-IC achieved a power conversion efficiency (PCE) of 3.10%, with a broad photoresponse range extending from 400 to 900 nm. This study highlights the significant impact of alkyl chain engineering on material synthesis, photoelectric properties, and corresponding device performance. Furthermore, DACH is shown to be a promising approach for synthesizing IID-based URAs with near-infrared (NIR) absorption, making it an excellent candidate for bulk heterojunction (BHJ) OSC applications. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

19 pages, 6287 KiB  
Article
Investigating Excited States and Absorption Spectra of the Poly-cyclopenta-dithiophene-benzothiadiazole Oligomers (Poly-CPDTBT)—A Theoretical Study
by Jun Wang, Yuting Huang, Yajing Wang, Bo Durbeej and Lluís Blancafort
Molecules 2024, 29(22), 5348; https://doi.org/10.3390/molecules29225348 - 14 Nov 2024
Viewed by 1647
Abstract
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the [...] Read more.
Poly-CPDTBT, as typical low-band gap copolymers, have potential applications in organic bulk heterojunction solar cells. To have a clear picture of its excited-state processes, the first task is to understand their excited states, in particular, electronic character and relevant optical absorption. Herein, the low-lying singlet excited states of Poly-CPDTBT oligomers were investigated via Algebraic Diagrammatic Construction Second Order (ADC(2)) and time-dependent density functional theory (TDDFT) method with several functionals. Six CPDTBTN (N = 1–6) oligomers were taken as prototypes to study their excited states in detail. The results provide interesting clues to extrapolate the photophysical properties of such polymers with potential applications in photovoltaic materials. The result provided by ωB97XD functional gives good agreement with the experiment result. The vertical excitation energies of the four lowest excited states decrease almost linearly with increasing polymerization degree (N) for CPDTBTN (N = 1–6). The transition density analysis indicates that the local excitations (LE) and the short-distance charge transfer (CT) excitations between two adjacent CPDT and BT units are dominant for low-lying excited states for short oligomers. For the long-chain oligomers (trimer to hexamer), the transition density shows a ladder (or zigzag) pattern along the diagonal blocks at the planar geometry. For long oligomers, the whole chain is involved in the transitions, and the CT excitations only exist between two adjacent CPDT and BT units. The present work provides a valuable basis for understanding the excited-state processes of Poly-CPDTBT and other conjugated polymers that conduct solar energy conversions, which has great significance for the development of new solar cells. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

16 pages, 8853 KiB  
Article
Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics
by Atacan Tütüncüoğlu, Meral Yüce and Hasan Kurt
Crystals 2024, 14(9), 828; https://doi.org/10.3390/cryst14090828 - 23 Sep 2024
Cited by 3 | Viewed by 1708
Abstract
This paper investigates TiN for its potential to enhance light-harvesting efficiency as an alternative material to Au for nanoscale plasmonic light trapping in thin-film solar cells. Using nanosphere lithography (NSL), plasmonic arrays of both Au and TiN are fabricated and characterized. Later, the [...] Read more.
This paper investigates TiN for its potential to enhance light-harvesting efficiency as an alternative material to Au for nanoscale plasmonic light trapping in thin-film solar cells. Using nanosphere lithography (NSL), plasmonic arrays of both Au and TiN are fabricated and characterized. Later, the fabricated TiN and Au arrays are integrated into a thin-film organic photovoltaic (OPV) device with a PBDB-T:ITIC-M bulk heterojunction (BHJ) active layer. A comparative study between these Au and TiN nanostructured arrays evaluates their fabrication process and plasmonic response, highlighting the advantages and disadvantages of TiN compared to a conventional plasmonic material such as Au. The effect of the fabricated arrays when integrated into an OPV is presented and compared to understand the viability of TiN. As one of the first experimental studies utilizing TiN arrays for the plasmonic enhancement of photovoltaics, the results offer valuable insight that can guide future applications and decisions in design. Full article
Show Figures

Figure 1

4 pages, 1012 KiB  
Short Note
1-(Dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic Acid
by Sofia D. Usova, Ekaterina A. Knyazeva and Oleg A. Rakitin
Molbank 2024, 2024(3), M1871; https://doi.org/10.3390/M1871 - 19 Aug 2024
Viewed by 1451
Abstract
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor [...] Read more.
Bulk heterojunction solar cells are among the most promising organic solar cells (OSCs). One of the two important parts of OSCs are acceptors, and the development of the design and synthesis of non-fullerene acceptors involves an electron-deficient heterocyclic central core and anchor acceptor malonitrile derivatives of 3-methylene-2,3-dihydro-1H-inden-1-ones. In this communication, an intermediate for the synthesis of this compound, 1-(dicyanomethylene)-3-hydroxy-1H-indene-2-carboxylic acid, was prepared by the Perkin reaction of 2-(3-oxoisobenzofuran-1(3H)-ylidene)malononitrile with tert-butyl acetoacetate in the presence of acetic anhydride and triethylamine. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H NMR, 13C NMR and IR spectroscopy, and mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

29 pages, 3726 KiB  
Review
Polymers Containing Phenothiazine, Either as a Dopant or as Part of Their Structure, for Dye-Sensitized and Bulk Heterojunction Solar Cells
by Muhammad Faisal Amin, Amna Anwar, Paweł Gnida and Bożena Jarząbek
Polymers 2024, 16(16), 2309; https://doi.org/10.3390/polym16162309 - 15 Aug 2024
Cited by 2 | Viewed by 1450
Abstract
Potential photovoltaic technology includes the newly developed dye-sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells. Owing to their diverse qualities, polymers can be employed in third-generation photovoltaic cells to specifically alter their device elements and frameworks. Polymers containing phenothiazine, either as [...] Read more.
Potential photovoltaic technology includes the newly developed dye-sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells. Owing to their diverse qualities, polymers can be employed in third-generation photovoltaic cells to specifically alter their device elements and frameworks. Polymers containing phenothiazine, either as a part of their structure or as a dopant, are easy and economical to synthesize, are soluble in common organic solvents, and have the potential to acquire desired electrochemical and photophysical properties by mere tuning of their chemical structures. Such polymers have therefore been used either as photosensitizers in dye-sensitized solar cells, where they have produced power conversion efficiency (PCE) values as high as 5.30%, or as donor or acceptor materials in bulk heterojunction solar cells. Furthermore, they have been employed to prepare liquid-free polymer electrolytes for dye-sensitized and bulk heterojunction solar cells, producing a PCE of 8.5% in the case of DSSCs. This paper reviews and analyzes almost all research works published to date on phenothiazine-based polymers and their uses in dye-sensitized and bulk heterojunction solar cells. The impacts of their structure and molecular weight and the amount when used as a dopant in other polymers on the absorption, photoluminescence, energy levels of frontier orbitals, and, finally, photovoltaic parameters are reviewed. The advantages of phenothiazine polymers for solar cells, the difficulties in their actual implementation and potential remedies are also evaluated. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications, 3rd Edition)
Show Figures

Figure 1

53 pages, 20673 KiB  
Review
The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells
by Laura Crociani
Molecules 2024, 29(15), 3625; https://doi.org/10.3390/molecules29153625 - 31 Jul 2024
Cited by 2 | Viewed by 2295
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction [...] Read more.
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor–acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE. Full article
Show Figures

Graphical abstract

14 pages, 2707 KiB  
Article
Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Properties
by Quentin Eynaud, Tomoyuki Koganezawa, Hidehiro Sekimoto, Mohamed el Amine Kramdi, Gilles Quéléver, Olivier Margeat, Jörg Ackermann, Noriyuki Yoshimoto and Christine Videlot-Ackermann
Electronics 2024, 13(9), 1752; https://doi.org/10.3390/electronics13091752 - 2 May 2024
Cited by 1 | Viewed by 1711
Abstract
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order [...] Read more.
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order and conversion efficiency. In the form of binary blends, the low-bandgap regioregular polymer donor poly(3-hexylthiophene-2,5-diyl), known as P3HT, is combined with the acceptor PC61BM, an inexpensive fullerene derivative. Two different non-fullerene acceptors (ITIC and eh-IDTBR) are added to this binary blend to form ternary blends. A systematic comparison between binary and ternary systems was carried out as a function of the thermal annealing temperature of organic layers (100 °C and 140 °C). The power conversion efficiency (PCE) is improved due to increased fill factor (FF) and open-circuit voltage (Voc) for thermal-annealed ternary blends at 140 °C. The transport properties of electrons and holes were investigated in binary and ternary blends following a Space-Charge-Limited Current (SCLC) protocol. A favorable balanced hole–electron mobility is obtained through the incorporation of either ITIC or eh-IDTBR. The charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from atomic force microscopy (AFM), contact water angle (CWA) measurement and 2D grazing-incidence X-ray diffractometry (2D-GIXRD). Full article
Show Figures

Figure 1

11 pages, 2199 KiB  
Article
Fast-Growth Polymer: Fullerene Bulk-Heterojunction Thin Films for Efficient Organic Photovoltaics
by Daewon Chung, Chandran Balamurugan, Byoungwook Park, Hyeonryul Lee, Ilhyeon Cho, Chaerin Yoon, Soyeon Park, Yong-Ryun Jo, Joonhyeon Jeon, Soonil Hong and Sooncheol Kwon
Nanomaterials 2024, 14(6), 502; https://doi.org/10.3390/nano14060502 - 11 Mar 2024
Cited by 2 | Viewed by 2015
Abstract
The bulk-heterojunction (BHJ) system that uses a π-conjugated polymer as an electron donor, and a fullerene derivative as an electron acceptor, is widely used in organic solar cells (OSCs) to facilitate efficient charge separation and extraction. However, the conventional BHJ system still [...] Read more.
The bulk-heterojunction (BHJ) system that uses a π-conjugated polymer as an electron donor, and a fullerene derivative as an electron acceptor, is widely used in organic solar cells (OSCs) to facilitate efficient charge separation and extraction. However, the conventional BHJ system still suffers from unwanted phase segregation caused by the existence of significant differences in surface energy between the two BHJ components and the charge extraction layer during film formation. In the present work, we demonstrate a sophisticated control of fast film-growth kinetics that can be used to achieve a uniform distribution of donor and acceptor materials in the BHJ layer of OSCs without undesirable phase separation. Our approach involves depositing the BHJ solution onto a spinning substrate, thus inducing rapid evaporation of the solvent during BHJ film formation. The fast-growth process prevents the fullerene derivative from migrating toward the charge extraction layer, thereby enabling a homogeneous distribution of the fullerene derivative within the BHJ film. The OSCs based on the fast-growth BHJ thin film are found to exhibit substantial increases in JSC, fill factor, and a PCE up to 11.27 mA/cm2, 66%, and 4.68%, respectively; this last value represents a remarkable 17% increase in PCE compared to that of conventional OSCs. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photovoltaics and Solar Cells)
Show Figures

Figure 1

16 pages, 3891 KiB  
Article
Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells
by Daniel Dodzi Yao Setsoafia, Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, David Ompong and Jai Singh
Energies 2024, 17(2), 313; https://doi.org/10.3390/en17020313 - 8 Jan 2024
Cited by 3 | Viewed by 1755
Abstract
We have simulated the effect of changing the end groups in BTP core with five organic units of 1,3-Indandione (IN), 2-thioxothiazolidin-4-one (Rhodanine), propanedinitrile (Malononitrile), (2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile) (CPTCN) and 2-(3-oxo-2,3-dihydroinden-1-ylidene (IC), and two halogenated units of (4F) IC and (4Cl) IC [...] Read more.
We have simulated the effect of changing the end groups in BTP core with five organic units of 1,3-Indandione (IN), 2-thioxothiazolidin-4-one (Rhodanine), propanedinitrile (Malononitrile), (2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile) (CPTCN) and 2-(3-oxo-2,3-dihydroinden-1-ylidene (IC), and two halogenated units of (4F) IC and (4Cl) IC on the optical and photovoltaic properties of the BTP DA’D core molecular unit. Thus modified, seven molecular structures are considered and their optical properties, including HOMO and LUMO energies and absorption spectra are simulated in this paper. On the basis of HOMO and LUMO energies, it is found that two of the seven molecules, BTP-IN and BTP-Rhodanine, can act as donors and the other four, BTP-(4F) IC, BTP-(4Cl) IC, BTP-CPTCN and BTP-IC, as acceptors in designing bulk heterojunction (BHJ) organic solar cells (OSCs). Using these combinations of donors and acceptors in the active layer, eight BHJ OSCs, such as BTP-IN: BTP-(4F) IC, BTP-IN: BTP-(4Cl) IC, BTP-IN: BTP-CPTCN, BTP-IN: BTP-IC, BTP-Rhodanine: BTP-(4F) IC, BTP-Rhodanine: BTP-(4Cl) IC, BTP-Rhodanine: BTP-CPTCN and BTP-Rhodanine: BTP-IC, are designed, and their photovoltaic performance is simulated. The photovoltaic parameters Jsc, Voc and FF for all eight BHJ OSCs and their power conversion efficiency (PCE) are simulated. It is found that the BHJ OSC of the BTP-IN: BTP-CPTCN donor–acceptor blend gives the highest PCE (14.73%) and that of BTP-Rhodanine: BTP-(4F) IC gives the lowest PCE (12.07%). These results offer promising prospects for the fabrication of high-efficiency BHJ OSCs with the blend of both donor and acceptor based on the same core structure. Full article
(This article belongs to the Special Issue Advances in High-Performance Perovskite Solar Cells)
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
One-Pot Synthesis of Semiconducting Quantum Dots–Organic Linker–Carbon Nanotubes for Potential Applications in Bulk Heterojunction Solar Cells
by Mallika Dasari, Baleeswaraiah Muchharla, Saikat Talapatra and Punit Kohli
Molecules 2023, 28(23), 7702; https://doi.org/10.3390/molecules28237702 - 22 Nov 2023
Cited by 1 | Viewed by 1649
Abstract
Materials and composites with the ability to convert light into electricity are essential for a variety of applications, including solar cells. The development of materials and processes needed to boost the conversion efficiency of solar cell materials will play a key role in [...] Read more.
Materials and composites with the ability to convert light into electricity are essential for a variety of applications, including solar cells. The development of materials and processes needed to boost the conversion efficiency of solar cell materials will play a key role in providing pathways for dependable light to electric energy conversion. Here, we show a simple, single-step technique to synthesize photoactive nanocomposites by coupling carbon nanotubes with semiconducting quantum dots using a molecular linker. We also discuss and demonstrate the potential application of nanocomposite for the fabrication of bulk heterojunction solar cells. Cadmium selenide (CdSe) quantum dots (QDs) were attached to multiwall carbon nanotubes (MWCNTs) using perylene-3, 4, 9, 10-tetracarboxylic-3, 4, 9, 10-dianhydride (PTCDA) as a molecular linker through a one-step synthetic route. Our investigations revealed that PTCDA tremendously boosts the density of QDs on MWCNT surfaces and leads to several interesting optical and electrical properties. Furthermore, the QD–PTCDA–MWCNTs nanocomposites displayed a semiconducting behavior, in sharp contrast to the metallic behavior of the MWCNTs. These studies indicate that, PTCDA interfaced between QDs and MWCNTs, acted as a molecular bridge which may facilitate the charge transfer between QDs and MWCNTs. We believe that the investigations presented here are important to discover simple synthetic routes for obtaining photoactive nanocomposites with several potential applications in the field of opto-electronics as well as energy conversion devices. Full article
Show Figures

Graphical abstract

Back to TopTop