Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells
Abstract
:1. Introduction
2. Computation and Results
2.1. Computational Procedure
2.2. Optical Properties
2.3. Design of BHJ OSCs
2.4. Photovoltaic Properties
3. Discussions
3.1. Optical Properties
3.2. Photovoltaic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Obobisa, E.S. Achieving 1.5 °C and net-zero emissions target: The role of renewable energy and financial development. Renew. Energy 2022, 188, 967–985. [Google Scholar] [CrossRef]
- Chen, L.X. Organic Solar Cells: Recent Progress and Challenges. ACS Energy Lett. 2019, 4, 2537–2539. [Google Scholar] [CrossRef]
- Facchetti, A. Polymer donor–polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Ram, K.S.; Ompong, D.; Rad, H.M.; Setsoafia, D.D.Y.; Singh, J. An Alternative Approach to Simulate the Power Conversion Efficiency of Bulk Heterojunction Organic Solar Cells. Phys. Status Solidi A 2021, 218, 2000597. [Google Scholar] [CrossRef]
- Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855. [Google Scholar] [CrossRef] [PubMed]
- Coropceanu, V.; Chen, X.-K.; Wang, T.; Zheng, Z.; Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 2019, 4, 689–707. [Google Scholar] [CrossRef]
- Benanti, T.L.; Venkataraman, D. Organic Solar Cells: An Overview Focusing on Active Layer Morphology. Photosynth. Res. 2006, 87, 73–81. [Google Scholar] [CrossRef]
- Alahmadi, A.N.M. Design of an Efficient PTB7:PC70BM-Based Polymer Solar Cell for 8% Efficiency. Polymers 2022, 14, 889. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Zou, X.; Yin, J.; Shi, X.; Li, Y.; Zhao, H.; Wang, L.; Ng, H.M.; Zou, B.; et al. Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor. Nat. Commun. 2023, 14, 2323. [Google Scholar] [CrossRef]
- Khalid, M.; Khan, M.U.; Razia, E.-t.; Shafiq, Z.; Alam, M.M.; Imran, M.; Akram, M.S. Exploration of efficient electron acceptors for organic solar cells: Rational design of indacenodithiophene based non-fullerene compounds. Sci. Rep. 2021, 11, 19931. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, X.; Sun, R.; Xu, L.-Y.; Chen, Z.; Zhang, M.; Zhu, H.; Min, J. All-small-molecule organic solar cells with 18.1% efficiency and enhanced stability enabled by improving light harvesting and nanoscale microstructure. Joule 2023, 7, 2845–2858. [Google Scholar] [CrossRef]
- Wang, T.; Brédas, J.-L. Organic Solar Cells Based on Non-fullerene Small-Molecule Acceptors: Impact of Substituent Position. Matter 2020, 2, 119–135. [Google Scholar] [CrossRef]
- Wang, H.-C.; Chen, C.-H.; Li, R.-H.; Lin, Y.-C.; Tsao, C.-S.; Chang, B.; Tan, S.; Yang, Y.; Wei, K.-H. Engineering the Core Units of Small-Molecule Acceptors to Enhance the Performance of Organic Photovoltaics. Sol. RRL 2020, 4, 2000253. [Google Scholar] [CrossRef]
- Park, J.S.; Sun, C.; Han, Y.; Kim, G.-U.; Phan, T.N.-L.; Kim, Y.-H.; Kim, B.J. 2D Outer Side Chain-Incorporated Y Acceptors for Highly Efficient Organic Solar Cells with Nonhalogenated Solvent and Annealing-Free Process. Adv. Energy Sustain. Res. 2022, 3, 2200070. [Google Scholar] [CrossRef]
- Suman; Singh, S.P. Suman; Singh, S.P. Impact of end groups on the performance of non-fullerene acceptors for organic solar cell applications. J. Mater. Chem. A 2019, 7, 22701–22729. [Google Scholar] [CrossRef]
- Xu, W.; Chang, Y.; Zhu, X.; Wei, Z.; Zhang, X.; Sun, X.; Lu, K.; Wei, Z. Organic solar cells based on small molecule donor and polymer acceptor. Chin. Chem. Lett. 2022, 33, 123–132. [Google Scholar] [CrossRef]
- Yuan, J.; Zou, Y. The history and development of Y6. Org. Electron. 2022, 102, 106436. [Google Scholar] [CrossRef]
- Wen, Z.-C.; Yin, H.; Hao, X.-T. Recent progress of PM6:Y6-based high efficiency organic solar cells. Surf. Interfaces 2021, 23, 100921. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; et al. Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv. Mater. 2021, 33, 2100830. [Google Scholar] [CrossRef]
- Dang, D.; Yu, D.; Wang, E. Conjugated Donor–Acceptor Terpolymers Toward High-Efficiency Polymer Solar Cells. Adv. Mater. 2019, 31, 1807019. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, X.; Jones, L.O.; Alzola, J.M.; Mukherjee, S.; Feng, L.-w.; Zhu, W.; Stern, C.L.; Huang, W.; Yu, J.; et al. Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ufimkin, P.; Aniés, F.; Hu, X.; Kafourou, P.; Rimmele, M.; Rapley, C.L.; Ding, B. Molecular engineering of Y-series acceptors for nonfullerene organic solar cells. SusMat 2022, 2, 591–606. [Google Scholar] [CrossRef]
- Ryu, H.S.; Park, S.Y.; Lee, T.H.; Kim, J.Y.; Woo, H.Y. Recent progress in indoor organic photovoltaics. Nanoscale 2020, 12, 5792–5804. [Google Scholar] [CrossRef]
- Cai, G.; Chen, Z.; Xia, X.; Li, Y.; Wang, J.; Liu, H.; Sun, P.; Li, C.; Ma, R.; Zhou, Y.; et al. Pushing the Efficiency of High Open-Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Adv. Sci. 2022, 9, 2200578. [Google Scholar] [CrossRef] [PubMed]
- Azzouzi, M.; Kirchartz, T.; Nelson, J. Factors Controlling Open-Circuit Voltage Losses in Organic Solar Cells. Trends Chem. 2019, 1, 49–62. [Google Scholar] [CrossRef]
- Jiang, M.; Zhi, H.-F.; Zhang, B.; Yang, C.; Mahmood, A.; Zhang, M.; Woo, H.Y.; Zhang, F.; Wang, J.-L.; An, Q. Controlling Morphology and Voltage Loss with Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells. ACS Energy Lett. 2023, 8, 1058–1067. [Google Scholar] [CrossRef]
- Setsoafia, D.D.Y.; Sreedhar Ram, K.; Mehdizadeh-Rad, H.; Ompong, D.; Murthy, V.; Singh, J. DFT and TD-DFT Calculations of Orbital Energies and Photovoltaic Properties of Small Molecule Donor and Acceptor Materials Used in Organic Solar Cells. J. Renew. Mater. 2022, 10, 2553–2567. [Google Scholar] [CrossRef]
- Setsoafia, D.D.Y.; Ram, K.S.; Mehdizadeh-Rad, H.; Ompong, D.; Singh, J. Density Functional Theory Simulation of Optical and Photovoltaic Properties of DRTB-T Donor-Based Organic Solar Cells. Int. J. Energy Res. 2023, 2023, 6696446. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Kim, K.; Jordan, K.D. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J. Phys. Chem. 1994, 98, 10089–10094. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Ma, H.; Liu, N.; Huang, J.-D. A DFT Study on the Electronic Structures and Conducting Properties of Rubrene and its Derivatives in Organic Field-Effect Transistors. Sci. Rep. 2017, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef] [PubMed]
- Bredas, J.-L. Mind the gap! Mater. Horiz. 2014, 1, 17–19. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, S.; Zhai, Y.; Xu, M.; Li, M.; Zhang, X. Optical-electronic performance and mechanism investigation of dihydroindolocarbazole-based organic dyes for DSSCs. Results Phys. 2021, 23, 103939. [Google Scholar] [CrossRef]
- Singh, J.; Narayan, M.; Ompong, D.; Zhu, F. Dissociation of charge transfer excitons at the donor–acceptor interface in bulk heterojunction organic solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 7095–7099. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Uddin, A. Open circuit voltage of organic solar cells: An in-depth review. Energy Environ. Sci. 2016, 9, 391–410. [Google Scholar] [CrossRef]
- Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar] [CrossRef]
- Wen, G.; Hu, R.; Su, X.; Chen, Z.; Zhang, C.; Peng, J.; Zou, X.; He, X.; Dong, G.; Zhang, W. Excited-state properties of Y-series small molecule semiconductors. Dye. Pigment. 2021, 192, 109431. [Google Scholar] [CrossRef]
- Li, G.; Feng, L.-W.; Mukherjee, S.; Jones, L.O.; Jacobberger, R.M.; Huang, W.; Young, R.M.; Pankow, R.M.; Zhu, W.; Lu, N.; et al. Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy Environ. Sci. 2022, 15, 645–659. [Google Scholar] [CrossRef]
Molecules | EHOMO (eV) | ELUMO (eV) | EHOMO (eV) | ELUMO (eV) | Eg (eV) |
---|---|---|---|---|---|
BTP-IN | −5.29 | −2.95 | 2.33 | ||
BTP-Malononitrile | −5.75 | −3.30 | 2.45 | ||
BTP-Rhodanine | −5.25 | −2.83 | 2.42 | ||
BTP-(4F) IC | −5.69 | −3.65 | –5.65 [34] | −4.10 [34] | 2.04 |
BTP-(4Cl) IC | −5.70 | −3.67 | −5.68 [35] | −4.12 [35] | 2.03 |
BTP-CPTCN | −5.58 | −3.54 | 2.04 | ||
BTP-IC | −5.56 | −3.48 | 2.08 |
Molecules | IP (eV) | EA (eV) | η (eV) | μ (=−χ) (eV) | Ree (meV) | Reh (meV) |
---|---|---|---|---|---|---|
BTP-IN | 5.29 | 2.95 | 1.17 | −4.12 | 187 | 125 |
BTP-Malononitrile | 5.75 | 3.30 | 1.23 | −4.53 | 238 | 142 |
BTP-Rhodanine | 5.25 | 2.83 | 1.21 | −4.04 | 271 | 154 |
BTP-(4F) IC | 5.69 | 3.65 | 1.02 | −4.67 | 138 | 170 |
BTP-(4Cl) IC | 5.70 | 3.67 | 1.01 | −4.68 | 130 | 167 |
BTP-CPTCN | 5.58 | 3.54 | 1.02 | −4.56 | 132 | 159 |
BTP-IC | 5.56 | 3.48 | 1.04 | −4.52 | 131 | 173 |
Molecules | Singlet Excitation Energy (eV) | Triplet Excitation Energy (eV) | BES (eV) | BET (eV) | Cal λmax (nm) | Osc. Strength (f) | LHE |
---|---|---|---|---|---|---|---|
BTP-IN | 2.117 | 1.446 | 0.214 | 0.885 | 586 | 1.76 | 0.98 |
BTP-Malononitrile | 2.255 | 1.52 | 0.199 | 0.934 | 550 | 1.77 | 0.98 |
BTP-Rhodanine | 2.164 | 1.522 | 0.254 | 0.896 | 573 | 2.04 | 0.99 |
BTP-(4F) IC | 1.853 | 1.263 | 0.189 | 0.779 | 669 | 2.12 | 0.99 |
BTP-(4Cl) IC | 1.830 | 1.260 | 0.180 | 0.700 | 678 | 2.0 | 0.99 |
BTP-CPTCN | 1.857 | 1.252 | 0.185 | 0.785 | 668 | 2.17 | 0.99 |
BTP-IC | 1.881 | 1.293 | 0.199 | 0.787 | 659 | 2.08 | 0.99 |
Molecular Blends | (V) | (mA/cm2) | FF % | PCE % | (eV) | (eV) |
---|---|---|---|---|---|---|
BTP-IN: BTP-(4F) IC | 1.34 | 11.07 | 90.6 | 13.24 | 0.70 | 0.40 |
BTP-IN: BTP-(4Cl) IC | 1.32 | 11.27 | 90.4 | 13.25 | 0.72 | 0.41 |
BTP-IN: BTP-CPTCN | 1.45 | 11.14 | 91.2 | 14.73 | 0.59 | 0.29 |
BTP-IN: BTP-IC | 1.51 | 10.63 | 92.6 | 14.3 | 0.53 | 0.27 |
BTP-Rhodanine: BTP-(4F) IC | 1.30 | 10.27 | 90.4 | 12.07 | 0.82 | 0.31 |
BTP-Rhodanine: BTP-(4Cl) IC | 1.28 | 10.46 | 90.3 | 12.09 | 0.84 | 0.45 |
BTP-Rhodanine: BTP-CPTCN | 1.41 | 9.82 | 91.0 | 12.61 | 0.71 | 0.33 |
BTP-Rhodanine: BTP-IC | 1.47 | 9.82 | 91.3 | 13.20 | 0.65 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setsoafia, D.D.Y.; Ram, K.S.; Mehdizadeh-Rad, H.; Ompong, D.; Singh, J. Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells. Energies 2024, 17, 313. https://doi.org/10.3390/en17020313
Setsoafia DDY, Ram KS, Mehdizadeh-Rad H, Ompong D, Singh J. Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells. Energies. 2024; 17(2):313. https://doi.org/10.3390/en17020313
Chicago/Turabian StyleSetsoafia, Daniel Dodzi Yao, Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, David Ompong, and Jai Singh. 2024. "Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells" Energies 17, no. 2: 313. https://doi.org/10.3390/en17020313
APA StyleSetsoafia, D. D. Y., Ram, K. S., Mehdizadeh-Rad, H., Ompong, D., & Singh, J. (2024). Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells. Energies, 17(2), 313. https://doi.org/10.3390/en17020313