Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = brewery sector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1100 KiB  
Article
Adding Value to Brewery Industry By-Products as Novel Ingredients in Non-Alcoholic Malt Beverage Applications
by Muhammad Usman Akram, Helen Oluwaseun Agunbiade, Deepak Kadam, Rotimi Emmanuel Aluko and Filiz Koksel
Foods 2025, 14(16), 2882; https://doi.org/10.3390/foods14162882 - 20 Aug 2025
Viewed by 254
Abstract
The growing population and increasing concerns about food security and sustainability demand innovative solutions to minimize food waste and transform by-products into functional ingredients valuable to the food sector. Brewery by-products, including brewer’s spent grain (BSG) and brewer’s spent yeast (BSY), are underutilized [...] Read more.
The growing population and increasing concerns about food security and sustainability demand innovative solutions to minimize food waste and transform by-products into functional ingredients valuable to the food sector. Brewery by-products, including brewer’s spent grain (BSG) and brewer’s spent yeast (BSY), are underutilized resources despite their high protein contents and potential as sustainable food ingredients. This study aimed to transform BSG and BSY into protein hydrolysates (BSGH and BSYH, respectively) through enzymatic hydrolysis and thus add value to these brewery industry by-products to be used in the food industry. These protein hydrolysates were incorporated into non-alcoholic malt beverages at three different concentrations, and their effects on the physicochemical properties, including color, kinematic viscosity, turbidity, foaming capacity and foam stability, of the non-alcoholic malt beverages were evaluated. Both BSGH and BSYH exhibited higher water solubility (WS) and lower water binding capacity (WBC) values when compared to their native non-hydrolyzed forms, enhancing their suitability as ideal ingredients for protein supplementation of a wide range of food and beverage products. The production of peptides of varying sizes underscored the effectiveness of enzymatic hydrolysis which resulted in an increase in cysteine and methionine levels in BSYH but a decrease in BSGH. The addition of BSGH and BSYH increased the kinematic viscosity and turbidity but reduced the lightness values in color of the non-alcoholic malt beverages. When the properties of the protein hydrolysates were compared, BSYH was more effective than BSGH in forming foams and maintaining their stability for longer periods. These findings highlight the potential of brewery by-products, after enzymatic hydrolysis, as protein-rich ingredients that can support more sustainable food systems and contribute to the nutritional enhancement of various low-protein food and beverage products. Full article
Show Figures

Graphical abstract

34 pages, 2470 KiB  
Review
Biotechnology in Agro-Industry: Valorization of Agricultural Wastes, By-Products and Sustainable Practices
by Sandra de Oliveira Silva, Amanda Kelly Cristiano Mafra, Franciele Maria Pelissari, Leandro Rodrigues de Lemos and Gustavo Molina
Microorganisms 2025, 13(8), 1789; https://doi.org/10.3390/microorganisms13081789 - 31 Jul 2025
Viewed by 621
Abstract
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline [...] Read more.
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline the critical need for further research and policy support to scale these solutions, advancing global sustainability goals through innovative resource management. In this perspective, this article reviews the utilization of key by-products, including coffee residues, sugarcane bagasse, whey, cassava wastewater (manipueira), and brewery waste, highlighting their transformation into high-value products such as biofuels, bioplastics, enzymes, bioactive compounds, and organic fertilizers. The discussion presented encompasses the challenges and opportunities in leveraging these residues, emphasizing the role of advanced technologies, intellectual property, and circular economy principles. Full article
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
Optimizing Circular Economy Choices: The Role of the Analytic Hierarchy Process
by Víctor Fernández Ocamica, David Zambrana-Vasquez and José Carlos Díaz Murillo
Sustainability 2025, 17(15), 6759; https://doi.org/10.3390/su17156759 - 24 Jul 2025
Viewed by 451
Abstract
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU [...] Read more.
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU ECOFACT initiative, this research evaluates ten distinct configurations for the must cooling process. These alternatives are assessed using environmental, economic, and technical criteria, drawing on data from life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The findings indicate that selecting an optimal scenario involves balancing trade-offs among electricity and water consumption, operational efficiency, and overall environmental impacts. Notably, Scenario 3 emerges as the most balanced option, consistently demonstrating superior performance across the primary evaluation criteria. The use of AHP in this context proves valuable by introducing structure and transparency to a multifaceted decision-making process where quantitative metrics and sustainability objectives intersect. By integrating empirical industrial data with an established multi-criteria decision approach, this study highlights both the practical utility and existing limitations of conventional AHP, particularly its diminished ability to discriminate between alternatives when their scores are closely aligned. These insights suggest that hybrid or advanced AHP methodologies may be necessary to facilitate more nuanced decision-making for circular economy transitions in industrial environments. Full article
Show Figures

Figure 1

16 pages, 1753 KiB  
Article
Impact of Malt Bagasse Silage on Fungal Diversity, Fusarium Species, and Mycotoxin Contamination Under a Circular Economy Approach to Climate Change Mitigation
by Tania Valicenti, Carolina Manno, Juan Ignacio Poo, María Inés Dinolfo, Mauro Martínez and Andrea Enriquez
J. Fungi 2025, 11(7), 505; https://doi.org/10.3390/jof11070505 - 4 Jul 2025
Viewed by 758
Abstract
Malt bagasse is the primary solid waste product from the brewing process, with notable environmental implications. Due to its nutritional value, it has potential as animal feed, primarily through ensilage. Alfalfa pellets can enhance this silage by adding digestible nitrogen and fibre. However, [...] Read more.
Malt bagasse is the primary solid waste product from the brewing process, with notable environmental implications. Due to its nutritional value, it has potential as animal feed, primarily through ensilage. Alfalfa pellets can enhance this silage by adding digestible nitrogen and fibre. However, the high moisture content favours microbial contamination, particularly by fungi like Fusarium, which produces harmful mycotoxins. This study evaluated the impact of winter silage on fungal diversity, Fusarium presence, and mycotoxin contamination in malt bagasse, comparing the pre- and post-silage stages with the addition of alfalfa pellets. Results showed a diverse range of fungi, including Mucor, Cladosporium, Fusarium, and Penicillium, as well as yeasts. Fungal contamination was higher before silage, although the addition of alfalfa increased it after silage was produced. Fusarium verticillioides was the most common Fusarium species. Mycotoxin analysis detected DON (1.4 ppb) in only one sample. A two-month winter silage process under cold-temperate conditions appears to reduce fungal contamination and preserve feed quality. These findings support silage as a circular strategy to manage brewery waste safely, but further research and policy measures are needed to minimise biological risks in the brewing and livestock sectors amid climate change. Full article
(This article belongs to the Special Issue Fusarium in Crops Under Climate Change Scenarios)
Show Figures

Figure 1

20 pages, 5341 KiB  
Article
Characterization of Processes Aimed at Maximizing the Reuse of Brewery’s Spent Grain: Novel Biocomposite Materials, High-Added-Value Molecule Extraction, Codigestion and Composting
by Jessica Di Mario, Agnese Bertoldi, Dario Priolo, Eleonora Calzoni, Alberto Maria Gambelli, Franco Dominici, Marco Rallini, Daniele Del Buono, Debora Puglia, Carla Emiliani and Giovanni Gigliotti
Recycling 2025, 10(4), 124; https://doi.org/10.3390/recycling10040124 - 21 Jun 2025
Cited by 1 | Viewed by 947
Abstract
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present [...] Read more.
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present study experimentally investigated several methodologies to enhance the reuse of BSG and proposed a scheme of biorefinery focused on it. According to it, BSGs were firstly tested to produce high-added-value byproducts, such as protein hydrolysates and for the extraction of lignin via ionic liquids-based methods. The residuals were then used for biogas/biomethane production via anaerobic codigestion. The different matrices were rearranged in varying mixtures, aiming at ensuring high availability of nutrients for methanogens, thus achieving higher energy production than what achievable with untreated BSG. For the scope, further agro-industrial wastes were considered. The resulted digestate was finally composted. Untreated BSGs were also directly tested as fillers for bio-composite material production (in a mixture with PHB). Different concentrations were tested and the mechanical properties of each sample were compared with those of pure PHB. Disintegration tests were finally carried out to measure the improved biodegradability of the produced bio-composite material. Full article
Show Figures

Figure 1

40 pages, 2483 KiB  
Review
Valorization of Agri-Food Waste into PHA and Bioplastics: From Waste Selection to Transformation
by Marta Arriaga, Francisco Javier Pinar, Irene Izarra, Jesús del Amo, Javier Vicente, Francisco Jesús Fernández-Morales and Javier Mena
Appl. Sci. 2025, 15(3), 1008; https://doi.org/10.3390/app15031008 - 21 Jan 2025
Cited by 3 | Viewed by 3461
Abstract
The valorization of agri-food waste is a pivotal component in developing the circular economy, wherein waste is given a second life through various conversion technologies. This review aims to provide an overview of the current state of knowledge on the valorization of agri-food [...] Read more.
The valorization of agri-food waste is a pivotal component in developing the circular economy, wherein waste is given a second life through various conversion technologies. This review aims to provide an overview of the current state of knowledge on the valorization of agri-food waste, with a particular focus on volatile fatty acids (VFAs) and subsequent bioplastics production. To this end, a comprehensive literature search was conducted using specialist bibliographic databases. The study primarily focuses on reviewing the biological production of PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)), a type of PHA, due to its relevance as a substitute for fossil-based plastics. Significant attention has been directed toward exploring the potential of agri-food wastes, such as whey, potato peelings, and brewery bagasse, as raw materials for their transformation into a tailor-made VFA solution, rich in valeric and propionic acids. Additionally, existing operational strategies and waste co-treatments have been reviewed. The produced VFAs present multiple applications, including single-cell oils, Omega-3-rich oils, and different types of PHA. Factors influencing the bio-polymerization of VFAs to PHBV, such as the type of substrate, operating conditions (pH and retention time), and the presence of specific microorganisms, have also been reviewed. Due to its physicochemical properties, PHBV has applications in sectors such as agriculture and packaging. This review concludes that transforming agri-food waste into PHBV has the potential to integrate environmental and economic benefits within a circular bioeconomy model, fostering technological innovation and the sustainable use of waste resources. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

13 pages, 1886 KiB  
Article
Using Microalgae to Convert Brewery Carbon Gas Emissions into Valuable Bioproducts
by Alla Silkina, Mohamed A. Emran, Simon Turner and Kam W. Tang
Energies 2024, 17(23), 6125; https://doi.org/10.3390/en17236125 - 5 Dec 2024
Cited by 2 | Viewed by 2189
Abstract
The brewing industry is a major part of the agri-food sector, but its fermentation processes contribute significantly to global CO2 emissions, exacerbating the greenhouse gas crisis. Achieving net-zero emissions requires innovative solutions, and this study explored one such solution by using microalgae [...] Read more.
The brewing industry is a major part of the agri-food sector, but its fermentation processes contribute significantly to global CO2 emissions, exacerbating the greenhouse gas crisis. Achieving net-zero emissions requires innovative solutions, and this study explored one such solution by using microalgae to capture CO2 from a brewery while simultaneously generating valuable bioproducts. Two microalgae species, Tetradesmus obliquus and Limnospira maxima, were cultivated in a 1000 L raceway and a 400 L tubular photobioreactor, both powered by the brewery’s CO2 waste gas. The specific growth rates reached 0.3 in the raceway and 0.4–0.5 in the photobioreactor for both species. Notably, L. maxima showed higher productivity, achieving up to 0.80 g L−1 day−1 in the photobioreactor and 0.5 g L−1 day−1 in the raceway. Operating across 300 brewing days per year, a single module (1400 L) of this system could reduce a brewery’s CO2 emissions by 29%. These low-maintenance systems are modular, allowing for easy scaling and operation. The harvested biomass was nutritionally valuable; L. maxima contained up to 55% protein and 3% phycocyanin, while T. obliquus was rich in carbohydrates (36%) and lipids (12%), levels suitable for feeds and fertilizers. A cost-benefit analysis suggests that coupling CO2 removal with bioproduct generation supports a sustainable circular economy while offering financial returns. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy)
Show Figures

Figure 1

16 pages, 8192 KiB  
Perspective
Embedding AI-Enabled Data Infrastructures for Sustainability in Agri-Food: Soft-Fruit and Brewery Use Case Perspectives
by Milan Markovic, Andy Li, Tewodros Alemu Ayall, Nicholas J. Watson, Alexander L. Bowler, Mel Woods, Peter Edwards, Rachael Ramsey, Matthew Beddows, Matthias Kuhnert and Georgios Leontidis
Sensors 2024, 24(22), 7327; https://doi.org/10.3390/s24227327 - 16 Nov 2024
Cited by 2 | Viewed by 2109
Abstract
The agri-food sector is undergoing a comprehensive transformation as it transitions towards net zero. To achieve this, fundamental changes and innovations are required, including changes in how food is produced and delivered to customers, new technologies, data and physical infrastructures, and algorithmic advancements. [...] Read more.
The agri-food sector is undergoing a comprehensive transformation as it transitions towards net zero. To achieve this, fundamental changes and innovations are required, including changes in how food is produced and delivered to customers, new technologies, data and physical infrastructures, and algorithmic advancements. In this paper, we explore the opportunities and challenges of deploying AI-based data infrastructures for sustainability in the agri-food sector by focusing on two case studies: soft-fruit production and brewery operations. We investigate the potential benefits of incorporating Internet of Things (IoT) sensors and AI technologies for improving the use of resources, reducing carbon footprints, and enhancing decision-making. We identify user engagement with new technologies as a key challenge, together with issues in data quality arising from environmental volatility, difficulties in generalising models, including those designed for carbon calculators, and socio-technical barriers to adoption. We highlight and advocate for user engagement, more granular availability of sensor, production, and emissions data, and more transparent carbon footprint calculations. Our proposed future directions include semantic data integration to enhance interoperability, the generation of synthetic data to overcome the lack of real-world farm data, and multi-objective optimisation systems to model the competing interests between yield and sustainability goals. In general, we argue that AI is not a silver bullet for net zero challenges in the agri-food industry, but at the same time, AI solutions, when appropriately designed and deployed, can be a useful tool when operating in synergy with other approaches. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

21 pages, 6000 KiB  
Article
Modeling of a Solar Thermal Plant to Produce Hot Water and Steam for a Brewery Factory
by Kalo G. Traslosheros-Zavala, Ivett Zavala-Guillén, Alexis Acuña-Ramírez, Manuel Cervantes-Astorga, Daniel Sauceda-Carvajal and Francisco J. Carranza-Chávez
Energies 2024, 17(10), 2300; https://doi.org/10.3390/en17102300 - 10 May 2024
Viewed by 2362
Abstract
The environmental impact caused by the intensive exploitation of fossil fuels to generate heat and electricity has already reached a critical level. Also, as the industrial sector is the largest energy consumer, mainly in the form of heat, it has then become compulsive [...] Read more.
The environmental impact caused by the intensive exploitation of fossil fuels to generate heat and electricity has already reached a critical level. Also, as the industrial sector is the largest energy consumer, mainly in the form of heat, it has then become compulsive to implement the use of renewable solar heat in industrial processes, such as those found in the food processing and beverages industries, which do not require high temperatures. Consequently, this study examines the viability of supplying heat as hot water at 80 °C and saturated steam at 160 °C to a medium-sized brewery factory through a hybrid solar plant composed of flat plate and parabolic trough collectors and sensible thermal energy storage. The study was conducted numerically using the meteorological conditions of a city different from that where the factory is located because it benefits from higher insolation levels. The mean annual solar fractions achieved were 49.9% for hot water production and 37.3% for steam generation, at a levelized cost of heat of 0.032 USD/kWh, which can be considered competitive if compared against the values reported in other similar solar projects. Also, the decrease in fossil fuel consumption allowed an annual reduction of 252 tons of carbon dioxide emissions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

40 pages, 1411 KiB  
Article
Customer-Based Brand Equity Drivers: A Leading Brand of Beer in Estonia
by Dafnis N. Coudounaris, Peter Björk, Tõnis Mets, Rustam Asadli and Andreea I. Bujac
Adm. Sci. 2024, 14(4), 61; https://doi.org/10.3390/admsci14040061 - 22 Mar 2024
Cited by 1 | Viewed by 6155
Abstract
Based on the trust/commitment theory and the customer-based brand equity theory, this study aims to ascertain which of the brand equity drivers of A. Le Coq beer have an impact on attachment and its overall brand equity in the Estonian brewery market. In [...] Read more.
Based on the trust/commitment theory and the customer-based brand equity theory, this study aims to ascertain which of the brand equity drivers of A. Le Coq beer have an impact on attachment and its overall brand equity in the Estonian brewery market. In order to achieve this goal, an empirical study was conducted based on the 17 customer-based/consumer-based brand equity models: the 15 brand equity models, including the beer/beverage brand equity models, the 2 internal brand equity models, as well as 3 other related models. The study utilised a sample of convenience of 120 University of Tartu students. The questionnaire was placed on Google’s online survey administration service. Confirmatory factor analysis (CFA) through AMOS29 was used for testing the fit of the model and covariances (through AMOS29) were used for testing the hypotheses. Additionally, t-test analysis was used for the differences in the means between the demographic characteristics and the items of the model. The results show that brand meaning has a strong positive effect on attachment strength, which significantly influences relationship factors—commitment, trust, and satisfaction. Another major finding is that the relationship factors—commitment, trust, and satisfaction—play a significant role in the development of the brand equity of A. Le Coq beer. This study provides useful insights for brewery marketing managers by exploiting the strong positive relationships found between beer brand equity drivers, such as the strong positive relationships found within consumers of beer, i.e., the relationships between brand reputation and brand image, brand meaning and attachment strength, attachment strength and commitment, attachment strength and satisfaction, attachment strength and trust, satisfaction and brand equity, commitment and brand equity, and trust and brand equity. This finding contributes to the literature on brand equity related to the Estonian environment. Five differences in demographic characteristics seem to play a role in designing strategies by the management teams of different brands for increasing the consumption of their competing brands of beer. A replication of a model previously used for a non-product is part of the novelty of this paper. In addition, all the examined relationships are found to be positive and significant, which provides a contribution to the existing literature. Full article
Show Figures

Figure 1

22 pages, 40723 KiB  
Article
From Data to Draught: Modelling and Predicting Mixed-Culture Beer Fermentation Dynamics Using Autoregressive Recurrent Neural Networks
by Alexander O’Brien, Hongwei Zhang, Daniel M. Allwood and Andy Rawsthorne
Modelling 2024, 5(1), 201-222; https://doi.org/10.3390/modelling5010011 - 7 Feb 2024
Cited by 2 | Viewed by 2041
Abstract
The ascendency of the craft beer movement within the brewing industry may be attributed to its commitment to unique flavours and innovative styles. Mixed-culture fermentation, celebrated for its novel organoleptic profiles, presents a modelling challenge due to its complex microbial dynamics. This study [...] Read more.
The ascendency of the craft beer movement within the brewing industry may be attributed to its commitment to unique flavours and innovative styles. Mixed-culture fermentation, celebrated for its novel organoleptic profiles, presents a modelling challenge due to its complex microbial dynamics. This study addresses the inherent complexity of modelling mixed-culture beer fermentation while acknowledging the condition monitoring limitations of craft breweries, namely sporadic offline sampling rates and limited available measurement parameters. A data-driven solution is proposed, utilising an Autoregressive Recurrent Neural Network (AR-RNN) to facilitate the production of novel, replicable, mixed-culture fermented beers. This research identifies time from pitch, specific gravity, pH, and fluid temperature as pivotal model parameters that are cost-effective for craft breweries to monitor offline. Notably, the autoregressive RNN fermentation model is generated using high-frequency multivariate data, a departure from intermittent offline measurements. Employing the trained autoregressive RNN framework, we demonstrate its robust forecasting prowess using limited offline input data, emphasising its ability to capture intricate fermentation dynamics. This data-driven approach offers significant advantages, showcasing the model’s accuracy across various fermentation configurations. Moreover, tailoring the design to the craft beer market’s unique demands significantly enhances the model’s practicable predictive capabilities. It empowers nuanced decision-making in real-world mixed-culture beer production. Furthermore, this model lays the groundwork for future studies, highlighting transformative possibilities for cost-effective model-based control systems in the craft beer sector. Full article
Show Figures

Figure 1

26 pages, 4146 KiB  
Article
Testing Zeolite and Palygorskite as a Potential Medium for Ammonium Recovery and Brewery Wastewater Treatment
by Vassiliki Papaevangelou, Katerina A. Bakalakou, John Tsilinikos and Christos S. Akratos
Water 2023, 15(23), 4069; https://doi.org/10.3390/w15234069 - 23 Nov 2023
Cited by 1 | Viewed by 2398
Abstract
Environmental pollution is an issue of particular concern, specifically when industrial waste products are not subjected to appropriate treatment. Among various industries in the agri-food sector, the brewing industry holds a significant position in this context, given that beer stands as the predominant [...] Read more.
Environmental pollution is an issue of particular concern, specifically when industrial waste products are not subjected to appropriate treatment. Among various industries in the agri-food sector, the brewing industry holds a significant position in this context, given that beer stands as the predominant choice of consumers. Brewery waste generates significant quantities of organic substances, along with ammonium nitrogen and phosphorus. Among the various methods for their treatment, adsorption has received substantial attention due to its cost-effectiveness and operational simplicity. The present study investigates the adsorption capacity of two materials, zeolite and palygorskite, for the removal of ammonium nitrogen and brewery waste, using columns and batches. Simultaneously, desorption and regeneration experiments were conducted, and the effect of pH on their effectiveness was also examined. To understand the adsorption mechanisms, isotherm and kinetic models have been estimated. The results of the experiments have demonstrated a marked adsorption efficiency of the adsorbent materials, surpassing 90%. In comparison, zeolite has exhibited a better adsorption capacity in the removal of ammonium nitrogen, while palygorskite has shown greater aptitude for phosphorus removal. The purpose of these experiments was to investigate the adsorption capacity of these two materials as a potential medium for brewery wastewater treatment (e.g., as part of adsorption filter, trickling filters, and constructed wetlands). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

54 pages, 4596 KiB  
Review
Winemaking: “With One Stone, Two Birds”? A Holistic Review of the Bio-Functional Compounds, Applications and Health Benefits of Wine and Wineries’ By-Products
by Alexandros Tsoupras, Victoria Ling Jun Ni, Éimhín O’Mahony and Maria Karali
Fermentation 2023, 9(9), 838; https://doi.org/10.3390/fermentation9090838 - 13 Sep 2023
Cited by 20 | Viewed by 4904
Abstract
The plethora of bio-functional compounds present in fermented alcoholic beverages like wine, as well as the valorisation of bioactives from wineries’/breweries’ by-products like grape pomace and grape seed, has gained significant interest in the functional foods sector. This functional beverage, wine, has always [...] Read more.
The plethora of bio-functional compounds present in fermented alcoholic beverages like wine, as well as the valorisation of bioactives from wineries’/breweries’ by-products like grape pomace and grape seed, has gained significant interest in the functional foods sector. This functional beverage, wine, has always accompanied humanity, for religion or for health, especially in the Mediterranean, while the benefits of its moderate consumption were documented even by the Greek physician Hippocrates of Kos (460–370 BC). After a big gap, an outbreak of research on wine benefits has surfaced only since the 1990s, when the term “French paradox” was introduced to the US public during a CBS show, while recent evidence has outlined that the beneficial effects of wine consumption are derived by the synergisms of its bio-functional compounds and their digestion-derived metabolites. Within this article, the proposed health benefits of moderate wine consumption, as a functional component of a balanced diet (i.e., the Mediterranean diet) against inflammation-related chronic disorders, is thoroughly reviewed. The various bio-functional compounds of both wine and wineries’ by-products, such as their bioactive phenolics, unsaturated fatty acids, polar lipids and dietary fibres, and their functional antioxidant, anti-inflammatory and antithrombotic health-promoting properties, are also thoroughly evaluated. The mechanisms of action and synergism, by which the health benefits are elicited, are also explored. Functional properties of non-alcoholic wine products are also introduced. Emphasis is also given to applications of wineries’ by-products bioactives, as ingredients of bio-functional foods, supplements and nutraceuticals. Limitations and future perspectives for this popular functional alcoholic beverage (wine) and its rich in bioactives by-products are also addressed. Full article
Show Figures

Figure 1

10 pages, 569 KiB  
Article
Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production
by Bruno Testa, Francesca Coppola, Francesco Letizia, Gianluca Albanese, Julian Karaulli, Mamica Ruci, Marco Pistillo, Giacinto Salvatore Germinara, Maria Cristina Messia, Mariantonietta Succi, Franca Vergalito, Patrizio Tremonte, Silvia Jane Lombardi and Massimo Iorizzo
Processes 2022, 10(12), 2495; https://doi.org/10.3390/pr10122495 - 24 Nov 2022
Cited by 11 | Viewed by 3401
Abstract
Craft breweries tend to use special raw materials and also special ingredients (spices, herbs, fruits) to typify beers, but the metabolic activities of yeasts play a primary role in defining the sensory characteristics of this beverage. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeast [...] Read more.
Craft breweries tend to use special raw materials and also special ingredients (spices, herbs, fruits) to typify beers, but the metabolic activities of yeasts play a primary role in defining the sensory characteristics of this beverage. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeast species usually used for ale and lager beer production. The selection and use of new yeast starters with peculiar technological and enzymatic characteristics could represent the key point for the production of beers with good and distinctive organoleptic properties. In this study, the fermentative performance of S. cerevisiae 41CM yeast isolated from the vineyard environment for ale and lager craft beer production on a laboratory scale was evaluated. The commercial yeast S. cerevisiae Fermentis S-04 and S. pastorianus Weihenstephan 34/70 were used as reference strains. S. cerevisiae 41CM showed fermentative kinetics similar to commercial starters, both in lager (12 °C) and ale (20 °C) brewing. In all beers brewed, the largest percentage of volatile compounds synthesized during the fermentation were alcohols, followed by esters, terpenes, and aldehydes. In particular, S. cerevisiae 41CM starter contributed a higher relative percentage of esters in the ale beer than that detected in the lager beer, without ever synthesizing unwanted volatile compounds. Full article
Show Figures

Figure 1

19 pages, 816 KiB  
Article
Diet Composition Influences Growth Performance, Bioconversion of Black Soldier Fly Larvae: Agronomic Value and In Vitro Biofungicidal Activity of Derived Frass
by Ghazaleh Arabzadeh, Maxime Delisle-Houde, Russell J. Tweddell, Marie-Hélène Deschamps, Martine Dorais, Yolaine Lebeuf, Nicolas Derome and Grant Vandenberg
Agronomy 2022, 12(8), 1765; https://doi.org/10.3390/agronomy12081765 - 27 Jul 2022
Cited by 46 | Viewed by 8784
Abstract
In recent years, the larval stage of Hermetia illucens, commonly known as the black soldier fly (BSFL), has been used to promote the circularity of the agri-food sector by bioconverting organic waste into larval biomass which has been used as a livestock [...] Read more.
In recent years, the larval stage of Hermetia illucens, commonly known as the black soldier fly (BSFL), has been used to promote the circularity of the agri-food sector by bioconverting organic waste into larval biomass which has been used as a livestock feed. A secondary byproduct of this process is frass that can be used as an organic fertilizer. This study compared two different plant-based diets on frass characteristics as well as larval performance, nutritional composition, and waste reduction efficiency. A fruit/vegetable/bakery waste-based diet supplemented with brewery waste (FVBB) was compared to a control Gainesville (GV) reference diet and fed to BSFL under standard conditions. The results demonstrated that NPK and some of the macro and micronutrients in both frasses are comparable to commercially available organic fertilizers. It was shown that microorganisms present in frass from the two diets inhibit the mycelial growth of several plant pathogens through the production of antifungal and/or anti-oomycetes compound(s) (antibiosis). This diet also had a positive effect on individual larval mass (162.11 mg), bioconversion rate (13.32%), and larval crude lipid (35.99% of dry matter) content. The BSFL reared on this diet reduced feedstock dry matter by 67.76% in a very short time (10 days), which is a promising solution for food waste management. Full article
(This article belongs to the Special Issue Agroecology and Organic Horticulture)
Show Figures

Figure 1

Back to TopTop