Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = brlA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9422 KiB  
Article
Oxygenase Ppo-Regulated Moldy Volatiles Affect Growth, Pathogenicity and Patulin Biosynthesis of Penicillium expansum Through G Protein Signaling
by Di Gong, Tingting Yan, Xuexue Wang, Dov Prusky, Danfeng Long, Ying Zhang and Yang Bi
J. Fungi 2024, 10(12), 827; https://doi.org/10.3390/jof10120827 - 27 Nov 2024
Viewed by 1029
Abstract
Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. [...] Read more.
Precocious sexual inducer (psi)-producing oxygenases (Ppos) participate in the production of C8 moldy volatile compounds (MVOCs), and these compounds could act as signal molecules modulating G protein signaling cascades, which participates in the growth and development, secondary metabolisms and pathogenicity of filamentous fungi. In this study, PePpoA and PePpoC proteins were identified in Penicillium expansum. The deletion of ppoA decreased C8 MVOC production in P. expansum, while they were not detected in the ΔppoC strain (p < 0.05). In addition, down-regulated cAMP/PKA and PKC/PLC signaling showed in the two mutants (p < 0.05). The two mutants showed slow colony growth and down-regulated expression of genes regulating spore development (abaA, wetA, brlA and vosA) with broken morphology of spore and hyphae. In addition, the two mutants had decreased pathogenicity on apple fruit and less patulin production in vitro and in vivo. Compared with ΔppoA strain, the deletion of ppoC inhibited G protein signaling pathways more, and the ΔppoC strain had more defective growth and development as well as reduced pathogenicity and patulin production (p < 0.05). Therefore, PePpoC proteins affect more growth and development, patulin biosynthesis and pathogenicity of P. expansum by regulating C8 MVOC-mediated G protein signaling transduction. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases)
Show Figures

Figure 1

13 pages, 3492 KiB  
Article
Rad6 Regulates Conidiation by Affecting the Biotin Metabolism in Beauveria bassiana
by Yuhan Guo, Haomin He, Yi Guan and Longbin Zhang
J. Fungi 2024, 10(9), 613; https://doi.org/10.3390/jof10090613 - 28 Aug 2024
Viewed by 1046
Abstract
Rad6 is a canonical ubiquitin-conjugating enzyme known for its role in regulating chromosome-related cellular processes in yeast and has been proven to have multiple functions in Beauveria bassiana, including insect-pathogenic lifestyle, UV damage repair, and conidiation. However, previous studies have only reported [...] Read more.
Rad6 is a canonical ubiquitin-conjugating enzyme known for its role in regulating chromosome-related cellular processes in yeast and has been proven to have multiple functions in Beauveria bassiana, including insect-pathogenic lifestyle, UV damage repair, and conidiation. However, previous studies have only reported the key role of Rad6 in regulating conidial production in a nutrient-rich medium, without any deep mechanism analyses. In this study, we found that the disruption of Rad6 leads to a profound reduction in conidial production, irrespective of whether the fungus is cultivated in nutrient-rich or nutrient-poor environments. The absence of rad6 exerts a suppressive effect on the transcription of essential genes in the central developmental pathway, namely, brlA, abaA, and wetA, resulting in a direct downregulation of conidiation capacity. Additionally, mutant strains exhibited a more pronounced decline in both conidial generation and hyphal development when cultured in nutrient-rich conditions. This observation correlates with the downregulation of the central developmental pathway (CDP) downstream gene vosA and the upregulation of flaA in nutrient-rich cultures. Moreover, single-transcriptomics analyses indicated that irregularities in biotin metabolism, DNA repair, and tryptophan metabolism are the underlying factors contributing to the reduced conidial production. Comprehensive dual transcriptomics analyses pinpointed abnormal biotin metabolism as the primary cause of conidial production decline. Subsequently, we successfully restored conidial production in the Rad6 mutant strain through the supplementation of biotin, further confirming the transcriptomic evidence. Altogether, our findings underscore the pivotal role of Rad6 in influencing biotin metabolism, subsequently impacting the expression of CDP genes and ultimately shaping the asexual life cycle of B. bassiana. Full article
Show Figures

Figure 1

19 pages, 2235 KiB  
Review
Enhancing Neoadjuvant Virotherapy’s Effectiveness by Targeting Stroma to Improve Resectability in Pancreatic Cancer
by Khandoker Usran Ferdous, Mulu Z. Tesfay, Aleksandra Cios, Randal S. Shelton, Conner Hartupee, Alicja Urbaniak, Jean Christopher Chamcheu, Michail N. Mavros, Emmanouil Giorgakis, Bahaa Mustafa, Camila C. Simoes, Isabelle R. Miousse, Alexei G. Basnakian, Omeed Moaven, Steven R. Post, Martin J. Cannon, Thomas Kelly and Bolni Marius Nagalo
Biomedicines 2024, 12(7), 1596; https://doi.org/10.3390/biomedicines12071596 - 18 Jul 2024
Cited by 2 | Viewed by 2411
Abstract
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges [...] Read more.
About one-fourth of patients with pancreatic ductal adenocarcinoma (PDAC) are categorized as borderline resectable (BR) or locally advanced (LA). Chemotherapy and radiation therapy have not yielded the anticipated outcomes in curing patients with BR/LA PDAC. The surgical resection of these tumors presents challenges owing to the unpredictability of the resection margin, involvement of vasculature with the tumor, the likelihood of occult metastasis, a higher ratio of positive lymph nodes, and the relatively larger size of tumor nodules. Oncolytic virotherapy has shown promising activity in preclinical PDAC models. Unfortunately, the desmoplastic stroma within the PDAC tumor microenvironment establishes a barrier, hindering the infiltration of oncolytic viruses and various therapeutic drugs—such as antibodies, adoptive cell therapy agents, and chemotherapeutic agents—in reaching the tumor site. Recently, a growing emphasis has been placed on targeting major acellular components of tumor stroma, such as hyaluronic acid and collagen, to enhance drug penetration. Oncolytic viruses can be engineered to express proteolytic enzymes that cleave hyaluronic acid and collagen into smaller polypeptides, thereby softening the desmoplastic stroma, ultimately leading to increased viral distribution along with increased oncolysis and subsequent tumor size regression. This approach may offer new possibilities to improve the resectability of patients diagnosed with BR and LA PDAC. Full article
(This article belongs to the Special Issue Virotherapy and Gene Therapy in Cancer)
Show Figures

Figure 1

18 pages, 5275 KiB  
Article
Comprehensive Insights into the Remarkable Function and Regulatory Mechanism of FluG during Asexual Development in Beauveria bassiana
by Fang Li, Juefeng Zhang, Haiying Zhong, Kaili Yu and Jianming Chen
Int. J. Mol. Sci. 2024, 25(11), 6261; https://doi.org/10.3390/ijms25116261 - 6 Jun 2024
Cited by 2 | Viewed by 1365
Abstract
Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana [...] Read more.
Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 5028 KiB  
Article
Role of the osaA Gene in Aspergillus fumigatus Development, Secondary Metabolism and Virulence
by Apoorva Dabholkar, Sandesh Pandit, Ritu Devkota, Sourabh Dhingra, Sophie Lorber, Olivier Puel and Ana M. Calvo
J. Fungi 2024, 10(2), 103; https://doi.org/10.3390/jof10020103 - 26 Jan 2024
Cited by 3 | Viewed by 2969
Abstract
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. [...] Read more.
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 23776 KiB  
Article
Functional Study of cAMP-Dependent Protein Kinase A in Penicillium oxalicum
by Qiuyan Sun, Gen Xu, Xiaobei Li, Shuai Li, Zhilei Jia, Mengdi Yan, Wenchao Chen, Zhimin Shi, Zhonghai Li and Mei Chen
J. Fungi 2023, 9(12), 1203; https://doi.org/10.3390/jof9121203 - 16 Dec 2023
Cited by 2 | Viewed by 1723
Abstract
Signaling pathways play a crucial role in regulating cellulase production. The pathway mediated by signaling proteins plays a crucial role in understanding how cellulase expression is regulated. In this study, using affinity purification of ClrB, we have identified sixteen proteins that potentially interact [...] Read more.
Signaling pathways play a crucial role in regulating cellulase production. The pathway mediated by signaling proteins plays a crucial role in understanding how cellulase expression is regulated. In this study, using affinity purification of ClrB, we have identified sixteen proteins that potentially interact with ClrB. One of the proteins, the catalytic subunit of cAMP-dependent protein kinase A (PoPKA-C), is an important component of the cAMP/PKA signaling pathway. Knocking out PoPKA-C resulted in significant decreases in the growth, glucose utilization, and cellulose hydrolysis ability of the mutant strain. Furthermore, the cellulase activity and gene transcription levels were significantly reduced in the ΔPoPKA-C mutant, while the expression activity of CreA, a transcriptional regulator of carbon metabolism repression, was notably increased. Additionally, deletion of PoPKA-C also led to earlier timing of conidia production. The expression levels of key transcription factor genes stuA and brlA, which are involved in the production of the conidia, showed significant enhancement in the ΔPoPKA-C mutant. These findings highlight the involvement of PoPKA-C in mycelial development, conidiation, and the regulation of cellulase expression. The functional analysis of PoPKA-C provides insights into the mechanism of the cAMP/PKA signaling pathway in cellulase expression in filamentous fungi and has significant implications for the development of high-yielding cellulase strains. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

16 pages, 3587 KiB  
Article
Comparative Transcriptomic Analyses Propose the Molecular Regulatory Mechanisms Underlying 1,8-Cineole from Cinnamomum kanehirae Hay and Promote the Asexual Sporulation of Antrodia cinnamomea in Submerged Fermentation
by Huaxiang Li, Jianing Dai, Juanjuan Wang, Chunlei Lu, Zhishan Luo, Xiangfeng Zheng, Zhenming Lu and Zhenquan Yang
Molecules 2023, 28(22), 7511; https://doi.org/10.3390/molecules28227511 - 9 Nov 2023
Cited by 2 | Viewed by 2538
Abstract
Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, [...] Read more.
Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, a specific low-molecular compound named 1,8-cineole (cineole) from Cinnamomum kanehirae Hay was first reported to have remarkably promoted the asexual sporulation of A. cinnamomea in submerged fermentation (AcSmF). Then, RNA sequencing, real-time quantitative PCR, and a literature review were performed to predict the molecular regulatory mechanisms underlying the cineole-promoted sporulation of AcSmF. The available evidence supports the hypothesis that after receiving the signal of cineole through cell receptors Wsc1 and Mid2, Pkc1 promoted the expression levels of rlm1 and wetA and facilitated their transfer to the cell wall integrity (CWI) signal pathway, and wetA in turn promoted the sporulation of AcSmF. Moreover, cineole changed the membrane functional state of the A. cinnamomea cell and thus activated the heat stress response by the CWI pathway. Then, heat shock protein 90 and its chaperone Cdc37 promoted the expression of stuA and brlA, thus promoting sporulation of AcSmF. In addition, cineole promoted the expression of areA, flbA, and flbD through the transcription factor NCP1 and inhibited the expression of pkaA through the ammonium permease of MEP, finally promoting the sporulation of AcSmF. This study may improve the efficiency of the inoculum (spores) preparation of AcSmF and thereby enhance the production benefits of A. cinnamomea. Full article
Show Figures

Graphical abstract

20 pages, 1736 KiB  
Review
Regulators of the Asexual Life Cycle of Aspergillus nidulans
by Ye-Eun Son, Jae-Hyuk Yu and Hee-Soo Park
Cells 2023, 12(11), 1544; https://doi.org/10.3390/cells12111544 - 4 Jun 2023
Cited by 16 | Viewed by 4428
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth [...] Read more.
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans. Full article
Show Figures

Figure 1

12 pages, 2527 KiB  
Article
Impacts of Temperature and Water Activity Interactions on Growth, Aflatoxin B1 Production and Expression of Major Biosynthetic Genes of AFB1 in Aspergillus flavus Isolates
by Mayasar I. Al-Zaban
Microorganisms 2023, 11(5), 1199; https://doi.org/10.3390/microorganisms11051199 - 4 May 2023
Cited by 9 | Viewed by 2762
Abstract
The contamination of peanuts, with Aspergillus flavus and subsequent aflatoxins (AFs) is considered to be one of the most serious, safety problems in the world. Water activity (aw) and temperature are limiting, factors for fungal growth and aflatoxin production during storage. [...] Read more.
The contamination of peanuts, with Aspergillus flavus and subsequent aflatoxins (AFs) is considered to be one of the most serious, safety problems in the world. Water activity (aw) and temperature are limiting, factors for fungal growth and aflatoxin production during storage. The objectives of this study were to integrate data on the effects of temperature (34, 37, and 42 °C) and water activity (aw; 0.85, 0.90, and 0.95) on growth rate aflatoxin B1 (AFB1) production and up- or-downregulation of the molecular expression of biosynthetic AFB1 genes divided into three types based on their A. flavus isolate composition and AFB1 capacity in vitro: A. flavus KSU114 (high producer), A. flavus KSU114 (low producer), and A. flavus KSU121 (non-producer). The A. flavus isolates were shown to be resilient in terms of growth on yeast extract sucrose agar media when exposed to temperature and water activity as pivotal environmental factors. The optimal conditions for the fungal growth of three isolates were a temperature of 34 °C and water activity of 0.95 aw; there was very slow fungal growth at the highest temperature of 42 °C, with different aw values causing inhibited fungal growth. The AFB1 production for the three isolates followed the same pattern with one exception: A. flavus KSU114 failed to produce any AFB1 at 42 °C with different aw values. All tested genes of A. flavus were significantly up- or downregulated under three levels of interaction between temperature and aw. The late structural genes of the pathway were significantly upregulated at 34 °C under aw 0.95, although aflR, aflS and most of the early structural genes were upregulated. Compared to 34 °C with an aw value of 0.95, most of the expressed genes were significantly downregulated at 37 and 42 °C with aw values of 0.85 and 0.90. Additionally, two regulatory genes were downregulated under the same conditions. The expression level of laeA was also completely associated with AFB1 production, while the expression level of brlA was linked to A. flavus colonization. This information is required to forecast the actual effects of climate change on A. flavus. The findings can be applied to improve specific food technology processes and create prevention strategies to limit the concentrations of potential carcinogenic substances in peanuts and their derivatives. Full article
(This article belongs to the Special Issue Ecological Roles and Regulation of Mycotoxin Production in Fungi)
Show Figures

Figure 1

15 pages, 4886 KiB  
Article
The Putative C2H2 Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in Aspergillus nidulans
by Xiaoyu Li, Yanxia Zhao, Heungyun Moon, Jieyin Lim, Hee-Soo Park, Zhiqiang Liu and Jae-Hyuk Yu
Cells 2022, 11(24), 3998; https://doi.org/10.3390/cells11243998 - 10 Dec 2022
Cited by 4 | Viewed by 2723
Abstract
The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing four adjacent [...] Read more.
The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing four adjacent C2H2 zinc-finger domains. Mutational inactivation of vosA or velB led to reduced mRNA levels of vadH throughout the lifecycle, suggesting that VosA and VelB have a positive regulatory effect on the expression of vadH. The deletion of vadH resulted in decreased asexual development (conidiation) but elevated production of sexual fruiting bodies (cleistothecia), indicating that VadH balances asexual and sexual development in A. nidulans. Moreover, the vadH deletion mutant exhibited elevated susceptibility to hyperosmotic stress compared to wild type and showed elevated production of the mycotoxin sterigmatocystin (ST). Genome-wide expression analyses employing RNA-Seq have revealed that VadH is likely involved in regulating more genes and biological pathways in the developmental stages than those in the vegetative growth stage. The brlA, abaA, and wetA genes of the central regulatory pathway for conidiation are downregulated significantly in the vadH null mutant during asexual development. VadH also participates in regulating the genes, mat2, ppgA and lsdA, etc., related to sexual development, and some of the genes in the ST biosynthetic gene cluster. In summary, VadH is a putative transcription factor with four C2H2 finger domains and is involved in regulating asexual/sexual development, osmotic stress response, and ST production in A. nidulans. Full article
(This article belongs to the Special Issue State-of-Art in Aspergillus)
Show Figures

Figure 1

16 pages, 3075 KiB  
Article
Glutamine Synthetase Contributes to the Regulation of Growth, Conidiation, Sclerotia Development, and Resistance to Oxidative Stress in the Fungus Aspergillus flavus
by Sen Wang, Ranxun Lin, Elisabeth Tumukunde, Wanlin Zeng, Qian Bao, Shihua Wang and Yu Wang
Toxins 2022, 14(12), 822; https://doi.org/10.3390/toxins14120822 - 23 Nov 2022
Cited by 11 | Viewed by 3049
Abstract
The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we [...] Read more.
The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood. Here, we found that conditional disruption of glutamine synthetase (AflGsA) gene expression in Aspergillus flavus by using a xylose promoter leads to a complete glutamine deficiency. Supplementation of glutamine could restore the nutritional deficiency caused by AflGsA expression deficiency. Additionally, by using the xylose promoter for the downregulation of AflgsA expression, we found that AflGsA regulates spore and sclerotic development by regulating the transcriptional levels of sporulation genes abaA and brlA and the sclerotic generation genes nsdC and nsdD, respectively. In addition, AflGsA was found to maintain the balance of reactive oxygen species (ROS) and to aid in resisting oxidative stress. AflGsA is also involved in the regulation of light signals through the production of glutamine. The results also showed that the recombinant AflGsA had glutamine synthetase activity in vitro and required the assistance of metal ions. The inhibitor molecule L-α-aminoadipic acid suppressed the activity of rAflGsA in vitro and disrupted the morphogenesis of spores, sclerotia, and colonies in A. flavus. These results provide a mechanistic link between nutrition metabolism and glutamine synthetase in A. flavus and suggest a strategy for the prevention of fungal infection. Full article
(This article belongs to the Special Issue Research on Pathogenic Fungi and Mycotoxins in China (2nd Edition))
Show Figures

Figure 1

16 pages, 3743 KiB  
Article
Roles of BrlA and AbaA in Mediating Asexual and Insect Pathogenic Lifecycles of Metarhizium robertsii
by Jin-Guan Zhang, Si-Yuan Xu, Sheng-Hua Ying and Ming-Guang Feng
J. Fungi 2022, 8(10), 1110; https://doi.org/10.3390/jof8101110 - 21 Oct 2022
Cited by 14 | Viewed by 2142
Abstract
BrlA and AbaA are key activators of the central developmental pathway (CDP) that controls asexual development in Aspergillus but their roles remain insufficiently understood in hypocerealean insect pathogens. Here, regulatory roles of BrlA and AbaA orthologs in Metarhizium robertsii (Clavicipitaceae) were characterized [...] Read more.
BrlA and AbaA are key activators of the central developmental pathway (CDP) that controls asexual development in Aspergillus but their roles remain insufficiently understood in hypocerealean insect pathogens. Here, regulatory roles of BrlA and AbaA orthologs in Metarhizium robertsii (Clavicipitaceae) were characterized for comparison to those elucidated previously in Beauveria bassiana (Cordycipitaceae) at phenotypic and transcriptomic levels. Time-course transcription profiles of brlA, abaA, and the other CDP activator gene wetA revealed that they were not so sequentially activated in M. robertsii as learned in Aspergillus. Aerial conidiation essential for fungal infection and dispersal, submerged blastospore production mimicking yeast-like budding proliferation in insect hemocoel, and insect pathogenicity via cuticular penetration were all abolished as a consequence of brlA or abaA disruption, which had little impact on normal hyphal growth. The disruptants were severely compromised in virulence via cuticle-bypassing infection (intrahemocoel injection) and differentially impaired in cellular tolerance to oxidative and cell wall-perturbing stresses. The ΔbrlA and ΔabaA mutant shad 255 and 233 dysregulated genes (up/down ratios: 52:203 and 101:122) respectively, including 108 genes co-dysregulated. These counts were small compared with 1513 and 2869 dysregulated genes (up/down ratios: 707:806 and 1513:1356) identified in ΔbrlA and ΔabaA mutants of B. bassiana. Results revealed not only conserved roles for BrlA and AbaA in asexual developmental control but also their indispensable roles in fungal adaptation to the insect-pathogenic lifecycle and host habitats. Intriguingly, BrlA- or AbaA-controlled gene expression networks are largely different between the two insect pathogens, in which similar phenotypes were compromised in the absence of either brlA or abaA. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

21 pages, 1122 KiB  
Review
Potential Antifungal Targets for Aspergillus sp. from the Calcineurin and Heat Shock Protein Pathways
by Robert Ancuceanu, Marilena Viorica Hovaneț, Maria Cojocaru-Toma, Adriana-Iuliana Anghel and Mihaela Dinu
Int. J. Mol. Sci. 2022, 23(20), 12543; https://doi.org/10.3390/ijms232012543 - 19 Oct 2022
Cited by 5 | Viewed by 3485
Abstract
Aspergillus species, especially A. fumigatus, and to a lesser extent others (A. flavus, A. niger, A. terreus), although rarely pathogenic to healthy humans, can be very aggressive to immunocompromised patients (they are opportunistic pathogens). Although survival rates for such infections [...] Read more.
Aspergillus species, especially A. fumigatus, and to a lesser extent others (A. flavus, A. niger, A. terreus), although rarely pathogenic to healthy humans, can be very aggressive to immunocompromised patients (they are opportunistic pathogens). Although survival rates for such infections have improved in recent decades following the introduction of azole derivatives, they remain a clinical challenge. The fact that current antifungals act as fungistatic rather than fungicide, that they have limited safety, and that resistance is becoming increasingly common make the need for new, more effective, and safer therapies to become more acute. Over the last decades, knowledge about the molecular biology of A. fumigatus and other Aspergillus species, and particularly of calcineurin, Hsp90, and their signaling pathway proteins, has progressed remarkably. Although calcineurin has attracted much interest, its adverse effects, particularly its immunosuppressive effects, make it less attractive than it might at first appear. The situation is not very different for Hsp90. Other proteins from their signaling pathways, such as protein kinases phosphorylating the four SPRR serine residues, CrzA, rcnA, pmcA-pmcC (particularly pmcC), rfeF, BAR adapter protein(s), the phkB histidine kinase, sskB MAP kinase kinase, zfpA, htfA, ctfA, SwoH (nucleoside diphosphate kinase), CchA, MidA, FKBP12, the K27 lysine position from Hsp90, PkcA, MpkA, RlmA, brlA, abaA, wetA, other heat shock proteins (Hsp70, Hsp40, Hsp12) currently appear promising and deserve further investigation as potential targets for antifungal drug development. Full article
(This article belongs to the Special Issue Antifungal Compounds - Natural and Synthetic Approaches)
Show Figures

Figure 1

17 pages, 2992 KiB  
Review
Regulation of Conidiogenesis in Aspergillus flavus
by He-Jin Cho, Sung-Hun Son, Wanping Chen, Ye-Eun Son, Inhyung Lee, Jae-Hyuk Yu and Hee-Soo Park
Cells 2022, 11(18), 2796; https://doi.org/10.3390/cells11182796 - 7 Sep 2022
Cited by 55 | Viewed by 6914
Abstract
Aspergillus flavus is a representative fungal species in the Aspergillus section Flavi and has been used as a model system to gain insights into fungal development and toxin production. A. flavus has several adverse effects on humans, including the production of the most [...] Read more.
Aspergillus flavus is a representative fungal species in the Aspergillus section Flavi and has been used as a model system to gain insights into fungal development and toxin production. A. flavus has several adverse effects on humans, including the production of the most carcinogenic mycotoxin aflatoxins and causing aspergillosis in immune-compromised patients. In addition, A. flavus infection of crops results in economic losses due to yield loss and aflatoxin contamination. A. flavus is a saprophytic fungus that disperses in the ecosystem mainly by producing asexual spores (conidia), which also provide long-term survival in the harsh environmental conditions. Conidia are composed of the rodlet layer, cell wall, and melanin and are produced from an asexual specialized structure called the conidiophore. The production of conidiophores is tightly regulated by various regulators, including the central regulatory cascade composed of BrlA-AbaA-WetA, the fungi-specific velvet regulators, upstream regulators, and developmental repressors. In this review, we summarize the findings of a series of recent studies related to asexual development in A. flavus and provide insights for a better understanding of other fungal species in the section Flavi. Full article
(This article belongs to the Special Issue State-of-Art in Aspergillus)
Show Figures

Graphical abstract

15 pages, 2277 KiB  
Article
Comparative Transcriptomic Analyses Reveal the Regulatory Mechanism of Nutrient Limitation-Induced Sporulation of Antrodia cinnamomea in Submerged Fermentation
by Huaxiang Li, Dan Ji, Zhishan Luo, Yilin Ren, Zhenming Lu, Zhenquan Yang and Zhenghong Xu
Foods 2022, 11(17), 2715; https://doi.org/10.3390/foods11172715 - 5 Sep 2022
Cited by 6 | Viewed by 2422
Abstract
Antrodia cinnamomea is a precious edible and medicinal mushroom with various biological activities, such as hepatoprotection, antitumor, antivirus, immunoregulation, and intestinal flora regulation. However, the wild fruiting bodies of A. cinnamomea are scarce and expensive. Submerged fermentation based on spore inoculation has become [...] Read more.
Antrodia cinnamomea is a precious edible and medicinal mushroom with various biological activities, such as hepatoprotection, antitumor, antivirus, immunoregulation, and intestinal flora regulation. However, the wild fruiting bodies of A. cinnamomea are scarce and expensive. Submerged fermentation based on spore inoculation has become the most efficient and popular artificial culture method for A. cinnamomea. In order to complement the mechanism of asexual sporulation of A. cinnamomea in submerged fermentation, and provide a theoretical basis to further improve the sporulation, comparative transcriptomics analysis using RNA-seq and RT-qPCR were conducted on A. cinnamomea mycelia cultured under different nutritional conditions to reveal the regulatory mechanism underlying the asexual sporulation induced by nutrient limitation. The obtained mechanism is as follows: under nitrogen starvation, the corresponding sensors transmit signals to genes, such as areA and tmpA, and promote their expression. Among these genes, AreA has a direct or indirect effect on flbD and promotes its expression, further enhancing the expression of brlA. Meanwhile, TmpA has a direct or indirect effect on brlA and promotes its expression; under carbon starvation, transport protein Rco-3, as a glucose sensor, directly or indirectly transmits signals to brlA and promotes its expression. BrlA promotes the expression of abaA gene, which further enhances the expression of wetA gene, and wetA then directly leads to asexual sporulation and promotes spore maturation; meanwhile, gulC can also promote cell autolysis, which provides energy and raw materials for sporulation. Full article
(This article belongs to the Special Issue Food Brewing Technology and Brewing Microorganisms)
Show Figures

Graphical abstract

Back to TopTop