Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = bridge inspection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

26 pages, 6348 KiB  
Article
Building Envelope Thermal Anomaly Detection Using an Integrated Vision-Based Technique and Semantic Segmentation
by Shayan Mirzabeigi, Ryan Razkenari and Paul Crovella
Buildings 2025, 15(15), 2672; https://doi.org/10.3390/buildings15152672 - 29 Jul 2025
Viewed by 321
Abstract
Infrared thermography is a common approach used in building inspection for identifying building envelope thermal anomalies that cause energy loss and occupant thermal discomfort. Detecting these anomalies is essential to improve the thermal performance of energy-inefficient buildings through energy retrofit design and correspondingly [...] Read more.
Infrared thermography is a common approach used in building inspection for identifying building envelope thermal anomalies that cause energy loss and occupant thermal discomfort. Detecting these anomalies is essential to improve the thermal performance of energy-inefficient buildings through energy retrofit design and correspondingly reduce operational energy costs and environmental impacts. A thermal bridge is an unwanted conductive heat transfer. On the other hand, an infiltration/exfiltration anomaly is an uncontrollable convective heat transfer, typically happening around windows and doors, but it can also be due to a defect that comprises a building envelope’s integrity. While the existing literature underscores the significance of automatic thermal anomaly identification and offers insights into automated methodologies, there is a notable gap in addressing an automated workflow that leverages building envelope component segmentation for enhanced detection accuracy. Consequently, an automatic thermal anomaly identification workflow from visible and thermal images was developed to test it, utilizing segmented building envelope information compared to a workflow without any semantic segmentation. Therefore, building envelope images (e.g., walls and windows) were segmented based on a U-Net architecture compared to a more conventional semantic segmentation approach. The results were discussed to better understand the importance of the availability of training data and for scaling the workflow. Then, thermal anomaly thresholds for different target domains were detected using probability distributions. Finally, thermal anomaly masks of those domains were computed. This study conducted a comprehensive examination of a campus building in Syracuse, New York, utilizing a drone-based data collection approach. The case study successfully detected diverse thermal anomalies associated with various envelope components. The proposed approach offers the potential for immediate and accurate in situ thermal anomaly detection in building inspections. Full article
Show Figures

Figure 1

29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 507
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

25 pages, 3632 KiB  
Article
A Semantic Web and IFC-Based Framework for Automated BIM Compliance Checking
by Lu Jia, Maokang Chen, Chen Chen and Yanfeng Jin
Buildings 2025, 15(15), 2633; https://doi.org/10.3390/buildings15152633 - 25 Jul 2025
Viewed by 295
Abstract
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a [...] Read more.
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a method combining semantic web technology and IFC data to enhance human–machine collaborative inspection capabilities. First, a five-step process integrated with domain specifications is designed to construct a building object ontology, covering most architectural objects in the AEC domain. Second, a set of mapping rules is developed based on the expression mechanisms of IFC entities to establish a semantic bridge between IfcOWL and the building object ontology. Then, by analyzing regulatory codes, query rule templates for major constraint types are developed using semantic web SPARQL. Finally, the feasibility of the method is validated through a case study based on the Jena framework. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 705 KiB  
Article
A Novel Wavelet Transform and Deep Learning-Based Algorithm for Low-Latency Internet Traffic Classification
by Ramazan Enisoglu and Veselin Rakocevic
Algorithms 2025, 18(8), 457; https://doi.org/10.3390/a18080457 - 23 Jul 2025
Viewed by 334
Abstract
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static [...] Read more.
Accurate and real-time classification of low-latency Internet traffic is critical for applications such as video conferencing, online gaming, financial trading, and autonomous systems, where millisecond-level delays can degrade user experience. Existing methods for low-latency traffic classification, reliant on raw temporal features or static statistical analyses, fail to capture dynamic frequency patterns inherent to real-time applications. These limitations hinder accurate resource allocation in heterogeneous networks. This paper proposes a novel framework integrating wavelet transform (WT) and artificial neural networks (ANNs) to address this gap. Unlike prior works, we systematically apply WT to commonly used temporal features—such as throughput, slope, ratio, and moving averages—transforming them into frequency-domain representations. This approach reveals hidden multi-scale patterns in low-latency traffic, akin to structured noise in signal processing, which traditional time-domain analyses often overlook. These wavelet-enhanced features train a multilayer perceptron (MLP) ANN, enabling dual-domain (time–frequency) analysis. We evaluate our approach on a dataset comprising FTP, video streaming, and low-latency traffic, including mixed scenarios with up to four concurrent traffic types. Experiments demonstrate 99.56% accuracy in distinguishing low-latency traffic (e.g., video conferencing) from FTP and streaming, outperforming k-NN, CNNs, and LSTMs. Notably, our method eliminates reliance on deep packet inspection (DPI), offering ISPs a privacy-preserving and scalable solution for prioritizing time-sensitive traffic. In mixed-traffic scenarios, the model achieves 74.2–92.8% accuracy, offering ISPs a scalable solution for prioritizing time-sensitive traffic without deep packet inspection. By bridging signal processing and deep learning, this work advances efficient bandwidth allocation and enables Internet Service Providers to prioritize time-sensitive flows without deep packet inspection, improving quality of service in heterogeneous network environments. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

24 pages, 1295 KiB  
Article
A Performance-Based Ranking Approach for Optimizing NDT Selection for Post-Tensioned Bridge Assessment
by Carlo Pettorruso, Dalila Rossi and Virginio Quaglini
Infrastructures 2025, 10(8), 194; https://doi.org/10.3390/infrastructures10080194 - 23 Jul 2025
Viewed by 260
Abstract
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT [...] Read more.
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT systems. The ranking is based on four performance categories: measurement accuracy, ease of use, cost, and impact of disruption to bridge operations on traffic. For each NDT technique, a score is assigned for each evaluation category, and the final ranking is determined using the weighted sum model (WSM). This approach enables the final assessment to reflect the priorities of different decision-making contexts defined by the end-user such as accuracy-oriented, cost-oriented, and impact-oriented scenarios. The proposed method is then applied to an existing bridge in order to practically demonstrate its effectiveness and the flexibility of the proposed criteria. Full article
Show Figures

Figure 1

21 pages, 4341 KiB  
Article
Structural Monitoring Without a Budget—Laboratory Results and Field Report on the Use of Low-Cost Acceleration Sensors
by Sven Giermann, Thomas Willemsen and Jörg Blankenbach
Sensors 2025, 25(15), 4543; https://doi.org/10.3390/s25154543 - 22 Jul 2025
Viewed by 289
Abstract
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about [...] Read more.
Authorities responsible for critical infrastructure, particularly bridges, face significant challenges. Many bridges, constructed in the 1960s and 1970s, are now approaching or have surpassed their intended service life. A report from the German Federal Ministry for Digital and Transport (BMVI) indicates that about 12% of the 40,000 federal trunk road bridges in Germany are in “inadequate or unsatisfactory” condition. Similar issues are observed in other countries worldwide. Economic constraints prevent ad hoc replacements, necessitating continued operation with frequent and costly inspections. This situation creates an urgent need for cost-effective, permanent monitoring solutions. This study explores the potential use of low-cost acceleration sensors for monitoring infrastructure structures. Inclination is calculated from the acceleration data of the sensor, using gravitational acceleration as a reference point. Long-term changes in inclination may indicate a change in the geometry of the structure, thereby triggering alarm thresholds. It is particularly important to consider specific challenges associated with low measurement accuracy and the susceptibility of sensors to environmental influences in a low-cost setting. The results of laboratory tests allow for an estimation of measurement accuracy and an analysis of the various error characteristics of the sensors. The article outlines the methodology for developing low-cost inclination sensor systems, the laboratory tests conducted, and the evaluation of different measures to enhance sensor accuracy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 418
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

28 pages, 9133 KiB  
Article
Semantic Segmentation of Corrosion in Cargo Containers Using Deep Learning
by David Ornelas, Daniel Canedo and António J. R. Neves
Sustainability 2025, 17(14), 6480; https://doi.org/10.3390/su17146480 - 15 Jul 2025
Viewed by 331
Abstract
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the [...] Read more.
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the durability of containers and leads to costly repairs. However, identifying this threat is no simple task. Corrosion can take many forms, progress unpredictably, and be influenced by various environmental conditions and container types. In collaboration with the Port of Sines, Portugal, this work explores a potential solution for a real-time computer-vision system, with the aim to improve container inspections using deep-learning algorithms. We propose a system based on the semantic segmentation model, DeepLabv3+, for precise corrosion detection using images provided from the terminal. After preparing the data and annotations, we explored two approaches. First, we leveraged a pre-trained model originally designed for bridge corrosion detection. Second, we fine-tuned a version specifically for cargo container assessment. With a corrosion detection performance of 49%, this work showcases the potential of deep learning to automate inspection processes. It also highlights the importance of generalization and training in real-world scenarios and explores innovative solutions for smart gates and terminals. Full article
Show Figures

Graphical abstract

32 pages, 16988 KiB  
Article
From Photogrammetry to Virtual Reality: A Framework for Assessing Visual Fidelity in Structural Inspections
by Xiangxiong Kong, Terry F. Pettijohn and Hovhannes Torikyan
Sensors 2025, 25(14), 4296; https://doi.org/10.3390/s25144296 - 10 Jul 2025
Viewed by 847
Abstract
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have [...] Read more.
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have explored innovative practices by using virtual reality (VR) technologies as inspection platforms. Despite such efforts, a critical question remains: can VR models accurately reflect real-world structural conditions? This study presents a comprehensive framework for assessing the visual fidelity of VR models for structural inspection. To make it viable, we first introduce a novel workflow that integrates UAV-based photogrammetry, computer graphics, and web-based VR editing to establish interactive VR user interfaces. We then propose a visual fidelity assessment methodology that quantitatively evaluates the accuracy of the VR models through image alignment, histogram matching, and pixel-level deviation mapping between rendered images from the VR models and UAV-captured images under matched viewpoints. The proposed frameworks are validated using two case studies: a historic stone arch bridge and a campus steel building. Overall, this study contributes to the growing body of knowledge on VR-based structural inspections, providing a foundation for our peers for their further research in this field. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

18 pages, 4458 KiB  
Article
Intelligent Hybrid SHM-NDT Approach for Structural Assessment of Metal Components
by Romaine Byfield, Ahmed Shabaka, Milton Molina Vargas and Ibrahim Tansel
Infrastructures 2025, 10(7), 174; https://doi.org/10.3390/infrastructures10070174 - 6 Jul 2025
Viewed by 376
Abstract
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, [...] Read more.
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, SHM employs permanently installed, cost-effective sensors to enable continuous monitoring, though often with reduced detail. This study presents an integrated hybrid SHM-NDT methodology enhanced by deep learning to enable the real-time monitoring and classification of mechanical stresses in structural components. As a case study, a 6-foot-long parallel flange I-beam, representing bridge truss elements, was subjected to variable bending loads to simulate operational conditions. The hybrid system utilized an ultrasonic transducer (NDT) for excitation and piezoelectric sensors (SHM) for signal acquisition. Signal data were analyzed using 1D and 2D convolutional neural networks (CNNs), long short-term memory (LSTM) models, and random forest classifiers to detect and classify load magnitudes. The AI-enhanced approach achieved 100% accuracy in 47 out of 48 tests and 94% in the remaining tests. These results demonstrate that the hybrid SHM-NDT framework, combined with machine learning, offers a powerful and adaptable solution for continuous monitoring and precise damage assessment of structural systems, significantly advancing maintenance practices and safety assurance. Full article
Show Figures

Figure 1

12 pages, 1982 KiB  
Article
Concrete Bridge Crack Detection Using Unmanned Aerial Vehicles and Image Segmentation
by Yanli Chen, Hongze Li, Hang Zhu, Tianlong Ren and Zhe Cao
Infrastructures 2025, 10(7), 161; https://doi.org/10.3390/infrastructures10070161 - 27 Jun 2025
Viewed by 460
Abstract
Concrete bridge cracks are critical indicators for maintenance planning. Traditional visual inspections are often subjective, labor-intensive, and time-consuming, requiring close-range access by inspectors. In contrast, UAV-based remote sensing, combined with advanced image processing, offers a more efficient and accurate solution. This study proposes [...] Read more.
Concrete bridge cracks are critical indicators for maintenance planning. Traditional visual inspections are often subjective, labor-intensive, and time-consuming, requiring close-range access by inspectors. In contrast, UAV-based remote sensing, combined with advanced image processing, offers a more efficient and accurate solution. This study proposes an enhanced crack detection method combining Laplacian of Gaussian (LoG) filtering and Otsu thresholding to improve segmentation accuracy through background noise suppression. The proposed approach extracts key crack characteristics—including area, length, centroid, and main direction—enabling precise damage assessment. Experimental validation on a real bridge dataset demonstrates significant improvements in detection accuracy. The method provides a reliable tool for automated structural health monitoring, supporting data-driven maintenance decisions. Full article
Show Figures

Figure 1

20 pages, 1776 KiB  
Article
Development of an Open GPR Dataset for Enhanced Bridge Deck Inspection
by Da Hu
Remote Sens. 2025, 17(13), 2210; https://doi.org/10.3390/rs17132210 - 27 Jun 2025
Viewed by 483
Abstract
Bridge infrastructure in the United States is aging, necessitating efficient and accurate inspection methods. Ground-penetrating radar (GPR) is a widely used non-destructive testing (NDT) method for detecting subsurface anomalies in bridge decks. However, manual interpretation of GPR scans is labor-intensive, and annotated datasets [...] Read more.
Bridge infrastructure in the United States is aging, necessitating efficient and accurate inspection methods. Ground-penetrating radar (GPR) is a widely used non-destructive testing (NDT) method for detecting subsurface anomalies in bridge decks. However, manual interpretation of GPR scans is labor-intensive, and annotated datasets for deep learning applications are limited. This study investigates YOLO-based deep learning models for automated rebar detection using a combination of real and synthetic GPR data. A dataset comprising 2255 real GPR images from four bridges and 20,000 simulated GPR scans was used to train and evaluate YOLOv8, YOLOv9, YOLOv10, and YOLOv11 under different training strategies. The results show that pretraining on simulated GPR data improves detection accuracy compared to conventional COCO pretraining, demonstrating the effectiveness of domain-specific transfer learning. These findings highlight the potential of simulated GPR data for training deep learning models, reducing reliance on extensive real-world annotations. This study contributes to AI-driven infrastructure monitoring, supporting the development of more scalable and automated GPR-based bridge inspections. Full article
Show Figures

Figure 1

22 pages, 7106 KiB  
Article
Enhancing Highway Scene Understanding: A Novel Data Augmentation Approach for Vehicle-Mounted LiDAR Point Cloud Segmentation
by Dalong Zhou, Yuanyang Yi, Yu Wang, Zhenfeng Shao, Yanjun Hao, Yuyan Yan, Xiaojin Zhao and Junkai Guo
Remote Sens. 2025, 17(13), 2147; https://doi.org/10.3390/rs17132147 - 23 Jun 2025
Viewed by 398
Abstract
The intelligent extraction of highway assets is pivotal for advancing transportation infrastructure and autonomous systems, yet traditional methods relying on manual inspection or 2D imaging struggle with sparse, occluded environments, and class imbalance. This study proposes an enhanced MinkUNet-based framework to address data [...] Read more.
The intelligent extraction of highway assets is pivotal for advancing transportation infrastructure and autonomous systems, yet traditional methods relying on manual inspection or 2D imaging struggle with sparse, occluded environments, and class imbalance. This study proposes an enhanced MinkUNet-based framework to address data scarcity, occlusion, and imbalance in highway point cloud segmentation. A large-scale dataset (PEA-PC Dataset) was constructed, covering six key asset categories, addressing the lack of specialized highway datasets. A hybrid conical masking augmentation strategy was designed to simulate natural occlusions and enhance local feature retention, while semi-supervised learning prioritized foreground differentiation. The experimental results showed that the overall mIoU reached 73.8%, with the IoU of bridge railings and emergency obstacles exceeding 95%. The IoU of columnar assets increased from 2.6% to 29.4% through occlusion perception enhancement, demonstrating the effectiveness of this method in improving object recognition accuracy. The framework balances computational efficiency and robustness, offering a scalable solution for sparse highway scenes. However, challenges remain in segmenting vegetation-occluded pole-like assets due to partial data loss. This work highlights the efficacy of tailored augmentation and semi-supervised strategies in refining 3D segmentation, advancing applications in intelligent transportation and digital infrastructure. Full article
Show Figures

Figure 1

20 pages, 3212 KiB  
Article
Unsupervised Restoration of Underwater Structural Crack Images via Physics-Constrained Image Translation and Multi-Scale Feature Retention
by Xianfeng Zeng, Wenji Ai, Zongchao Liu and Xianling Wang
Buildings 2025, 15(13), 2150; https://doi.org/10.3390/buildings15132150 - 20 Jun 2025
Viewed by 338
Abstract
Accurate visual inspection of underwater infrastructure, such as bridge piers and retaining walls, is often hindered by severe image degradation due to light attenuation and scattering. This paper introduces an unsupervised enhancement framework tailored for restoring underwater images containing structural cracks. The method [...] Read more.
Accurate visual inspection of underwater infrastructure, such as bridge piers and retaining walls, is often hindered by severe image degradation due to light attenuation and scattering. This paper introduces an unsupervised enhancement framework tailored for restoring underwater images containing structural cracks. The method combines a physical modeling of underwater light transmission with a deep image translation architecture that operates without requiring paired training samples. To address the loss of fine structural details, this paper incorporates a multi-scale feature integration module and a region-focused discriminator that jointly guide the enhancement process. Moreover, a physics-guided loss formulation is designed to promote optical consistency and texture fidelity during training. The proposed approach is validated on a real-world dataset collected from submerged structures under varying turbidity and illumination levels. Both objective evaluations and visual results show substantial improvements over baseline models, with better preservation of crack boundaries and overall visual quality. This work provides a robust solution for preprocessing underwater imagery in structural inspection tasks. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

Back to TopTop