Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = budget standards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 - 1 Aug 2025
Viewed by 142
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 503
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

18 pages, 3951 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020)
by Jinxia Wu, Yue Chen, Wei Yang, Hongtian Leng, Qingzhong Wen, Minmin Li, Yunrong Huang and Jingfei Wan
Forests 2025, 16(7), 1076; https://doi.org/10.3390/f16071076 - 27 Jun 2025
Viewed by 439
Abstract
In the context of accelerating global climate change, the accurate quantification of forest carbon sequestration at the regional scale is of critical importance to estimate carbon budgets and formulate targeted ecological policies. This study systematically investigated the spatiotemporal dynamics and driving mechanisms of [...] Read more.
In the context of accelerating global climate change, the accurate quantification of forest carbon sequestration at the regional scale is of critical importance to estimate carbon budgets and formulate targeted ecological policies. This study systematically investigated the spatiotemporal dynamics and driving mechanisms of arbor forest carbon stocks between 2016 and 2020 in Yunnan Province, China. Based on the “One Map” forest resource inventory, the continuous biomass expansion factor (CBEF) method, standard deviational ellipse (SDE) analysis, and multiple linear regression (MLR) modeling, the results showed the following. (1) Arbor forest carbon stocks steadily increased from 832.13 Mt to 938.84 Mt, and carbon density increased from 41.92 to 42.32 t C·hm−2. Carbon stocks displayed a dual high pattern in the northwest and southwest, with lower values in the central and eastern regions. (2) The spatial centroid of carbon stocks shifted 4.8 km eastward, driven primarily by afforestation efforts in central and eastern Yunnan. (3) The MLR results revealed that precipitation and economic development were significant positive drivers, whereas temperature, elevation, and anthropogenic disturbances were major limiting factors. A negative correlation to afforestation area indicated a diminished need for new plantations as forest quality and quantity improved. These results provided a theoretical foundation for spatially differentiated carbon sequestration strategies in Yunnan, providing key insights for reinforcing ecological security in Southwest China and enhancing national carbon neutrality objectives. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

31 pages, 1086 KiB  
Article
Measurement of the Functional Size of Web Analytics Implementation: A COSMIC-Based Case Study Using Machine Learning
by Ammar Abdallah, Alain Abran, Munthir Qasaimeh, Malik Qasaimeh and Bashar Abdallah
Future Internet 2025, 17(7), 280; https://doi.org/10.3390/fi17070280 - 25 Jun 2025
Viewed by 405
Abstract
To fully leverage Google Analytics and derive actionable insights, web analytics practitioners must go beyond standard implementation and customize the setup for specific functional requirements, which involves additional web development efforts. Previous studies have not provided solutions for estimating web analytics development efforts, [...] Read more.
To fully leverage Google Analytics and derive actionable insights, web analytics practitioners must go beyond standard implementation and customize the setup for specific functional requirements, which involves additional web development efforts. Previous studies have not provided solutions for estimating web analytics development efforts, and practitioners must rely on ad hoc practices for time and budget estimation. This study presents a COSMIC-based measurement framework to measure the functional size of Google Analytics implementations, including two examples. Next, a set of 50 web analytics projects were sized in COSMIC Function Points and used as inputs to various machine learning (ML) effort estimation models. A comparison of predicted effort values with actual values indicated that Linear Regression, Extra Trees, and Random Forest ML models performed well in terms of low Root Mean Square Error (RMSE), high Testing Accuracy, and strong Standard Accuracy (SA) scores. These results demonstrate the feasibility of applying functional size for web analytics and its usefulness in predicting web analytics project efforts. This study contributes to enhancing rigor in web analytics project management, thereby enabling more effective resource planning and allocation. Full article
Show Figures

Figure 1

17 pages, 7728 KiB  
Article
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
by Antonio Manco, Matteo Giaccone, Luca Vitale, Giuseppe Maglione, Maria Riccardi, Bruno Di Matteo, Andrea Esposito, Vincenzo Magliulo and Anna Tedeschi
Horticulturae 2025, 11(6), 708; https://doi.org/10.3390/horticulturae11060708 - 19 Jun 2025
Viewed by 738
Abstract
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under [...] Read more.
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under two nitrogen fertilization methods: granular fertilization versus low-frequency fertigation with urea, each supplying about 63 kg N ha−1. Eight automated static chambers coupled to a cavity ring-down spectrometer monitored soil CO2 and N2O fluxes throughout the season. Cumulative emissions did not differ between treatments (CO2: 811 ± 6 g m−2 vs. 881 ± 4 g m−2; N2O: 0.038 ± 0.008 g m−2 vs. 0.041 ± 0.015 g m−2, fertigation vs. granular), and marketable yield remained at ~11 t ha−1, leaving product-scaled global warming potential (GWP) unchanged. Although representing less than 2% of measured fluxes, “hot moments,” burst emissions exceeding four standard deviations (SD) from the mean, accounted for up to 4% of seasonal CO2 and 19% of N2O. Fertigation doubled the frequency of these events but reduced their peak magnitude, whereas granular application produced fewer but more extreme bursts (>11 SD). Results showed that fertigation did not mitigate GHGs emission nor improve productivity for Mediterranean pepper, mainly due to the low application frequency and the use of a urea fertilizer. Moreover, we can highlight that in horticultural systems, omitting ‘hot moments’ leads to systematic underestimation of emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

28 pages, 8777 KiB  
Article
Exploring Carbon-Fiber UAV Structures as Communication Antennas for Adaptive Relay Applications
by Cristian Vidan, Andrei Avram, Lucian Grigorie, Grigore Cican and Mihai Nacu
Electronics 2025, 14(12), 2473; https://doi.org/10.3390/electronics14122473 - 18 Jun 2025
Viewed by 517
Abstract
This study investigates the electromagnetic performance of two carbon fiber monopole antennas integrated into a UAV copter frame, with emphasis on design adaptation, impedance matching, and propagation behavior. A comprehensive experimental campaign was conducted to characterize key parameters such as center frequency, bandwidth, [...] Read more.
This study investigates the electromagnetic performance of two carbon fiber monopole antennas integrated into a UAV copter frame, with emphasis on design adaptation, impedance matching, and propagation behavior. A comprehensive experimental campaign was conducted to characterize key parameters such as center frequency, bandwidth, gain, VSWR, and S11. Both antennas exhibited dual-band resonance at approximately 381 MHz and 1.19 GHz, each achieving a 500 MHz bandwidth where VSWR ≤ 2. The modified antenna achieved a minimum reflection coefficient of –14.6 dB and a VSWR of 1.95 at 381.45 MHz, closely aligning with theoretical predictions. Gain deviations between measured (0.15–0.19 dBi) and calculated (0.19 dBi) values remained within 0.04 dB, while received power fluctuations did not exceed 1.3 dB under standard test conditions despite the composite material’s finite conductivity. Free-space link-budget tests at 0.5 m and 2 m of separation revealed received-power deviations of 0.9 dB and 1.3 dB, respectively, corroborating the Friis model. Radiation pattern measurements in both azimuth and elevation planes confirmed good directional behavior, with minor side lobe variations, where Antenna A displayed variations between 270° and 330° in azimuth, while Antenna B remained more uniform. A 90° polarization mismatch led to a 15 dBm signal drop, and environmental obstructions caused losses of 9.4 dB, 12.6 dB, and 18.3 dB, respectively, demonstrating the system’s sensitivity to alignment and surroundings. Additionally, signal strength changes observed in a Two-Ray propagation setup validated the importance of ground reflection effects. Small-scale fading analysis at 5 m LOS indicated a Rician-distributed envelope with mean attenuation of 53.96 dB, σdB = 5.57 dB, and a two-sigma interval spanning 42.82 dB to 65.11 dB; the fitted K-factor confirmed the dominance of the LOS component. The findings confirm that carbon fiber UAV frames can serve as effective directional antenna supports, providing proper alignment and tuning. These results support the future integration of lightweight, structure-embedded antennas in UAV systems, with potential benefits in communication efficiency, stealth, and design simplification. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

29 pages, 1086 KiB  
Article
Economic Logistics Optimization in Fire and Rescue Services: A Case Study of the Slovak Fire and Rescue Service
by Martina Mandlikova and Andrea Majlingova
Logistics 2025, 9(2), 74; https://doi.org/10.3390/logistics9020074 - 12 Jun 2025
Viewed by 822
Abstract
Background: Economic logistics in fire and rescue services is a critical determinant of operational readiness, fiscal sustainability, and resilience to large-scale emergencies. Despite its strategic importance, logistics remains under-researched in Central and Eastern European contexts, where legacy governance structures and EU-funded modernization [...] Read more.
Background: Economic logistics in fire and rescue services is a critical determinant of operational readiness, fiscal sustainability, and resilience to large-scale emergencies. Despite its strategic importance, logistics remains under-researched in Central and Eastern European contexts, where legacy governance structures and EU-funded modernization coexist with systemic inefficiencies. This study focuses on the Slovak Fire and Rescue Service (HaZZ) as a case to explore how economic logistics systems can be restructured for greater performance and value. Objective: The objective of this paper was to evaluate the structure, performance, and reform potential of the logistics system supporting HaZZ, with a focus on procurement efficiency, lifecycle costing, digital integration, and alignment with EU civil protection standards. Methods: A mixed-methods design was applied, comprising the following: (1) Institutional analysis of governance, budgeting, and legal mandates based on semi-structured expert interviews with HaZZ and the Ministry of Interior officers (n = 12); (2) comparative benchmarking with Germany, Austria, the Czech Republic, and the Netherlands; (3) financial analysis of national logistics expenditures (2019–2023) using Total Cost of Ownership (TCO) principles, completed with the visualization of cost trends and procurement price variance through original heat maps and time-series graphs. Results: The key findings are as follows: (1) HaZZ operates a formally centralized but practically fragmented logistics model across 51 district units, lacking national coordination mechanisms and digital infrastructure; (2) Maintenance costs have risen by 42% between 2019 and 2023 despite increasing capital investment due to insufficient lifecycle planning and asset heterogeneity; (3) Price variance for identical equipment categories across regions exceeds 30%, highlighting the inefficiencies in decentralized procurement; (4) Slovakia lacks a national Logistics Information System (LIS), unlike peer countries which have deployed integrated digital platforms (e.g., CELIS in the Czech Republic); (5) Benchmarking reveals high-impact practices in centralized procurement, lifecycle-based contracting, regional logistics hubs, and performance accountability—particularly in Austria and the Netherlands. Impacts: Four high-impact, feasible reforms were proposed: (1) Establishment of a centralized procurement framework; (2) national LIS deployment to unify inventory and asset tracking; (3) adoption of lifecycle-based and performance-based contracting models; (4) development of regional logistics hubs using underutilized infrastructure. This study is among the first to provide an integrated economic and institutional analysis of the Fire and Rescue Service logistics in a post-socialist EU member state. It offers a structured, transferable reform roadmap grounded in comparative evidence and adapted to Slovakia’s hybrid governance model. The research bridges gaps between modernization policy, procurement law, and digital public administration in the context of emergency services. Full article
(This article belongs to the Special Issue Current & Emerging Trends to Achieve Sustainable Supply Trends)
Show Figures

Figure 1

12 pages, 1366 KiB  
Article
Budget Impact Analysis of the Use of Specific Biomarkers GFAP and UCH-L1 in the Management of Mild Traumatic Brain Injury in Spain
by Francisco Moya Torrecilla, Gemma Álvarez-Corral, Eva Gutiérrez Pérez, Daniel Morell-Garcia, Juan Ortega Pérez, Beatriz Miriam Rodríguez, Leticia Sánchez Martín and Francisco Temboury Ruiz
J. Clin. Med. 2025, 14(12), 4095; https://doi.org/10.3390/jcm14124095 - 10 Jun 2025
Viewed by 494
Abstract
Objective: To evaluate the economic impact associated with the use of specific brain biomarkers glial fibrillary acid protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in adult patients with suspected mild traumatic brain injury (TBI) in a standard Spanish hospital setting. Methods: We [...] Read more.
Objective: To evaluate the economic impact associated with the use of specific brain biomarkers glial fibrillary acid protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in adult patients with suspected mild traumatic brain injury (TBI) in a standard Spanish hospital setting. Methods: We used a budget impact analysis (BIA) to compare the cost of standard of care using head computed tomography (CT) to evaluate intracranial injury with a scenario incorporating specific biomarkers GFAP and UCH-L1 in an estimated population of 3500 adult patients attending the hospital emergency department with a score of 13 to 15 on the Glasgow Coma Scale (GCS). The probabilities associated with clinical procedures were obtained from a multidisciplinary group of experts from Spanish hospitals and supplemented with data from the literature. Costs were estimated using hospital tariffs from the Spanish autonomous communities and other official sources. Results: The incorporation of specific biomarkers GFAP and UCH-L1 in the management of mild TBI could generate an estimated annual savings of EUR 696,634 in a standard Spanish hospital, mainly due to reduced CT use. The average savings per patient would be EUR 199.04, and the care time would be reduced by 111 min. Sensitivity analysis, with variations of ±20% in the parameters, confirms these savings. Conclusions: This study suggests that the use of specific biomarkers GFAP and UCH-L1 in the management of mild TBI patients in Spain could reduce the average cost per patient, generating significant savings for hospitals. Future studies that incorporate data from clinical records will help validate these results. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Figure 1

27 pages, 1398 KiB  
Article
Improving Material Tracking for Sustainable Construction: A Standard Operating Procedure (SOP) Framework for Resource Efficiency
by Dema Munef Ahmad, László Gáspár, Hummam Mohammed Shaheen, Talal Ahmad Al-Shihabi, Rana Ahmad Maya and Francisco Silva Pinto
Buildings 2025, 15(11), 1941; https://doi.org/10.3390/buildings15111941 - 4 Jun 2025
Cited by 1 | Viewed by 596
Abstract
Inefficient material tracking continues to be a major challenge in sustainable construction, often leading to unnecessary waste, budget overruns, and project delays. While many digital tools have been introduced in recent years, there is still a lack of practical, field-tested frameworks that combine [...] Read more.
Inefficient material tracking continues to be a major challenge in sustainable construction, often leading to unnecessary waste, budget overruns, and project delays. While many digital tools have been introduced in recent years, there is still a lack of practical, field-tested frameworks that combine these technologies with clear, structured procedures, especially in resource-constrained environments. This study introduces a Standard Operating Procedure (SOP) framework designed to improve materials tracking systems (MTSs) by integrating QR codes, GPS tracking, and cloud-based dashboards. Together, these tools support more accurate planning, smoother coordination, and real-time monitoring from the early design stages to on-site implementation. A mixed-methods approach was used, combining surveys with construction professionals and focus group discussions with engineers, IT specialists, and logistics staff. The findings highlight procurement and implementation as the phases most prone to inefficiencies, particularly around material receiving, quality checks, and on-site placement. The validated SOP framework shows strong potential to improve tracking accuracy, reduce material waste, and streamline construction workflows. It offers a flexible, easy-to-use system for integrating sustainability into everyday project practices. Looking ahead, this study also points to future opportunities for applying AI-based tools—such as predictive tracking and automated quality checks—to further improve decision-making and resource efficiency in construction projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 256 KiB  
Article
The Impact of Foreign Direct Investment on Economic Development in South Asia and Southeastern Asia
by Darlington Chizema
Economies 2025, 13(6), 157; https://doi.org/10.3390/economies13060157 - 2 Jun 2025
Viewed by 1531
Abstract
This study examines the impact of inward foreign direct investment (FDI) on economic growth in South and Southeast Asia from 2006 to 2022, using a comprehensive panel dataset and multiple econometric techniques. The baseline estimation employs Feasible Generalized Least Squares (FGLS), with robustness [...] Read more.
This study examines the impact of inward foreign direct investment (FDI) on economic growth in South and Southeast Asia from 2006 to 2022, using a comprehensive panel dataset and multiple econometric techniques. The baseline estimation employs Feasible Generalized Least Squares (FGLS), with robustness checks using Fixed Effects with Driscoll–Kraay standard errors, the Common Correlated Effects Mean Group (CCEMG) estimator, and Two-Stage Least Squares (2SLS). The results consistently show that FDI and Gross Capital Formation (GCF) significantly promote growth, while the Human Capital Index (HCI), Trade Openness (TO), and Inflation (I) have limited or adverse effects. Government spending (GS) is negatively associated with growth, suggesting inefficiencies in public resource allocation. The findings underscore the importance of enhancing absorptive capacity through investments in education, institutional quality, and trade facilitation. Policy recommendations include adopting performance-based budgeting and independent audits, drawing on Malaysia’s anti-corruption and audit reforms. To address the weak impact of human capital, this study advocates for expanding public–private partnerships in technical and vocational education, modelled on Singapore’s SkillsFuture initiative. Additionally, digital investment platforms like Indonesia’s Online Single Submission (OSS) system and infrastructure upgrades are recommended to reduce trade costs and improve the investment climate. Finally, the study calls for deeper regional integration through harmonized investment regulations under the ASEAN Comprehensive Investment Agreement (ACIA) and the development of cross-border special economic zones (SEZs). These recommendations are grounded in empirical evidence and tailored to the region’s structural characteristics, offering actionable insights for policy-makers. Full article
(This article belongs to the Special Issue The Asian Economy: Constraints and Opportunities)
37 pages, 1769 KiB  
Review
Economic and Social Aspects of the Space Sector Development Based on the Modified Structure–Conduct–Performance Framework
by Michał Pietrzak
World 2025, 6(2), 79; https://doi.org/10.3390/world6020079 - 1 Jun 2025
Viewed by 2867
Abstract
Background: The global space economy has grown remarkably, witnessing a 10-fold increase in active satellites during the last 15 years. This growth was accompanied by both the increase in geopolitical tensions feeding huge investments (the New Space Race), on the one hand, and [...] Read more.
Background: The global space economy has grown remarkably, witnessing a 10-fold increase in active satellites during the last 15 years. This growth was accompanied by both the increase in geopolitical tensions feeding huge investments (the New Space Race), on the one hand, and the transformation, shifting from a domain historically dominated by government-led programs to one partially energized by commercial players and innovative business models (“New Space”), on the other hand. Objective: To assess the space economy’s current state and future prospects by considering its economic and social dimensions. Methods: Over 120 scholarly articles and “grey” literature positions (e.g., industry reports) were reviewed. The review was structured by a modified Structure–Conduct–Performance framework originally developed by industrial organization (IO) scholars. Findings: Outer space creates extremely harsh conditions for placing and operating objects in orbits, which results in high launching costs, steep reliability standards, capital intensity, and risks that are unmatched in most terrestrial industries. One of the main motivations to venture into this harsh domain was, and still is, the desire to dominate or the fear of being subjugated by others. This “original sin”, born of geopolitical rivalries, continues to cast a shadow over the space economy, channeling the majority of public space budgets into military-related programs. Moreover, many space technologies have a dual-use feature. Not surprisingly, governments are still the major source of demand, dominating midstream in the space value chain. This triad—harsh physics, great power rivalry, and a state-centric midstream—produces a specificity of the sector. In the recent two decades, new entrants (called “New Space”) have begun altering market structure, resulting in new conduct patterns focused on pursuits towards serial production, reusability, and lowering costs. Performance outcomes are mixed. While some efficiency gains are unprecedented, some doubts about market power and negative externalities arise. The assessment of the space economy’s performance is a challenge, as such, due to the blurred boundary between political objectives (supplying public goods, mitigating negative externalities) and economic optimization. Such trade-offs are becoming even more complicated considering the potential conflict between national and global perspectives. The paper offers a preliminary, descriptive study of the space economy through the lens of the modified S-C-P framework, laying basic foundations for the future, possibly more rigorous research of the increasingly important space economy. Full article
Show Figures

Figure 1

21 pages, 2795 KiB  
Article
Electricity Cost Forecasting in the South African Mining Industry: A Gap Analysis
by Andrea Cronje, Jean H. van Laar, Johann F. van Rensburg and Jan C. Vosloo
Mining 2025, 5(2), 34; https://doi.org/10.3390/mining5020034 - 30 May 2025
Viewed by 534
Abstract
Despite the rapid improvement in the availability and resolution of real-time electricity data, budget development processes in mining have remained relatively unchanged. Currently, there is no standard for the evaluation of mine electricity cost budgets. This study aims to determine whether forecasting processes [...] Read more.
Despite the rapid improvement in the availability and resolution of real-time electricity data, budget development processes in mining have remained relatively unchanged. Currently, there is no standard for the evaluation of mine electricity cost budgets. This study aims to determine whether forecasting processes used by mines produce budgets of sufficient quality and resolution to be used as a tool for daily energy- and cost management. A literature review was conducted to determine a set of best practices for electricity budgeting on mines. These findings were used to develop a survey to evaluate the current state of budgeting processes on South African mines. Surveys were conducted at 41 mine business units. Survey results were processed and analyzed and found that there are significant shortcomings in complying with the identified best practices. The majority of mines produced forecasts in lower resolutions than actual available data, thereby reducing their usefulness as energy management tools. The methods currently employed by mining sites are not scalable and are vulnerable to human error. Only 7% of participating business units’ budgets passed the identified best practices. Adherence to best practices, identified in this paper, will assist mines in improving electricity cost forecasts for more proactive- and sustainable energy management. This will also assist the industry in aligning with the UN Sustainable Development Goals (SDGs) of Affordable and Clean Energy (SDG 7), Industry, Innovation, and Infrastructure (SDG 9), and Responsible Consumption and Production (SDG 12). Full article
(This article belongs to the Special Issue Mine Management Optimization in the Era of AI and Advanced Analytics)
Show Figures

Graphical abstract

15 pages, 2420 KiB  
Article
Performance Comparison of Multipixel Biaxial Scanning Direct Time-of-Flight Light Detection and Ranging Systems With and Without Imaging Optics
by Konstantin Albert, Manuel Ligges, Andre Henschke, Jennifer Ruskowski, Menaka De Zoysa, Susumu Noda and Anton Grabmaier
Sensors 2025, 25(10), 3229; https://doi.org/10.3390/s25103229 - 21 May 2025
Viewed by 554
Abstract
The laser pulse detection probability of a scanning direct time-of-flight light detection and ranging (LiDAR) measurement is evaluated based on the optical signal distribution on a multipixel single photon avalanche diode (SPAD) array. These detectors intrinsically suffer from dead-times after the successful detection [...] Read more.
The laser pulse detection probability of a scanning direct time-of-flight light detection and ranging (LiDAR) measurement is evaluated based on the optical signal distribution on a multipixel single photon avalanche diode (SPAD) array. These detectors intrinsically suffer from dead-times after the successful detection of a single photon and, thus, allow only for limited counting statistics when multiple returning laser photons are imaged on a single pixel. By blurring the imaged laser spot, the transition from single-pixel statistics with high signal intensity to multipixel statistics with less signal intensity is examined. Specifically, a comparison is made between the boundary cases in which (i) the returning LiDAR signal is focused through optics onto a single pixel and (ii) the detection is performed without lenses using all available pixels on the sensor matrix. The omission of imaging optics reduces the overall system size and minimizes optical transfer losses, which is crucial given the limited laser emission power due to safety standards. The investigation relies on a photon rate model for interfering (background) and signal light, applied to a simulated first-photon sensor architecture. For single-shot scenarios that reflect the optimal use of the time budget in scanning LiDAR systems, the lens-less and blurred approaches can achieve comparable or even superior results to the focusing system. This highlights the potential of fully solid-state scanning LiDAR systems utilizing optical phase arrays or multidirectional laser chips. Full article
(This article belongs to the Special Issue SPAD-Based Sensors and Techniques for Enhanced Sensing Applications)
Show Figures

Graphical abstract

22 pages, 1554 KiB  
Article
Designing Sustainable Asphalt Pavement Structures with a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA): A Case Study from a Developing Country
by Oswaldo Guerrero-Bustamante, Rafael Camargo, Jose Duque, Gilberto Martinez-Arguelles, Rodrigo Polo-Mendoza, Carlos Acosta and Michel Murillo
Designs 2025, 9(3), 65; https://doi.org/10.3390/designs9030065 - 20 May 2025
Cited by 1 | Viewed by 1477
Abstract
Pavement structures are one of the most critical civil infrastructures for the socio-economic development of communities. However, pavement construction demands an elevated financial budget and generates large amounts of environmental impacts. Accordingly, the new trends in daily engineering practices have integrated sustainability criteria [...] Read more.
Pavement structures are one of the most critical civil infrastructures for the socio-economic development of communities. However, pavement construction demands an elevated financial budget and generates large amounts of environmental impacts. Accordingly, the new trends in daily engineering practices have integrated sustainability criteria verification into traditional pavement design procedures. Thus, this research explores the sustainability implications of asphalt pavement incorporating a Cement-Treated Base (CTB) and Recycled Concrete Aggregate (RCA) within the local context of a Global South country. The environmental and economic performances of four different types of asphalt structures were assessed, each differing in how the CTB is employed. These structures include conventional flexible pavement, semi-rigid pavement, inverted base pavement, and simple composite pavement. Furthermore, each structure is evaluated under four varying contents of coarse RCA (i.e., 0%, 15%, 30%, and 45%) in their asphalt mixtures. This approach results in a comprehensive analysis spanning 16 unique scenarios, providing valuable insights into the interplay between RCA content and CTB inclusion for sustainable infrastructure development. It is important to highlight that the Life-Cycle Assessment and Life-Cycle Cost Analysis methodologies were implemented to perform the environmental and economic inspections, respectively. Overall, this investigation demonstrates that although pavement structures comply with mechanistic design standards, they can yield significantly different cost effectiveness and environmental burdens from each other. Therefore, executing a sustainability-related appraisal is essential for accomplishing definitive infrastructure designs. Consequently, this research effort is expected to be used by stakeholders (e.g., civil engineers, designers, and governmental agencies) to support data-driven decision making in the road infrastructure industry. Full article
Show Figures

Figure 1

21 pages, 4151 KiB  
Article
Research on Resource Consumption Standards for Highway Electromechanical Equipment Based on Monte Carlo Model
by Linxuan Liu, Wei Tian, Xiaomin Dai and Liang Song
Sustainability 2025, 17(10), 4640; https://doi.org/10.3390/su17104640 - 19 May 2025
Viewed by 394
Abstract
The increasing complexity of highway electromechanical systems has created a critical need to improve the accuracy of resource consumption standards. Traditional deterministic methods often fail to capture inherent variability in resource usage, resulting in significant discrepancies between budget estimates and actual costs. To [...] Read more.
The increasing complexity of highway electromechanical systems has created a critical need to improve the accuracy of resource consumption standards. Traditional deterministic methods often fail to capture inherent variability in resource usage, resulting in significant discrepancies between budget estimates and actual costs. To address this issue for a specific device, this study develops a probabilistic framework based on Monte Carlo simulation, using manual barrier gate installation as a case study. First, probability distribution models for key parameters were established by collecting and statistically analyzing field data. Next, Monte Carlo simulation generated 100,000 pseudo-observations, yielding mean labor consumption of 1.08 workdays (SD 0.29), expansion bolt usage of 6.02 sets (SD 0.97), and equipment shifts of 0.20 (SD 0.10). Comparison with the “Highway Engineering Budget Standards” (JTG/T 3832-2018) revealed deviations of 1% to 4%, and comparison with market bid prices showed errors below 2%. These results demonstrate that the proposed method accurately captures dynamic fluctuations in resource consumption, aligning with both national norms and actual tender data. In conclusion, the framework offers a robust and adaptable tool for cost estimation and resource allocation in highway electromechanical projects, enhancing budgeting accuracy and reducing the risk of cost overruns. Full article
Show Figures

Figure 1

Back to TopTop