Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,057)

Search Parameters:
Keywords = breast-cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1677 KiB  
Review
The Multifaceted Role of Growth Differentiation Factor 15 (GDF15): A Narrative Review from Cancer Cachexia to Target Therapy
by Daria Maria Filippini, Donatella Romaniello, Francesca Carosi, Laura Fabbri, Andrea Carlini, Raffaele Giusti, Massimo Di Maio, Salvatore Alfieri, Mattia Lauriola, Maria Abbondanza Pantaleo, Lorena Arribas, Marc Oliva, Paolo Bossi and Laura Deborah Locati
Biomedicines 2025, 13(8), 1931; https://doi.org/10.3390/biomedicines13081931 (registering DOI) - 8 Aug 2025
Abstract
Background: Growth Differentiation Factor 15 (GDF15) has emerged as a key biomarker and therapeutic target in oncology, with roles extending beyond cancer cachexia. Elevated GDF15 levels correlate with poor prognosis across several solid tumors, including colorectal, gastric, pancreatic, breast, lung, prostate, and head [...] Read more.
Background: Growth Differentiation Factor 15 (GDF15) has emerged as a key biomarker and therapeutic target in oncology, with roles extending beyond cancer cachexia. Elevated GDF15 levels correlate with poor prognosis across several solid tumors, including colorectal, gastric, pancreatic, breast, lung, prostate, and head and neck cancers. GDF15 modulates tumor progression through PI3K/AKT, MAPK/ERK, and SMAD2/3 signaling, thereby promoting epithelial-to-mesenchymal transition, metastasis, immune evasion, and chemoresistance via Nrf2 stabilization and oxidative stress regulation. Methods: We performed a narrative review of the literature focusing on the role of GDF15 in solid tumors, with a particular emphasis on head and neck cancers. Results: In head and neck squamous cell carcinoma (HNSCC), GDF15 overexpression is linked to aggressive phenotypes, radioresistance, poor response to induction chemotherapy, and failure of immune checkpoint inhibitors (ICIs). Similar associations are observed in colorectal, pancreatic, and prostate cancer, where GDF15 contributes to metastasis and therapy resistance. Targeting the GDF15-GFRAL axis appears therapeutically promising: the monoclonal antibody ponsegromab improved cachexia-related outcomes in the PROACC-1 trial, while visugromab combined with nivolumab enhanced immune response in ICI-refractory tumors. Conclusions: Further investigation is warranted to delineate the role of GDF15 across malignancies, refine patient selection, and evaluate combinatorial approaches with existing treatments. Full article
(This article belongs to the Special Issue Head and Neck Tumors, 4th Edition)
Show Figures

Figure 1

19 pages, 1632 KiB  
Guidelines
Multidisciplinary Practical Guidance for Implementing Adjuvant CDK4/6 Inhibitors for Patients with HR-Positive, HER2-Negative Early Breast Cancer in Canada
by Katarzyna J. Jerzak, Sandeep Sehdev, Jean-François Boileau, Christine Brezden-Masley, Nadia Califaretti, Scott Edwards, Jenn Gordon, Jan-Willem Henning, Nathalie LeVasseur and Cindy Railton
Curr. Oncol. 2025, 32(8), 444; https://doi.org/10.3390/curroncol32080444 - 7 Aug 2025
Abstract
Cyclin-dependent kinase (CDK)4/6 inhibitors have become a key component of adjuvant treatment for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2−) early breast cancer who are at high risk of recurrence. The addition of abemaciclib and ribociclib to standard [...] Read more.
Cyclin-dependent kinase (CDK)4/6 inhibitors have become a key component of adjuvant treatment for patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2−) early breast cancer who are at high risk of recurrence. The addition of abemaciclib and ribociclib to standard endocrine therapy has demonstrated clinically meaningful improvements in invasive disease-free survival, supported by the monarchE and NATALEE trials, respectively. With expansion of patient eligibility for CDK4/6 inhibitors, multidisciplinary coordination among medical oncologists, surgeons, nurses, pharmacists, and other health care providers is critical to optimizing patient identification, monitoring, and management of adverse events. This expert guidance document provides practical recommendations for implementing adjuvant CDK4/6 inhibitor therapy in routine clinical practice, incorporating insights from multiple specialties and with patient advocacy representation. Key considerations include patient selection based on clinical trial data, treatment duration, dosing schedules, adverse event profiles, monitoring requirements, drug–drug interactions, and patient-specific factors such as tolerability, cost, and quality of life. This guidance aims to support Canadian clinicians in effectively integrating CDK4/6 inhibitors into clinical practice, ensuring optimal patient outcomes through a multidisciplinary and patient-centric approach. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

13 pages, 1488 KiB  
Article
Validation of a Quantitative Ultrasound Texture Analysis Model for Early Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: A Prospective Serial Imaging Study
by Daniel Moore-Palhares, Lakshmanan Sannachi, Adrian Wai Chan, Archya Dasgupta, Daniel DiCenzo, Sonal Gandhi, Rossanna Pezo, Andrea Eisen, Ellen Warner, Frances Wright, Nicole Look Hong, Ali Sadeghi-Naini, Mia Skarpathiotakis, Belinda Curpen, Carrie Betel, Michael C. Kolios, Maureen Trudeau and Gregory J. Czarnota
Cancers 2025, 17(15), 2594; https://doi.org/10.3390/cancers17152594 - 7 Aug 2025
Abstract
Background/Objectives: Patients with breast cancer who do not achieve a complete response to neoadjuvant chemotherapy (NAC) may benefit from intensified adjuvant systemic therapy. However, such treatment escalation is typically delayed until after tumour resection, which occurs several months into the treatment course. Quantitative [...] Read more.
Background/Objectives: Patients with breast cancer who do not achieve a complete response to neoadjuvant chemotherapy (NAC) may benefit from intensified adjuvant systemic therapy. However, such treatment escalation is typically delayed until after tumour resection, which occurs several months into the treatment course. Quantitative ultrasound (QUS) can detect early microstructural changes in tumours and may enable timely identification of non-responders during NAC, allowing for earlier treatment intensification. In our previous prospective observational study, 100 breast cancer patients underwent QUS imaging before and four times during NAC. Machine learning algorithms based on QUS texture features acquired in the first week of treatment were developed and achieved 78% accuracy in predicting treatment response. In the current study, we aimed to validate these algorithms in an independent prospective cohort to assess reproducibility and confirm their clinical utility. Methods: We included breast cancer patients eligible for NAC per standard of care, with tumours larger than 1.5 cm. QUS imaging was acquired at baseline and during the first week of treatment. Tumour response was defined as a ≥30% reduction in target lesion size on the resection specimen compared to baseline imaging. Results: A total of 51 patients treated between 2018 and 2021 were included (median age 49 years; median tumour size 3.6 cm). Most were estrogen receptor–positive (65%) or HER2-positive (33%), and the majority received dose-dense AC-T (n = 34, 67%) or FEC-D (n = 15, 29%) chemotherapy, with or without trastuzumab. The support vector machine algorithm achieved an area under the curve of 0.71, with 86% accuracy, 91% specificity, 50% sensitivity, 93% negative predictive value, and 43% positive predictive value for predicting treatment response. Misclassifications were primarily associated with poorly defined tumours and difficulties in accurately identifying the region of interest. Conclusions: Our findings validate QUS-based machine learning models for early prediction of chemotherapy response and support their potential as non-invasive tools for treatment personalization and clinical trial development focused on early treatment intensification. Full article
(This article belongs to the Special Issue Clinical Applications of Ultrasound in Cancer Imaging and Treatment)
Show Figures

Figure 1

18 pages, 2516 KiB  
Article
Joint Metabolomics and Transcriptomics Reveal Rewired Glycerophospholipid and Arginine Metabolism as Components of BRCA1-Induced Metabolic Reprogramming in Breast Cancer Cells
by Thomas Lucaora and Daniel Morvan
Metabolites 2025, 15(8), 534; https://doi.org/10.3390/metabo15080534 - 7 Aug 2025
Abstract
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself [...] Read more.
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself a transcriptional factor, BRCA1, through its multiple protein interaction domains, exerts transcriptional coregulation. In addition, BRCA1 expression alters cellular metabolism including inhibition of de novo fatty acid synthesis, changes in cellular bioenergetics, and activation of antioxidant defenses. Some of these actions may contribute to its global oncosuppressive effects. However, the breadth of metabolic pathways reprogrammed by BRCA1 is not fully elucidated. Methods: Breast cancer cells expressing BRCA1 were investigated by multiplatform metabolomics, metabolism-related transcriptomics, and joint metabolomics/transcriptomics data processing techniques, namely two-way orthogonal partial least squares and pathway analysis. Results: Joint analyses revealed the most important metabolites, genes, and pathways of metabolic reprogramming in BRCA1-expressing breast cancer cells. The breadth of metabolic reprogramming included fatty acid synthesis, bioenergetics, HIF-1 signaling pathway, antioxidation, nucleic acid synthesis, and other pathways. Among them, rewiring of glycerophospholipid (including phosphatidylcholine, -serine and -inositol) metabolism and increased arginine metabolism have not been reported yet. Conclusions: Rewired glycerophospholipid and arginine metabolism were identified as components of BRCA1-induced metabolic reprogramming in breast cancer cells. The study helps to identify metabolites that are candidate biomarkers of the BRCA1 genotype and metabolic pathways that can be exploited in targeted therapies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

43 pages, 8518 KiB  
Review
Cutting-Edge Sensor Technologies for Exosome Detection: Reviewing Role of Antibodies and Aptamers
by Sumedha Nitin Prabhu and Guozhen Liu
Biosensors 2025, 15(8), 511; https://doi.org/10.3390/bios15080511 - 6 Aug 2025
Abstract
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have [...] Read more.
Exosomes are membranous vesicles that play a crucial role as intercellular messengers. Cells secrete exosomes, which can be found in a variety of bodily fluids such as amniotic fluid, semen, breast milk, tears, saliva, urine, blood, bile, ascites, and cerebrospinal fluid. Exosomes have a distinct bilipid protein structure and can be as small as 30–150 nm in diameter. They may transport and exchange multiple cellular messenger cargoes across cells and are used as a non-invasive biomarker for various illnesses. Due to their unique features, exosomes are recognized as the most effective biomarkers for cancer and other disease detection. We give a review of the most current applications of exosomes derived from various sources in the prognosis and diagnosis of multiple diseases. This review also briefly examines the significance of exosomes and their applications in biomedical research, including the use of aptamers and antibody–antigen functionalized biosensors. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

16 pages, 2369 KiB  
Article
HMGB1 Deficiency Occurs in a Broad Range of Human Cancers and Is Often Associated with Unfavorable Tumor Phenotype
by Viktoria Chirico, Hena Sharifi, Maria Christina Tsourlakis, Seyma Büyücek, Clara Marie von Bargen, Katharina Möller, Florian Lutz, David Dum, Martina Kluth, Claudia Hube-Magg, Georgia Makrypidi-Fraune, Piero Caneve, Maximilian Lennartz, Morton Freytag, Sebastian Dwertmann Rico, Simon Kind, Viktor Reiswich, Eike Burandt, Till S. Clauditz, Patrick Lebok, Christoph Fraune, Till Krech, Sarah Minner, Andreas H. Marx, Waldemar Wilczak, Ronald Simon, Guido Sauter, Stefan Steurer and Kristina Jansenadd Show full author list remove Hide full author list
Diagnostics 2025, 15(15), 1974; https://doi.org/10.3390/diagnostics15151974 - 6 Aug 2025
Abstract
Background/Objectives: Aberrant expression of high-mobility group protein B1 (HMGB1) has been linked to cancer development and progression. Methods: To better comprehend the role of HMGB1 expression in cancer, a tissue microarray containing 14,966 samples from 134 different tumor entities and 608 [...] Read more.
Background/Objectives: Aberrant expression of high-mobility group protein B1 (HMGB1) has been linked to cancer development and progression. Methods: To better comprehend the role of HMGB1 expression in cancer, a tissue microarray containing 14,966 samples from 134 different tumor entities and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Results: Strong HMGB1 staining occurred in almost all normal cell types and in most cancers. Of 11,808 evaluable cancers, only 7.8% showed complete absence of HMGB1 staining (HMGB1 deficiency) while 9.9% showed 1+, 25.0% showed 2+, and 57.2% showed 3+ HMGB1 positivity. Absence of HMGB1 staining mostly occurred in pheochromocytoma (90.0%), seminoma (72.4%), gastrointestinal stromal tumor (28.6%), adrenal cortical carcinoma (25.0%), and Hodgkin’s lymphoma (25.0%). Low HMGB1 staining was linked to poor histologic grade (p < 0.0001), advanced pT stage (p < 0.0001), high UICC stage (p < 0.0001), and distant metastasis (p = 0.0413) in clear cell renal cell carcinoma, invasive tumor growth in urothelial carcinoma (pTa vs. pT2–4, p < 0.0001), mismatch repair deficiency (p = 0.0167) in colorectal cancers, and advanced pT stage in invasive breast carcinoma of no special type (p = 0.0038). Strong HMGB1 staining was linked to nodal metastases in high-grade serous ovarian carcinomas (p = 0.0213) and colorectal adenocarcinomas (p = 0.0137), as well as to poor histological grade in squamous cell carcinomas (p = 0.0010). Conclusions: HMGB1 deficiency and reduced HMGB1 expression occur in a broad range of different tumor entities. Low rather than strong HMGB1 staining is often linked to an aggressive tumor phenotype. Whether HMGB1 deficiency renders cells susceptible to specific drugs remains to be determined. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

19 pages, 1628 KiB  
Review
The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers
by Ammar Ansari, Aleksandra Szczesnowska, Natalia Haddad, Ahmed Elbediwy and Nadine Wehida
Non-Coding RNA 2025, 11(4), 61; https://doi.org/10.3390/ncrna11040061 - 6 Aug 2025
Abstract
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the [...] Read more.
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the cancer, there is a pressing need for alternative treatments. Recent research has highlighted the promising role of non-coding RNAs (ncRNA) in regulating these issues and providing more targeted approaches to suppressing key cancer pathways. This review explores the involvement of the various types of non-coding RNAs in regulating key oncogenic pathways, namely, the MAPK, PI3K/Akt/mTOR, Wnt/β-catenin and p53 pathways, in a range of female cancers such as breast, cervical, ovarian and endometrial cancers. Evidence from a multitude of studies suggests that non-coding RNAs function as double-edged swords, serving as both oncogenes and tumour suppressors, depending on their expression and cellular interactions. By mapping and investigating these regulatory interactions, this review demonstrates the complexity and dual functionality of ncRNAs in cancer. Understanding these complex mechanisms is essential for the development of new and effective ncRNA-based diagnostic methods and targeted therapies in female cancer treatment. Full article
Show Figures

Figure 1

12 pages, 486 KiB  
Article
Efficacy and Safety of Dose-Dense Chemotherapy in Breast Cancer: Real Clinical Data and Literature Review
by Keiko Yanagihara, Masato Yoshida, Tamami Yamakawa, Sena Kato, Miki Tamura and Koji Nagata
Curr. Oncol. 2025, 32(8), 441; https://doi.org/10.3390/curroncol32080441 - 6 Aug 2025
Abstract
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen [...] Read more.
Dose-dense chemotherapy shortens the interval between chemotherapy cycles and has shown improved outcomes in high-risk breast cancer patients. We retrospectively evaluated the efficacy and safety of dose-dense chemotherapy in 80 breast cancer patients treated at our hospital from 2020 to 2024. The regimen included epirubicin and cyclophosphamide followed by paclitaxel or docetaxel, with pegfilgrastim support. The overall treatment completion rate was 82.5%. Of the 80 patients, 55 underwent neoadjuvant chemotherapy, and the pathological complete response rate was significantly higher in triple-negative breast cancer (59.1%) compared to that in luminal-type cancer (9.1%). Common adverse events included anemia, liver dysfunction, myalgia, and peripheral neuropathy. Febrile neutropenia occurred in 8.8% of patients, with some cases linked to pegfilgrastim body pod use, particularly in individuals with low subcutaneous fat. Notably, two patients developed pneumocystis pneumonia, potentially associated with steroid administration. Despite these toxicities, most were manageable and resolved after treatment. Our findings support the efficacy of dose-dense chemotherapy, particularly in triple-negative breast cancer, while highlighting the importance of individualized supportive care and vigilance regarding hematologic and infectious complications. Full article
Show Figures

Figure 1

12 pages, 1106 KiB  
Article
Trends in the Utilization of BRCA1 and BRCA2 Testing After the Introduction of a Publicly Funded Genetic Testing Program
by Fahima Dossa, Nancy N. Baxter, Rinku Sutradhar, Tari Little, Lea Velsher, Jordan Lerner-Ellis, Andrea Eisen and Kelly Metcalfe
Curr. Oncol. 2025, 32(8), 439; https://doi.org/10.3390/curroncol32080439 - 6 Aug 2025
Abstract
Purpose: To effectively reduce cancer burden, genetic testing programs should identify high-risk individuals prior to cancer development, when risk-reduction strategies can be implemented. We evaluated trends in BRCA1/BRCA2 testing use after implementation of a publicly funded testing program. Methods: We conducted [...] Read more.
Purpose: To effectively reduce cancer burden, genetic testing programs should identify high-risk individuals prior to cancer development, when risk-reduction strategies can be implemented. We evaluated trends in BRCA1/BRCA2 testing use after implementation of a publicly funded testing program. Methods: We conducted a retrospective, near population-based study of women who underwent BRCA1/BRCA2 testing in Ontario, Canada, (2007–2016) (n = 15,986). Temporal trends were evaluated using linear and Poisson regression. Results: Although annual utilization of testing increased over time (p < 0.001), mean age at testing increased from 49.9 years (SD 13.8) in 2007 to 53.8 years (SD 13.7) in 2016 (p < 0.001). The proportion of women with a cancer history at testing also increased from 53.5% in 2007 to 66.3% in 2015 (p < 0.001); the proportion of women free from breast cancer did not change significantly (49.2% in 2007 versus 45.1% in 2015, p = 0.90). As a proportion of all tested, those with breast cancer tested within 3 months of diagnosis increased over time (0.39% of tests in 2007 versus 13.6% of tests in 2015; p < 0.001). Conclusions: While the institution of a publicly funded genetic testing program was associated with rising utilization, increasing age at testing and decreasing testing of unaffected women suggest limitations in identifying high-risk individuals eligible for risk-reduction. Full article
(This article belongs to the Special Issue Advanced Research on Breast Cancer Genes in Cancers)
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Inhibitory Impact of the Amino Benzoic Derivative DAB-2-28 on the Process of Epithelial–Mesenchymal Transition in Human Breast Cancer Cells
by Laurie Fortin, Julie Girouard, Yassine Oufqir, Alexis Paquin, Francis Cloutier, Isabelle Plante, Gervais Bérubé and Carlos Reyes-Moreno
Molecules 2025, 30(15), 3284; https://doi.org/10.3390/molecules30153284 - 5 Aug 2025
Abstract
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule [...] Read more.
Macrophage-mediated inflammation is known to be involved in the epithelial–mesenchymal transition (EMT) of various types of cancer. This makes macrophage-derived inflammatory factors prime targets for the development of new treatments. This study uncovers the therapeutic potential and action mechanism of DAB-2-28, a small-molecule derived from para-aminobenzoic acid, in the treatment of breast cancer. The luminal MCF-7 and the triple-negative MDA-MB-231 cancer cell lines used in this study represent, respectively, breast cancers in which the differentiation states are related to the epithelial phenotype of the mammary gland and breast cancers expressing a highly aggressive mesenchymal phenotype. In MCF-7 cells, soluble factors from macrophage-conditioned media (CM-MØ) induce a characteristic morphology of mesenchymal cells with an upregulated expression of Snail1, a mesenchymal marker, as opposed to a decrease in the expression of E-cadherin, an epithelial marker. DAB-2-28 does not affect the differential expression of Snail1 and E-cadherin in response to CM-MØ, but negatively impacts other hallmarks of EMT by decreasing invasion and migration capacities, in addition to MMP9 expression and gelatinase activity, in both MCF-7 and MDA-MB-231 cells. Moreover, DAB-2-28 inhibits the phosphorylation of key pro-EMT transcriptional factors, such as NFκB, STAT3, SMAD2, CREB, and/or AKT proteins, in breast cancer cells exposed to different EMT inducers. Overall, our study provides evidence suggesting that inhibition of EMT initiation or maintenance is a key mechanism by which DAB-2-28 can exert anti-tumoral effects in breast cancer cells. Full article
Show Figures

Figure 1

14 pages, 1848 KiB  
Article
RadiomiX for Radiomics Analysis: Automated Approaches to Overcome Challenges in Replicability
by Harel Kotler, Luca Bergamin, Fabio Aiolli, Elena Scagliori, Angela Grassi, Giulia Pasello, Alessandra Ferro, Francesca Caumo and Gisella Gennaro
Diagnostics 2025, 15(15), 1968; https://doi.org/10.3390/diagnostics15151968 - 5 Aug 2025
Abstract
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature [...] Read more.
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature selection method combinations known to be suitable for radiomic datasets to determine the best-performing configuration across multiple train–test splits and K-fold cross-validation. The framework was validated on four public retrospective radiomics datasets including lung nodules, metastatic breast cancer, and hepatic encephalopathy using CT, PET/CT, and MRI modalities. Model performance was assessed using the area under the receiver-operating-characteristic curve (AUC) and accuracy metrics. Results: RadiomiX achieved superior performance across four datasets: LLN (AUC = 0.850 and accuracy = 0.785), SLN (AUC = 0.845 and accuracy = 0.754), MBC (AUC = 0.889 and accuracy = 0.833), and CHE (AUC = 0.837 and accuracy = 0.730), significantly outperforming original published models (p < 0.001 for LLN/SLN and p = 0.023 for MBC accuracy). When original published models were re-evaluated using ten-fold cross-validation, their performance decreased substantially: LLN (AUC = 0.783 and accuracy = 0.731), SLN (AUC = 0.748 and accuracy = 0.714), MBC (AUC = 0.764 and accuracy = 0.711), and CHE (AUC = 0.755 and accuracy = 0.677), further highlighting RadiomiX’s methodological advantages. Conclusions: Systematically testing model combinations using RadiomiX has led to significant improvements in performance. This emphasizes the potential of automated ML as a step towards better-performing and more reliable radiomic models. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

16 pages, 1701 KiB  
Article
Aromatase Inhibitor-Induced Carpal Tunnel Syndrome Immunohistochemical Analysis and Clinical Evaluation: An Observational, Cross-Sectional, Case–Control Study
by Iakov Molayem, Lucian Lior Marcovici, Roberto Gradini, Massimiliano Mancini, Silvia Taccogna and Alessia Pagnotta
J. Clin. Med. 2025, 14(15), 5513; https://doi.org/10.3390/jcm14155513 - 5 Aug 2025
Abstract
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced [...] Read more.
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced carpal tunnel syndrome represents one of the main causes of aromatase inhibitor discontinuation, with a non-compliance rate of up to 67%, potentially leading to increased cancer mortality. This study investigates estrogen receptor expression in aromatase-inhibitor-induced carpal tunnel syndrome tissues, in order to better define its etiopathogenesis and derive preventive or therapeutic measures that can improve aromatase inhibitor patient compliance. To our knowledge, there is no study on this subject in the literature. Methods: Between 2023 and 2024, we recruited 14 patients at the Jewish Hospital of Rome, including seven patients with aromatase-inhibitor-induced carpal tunnel syndrome (study group) and seven with postmenopausal idiopathic carpal tunnel syndrome (control group). Each patient was evaluated based on a clinical visit, a questionnaire, instrumental exams, and serum hormone dosages and were treated with open carpal tunnel release surgery, during which transverse carpal ligament and flexor tenosynovium samples were collected. For immunohistochemical experiments, sections were treated with anti-estrogen receptor α and anti-estrogen receptor β antibodies. Results: The immunohistochemical features in the study and control groups were similar, demonstrating that tissues affected by aromatase-inhibitor-induced carpal tunnel syndrome are targets of direct estrogen action and that estrogen deprivation is correlated with disease etiogenesis. Surgery was effective in patient treatment. Conclusions: Aromatase-inhibitor-induced carpal tunnel syndrome represents a newly defined form of the disease. This syndrome represents one of the main causes of aromatase inhibitor discontinuation, due to its negative impact on the patient’s quality of life. The identification by clinicians of aromatase inhibitor use as a possible risk factor for carpal tunnel syndrome development is of essential importance, as early diagnosis and prompt management can improve patient compliance and overall breast cancer treatment outcomes. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

17 pages, 2353 KiB  
Article
Repurposing a Lipid-Lowering Agent to Inhibit TNBC Growth Through Cell Cycle Arrest
by Yi-Chiang Hsu, Kuan-Ting Lee, Sung-Nan Pei, Kun-Ming Rau and Tai-Hsin Tsai
Curr. Issues Mol. Biol. 2025, 47(8), 622; https://doi.org/10.3390/cimb47080622 - 5 Aug 2025
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive and therapeutically challenging subtype of breast cancer due to its lack of estrogen receptors, progesterone receptors, and HER2 (Human epidermal growth factor receptor 2) expression, which severely limits available treatment options. Recently, Simvastatin—a widely used HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitor for hyperlipidemia—has garnered interest for its potential anticancer effects. This study investigates the therapeutic potential of Simvastatin in triple-negative breast cancer (TNBC). The results demonstrate that Simvastatin significantly inhibits the proliferation of TNBC cells, particularly MDA-MB-231, in a dose- and time-dependent manner. Mechanistically, Simvastatin primarily induces G1 phase cell cycle arrest to exert its antiproliferative effects, with no significant evidence of apoptosis or necrosis. These findings support the potential repositioning of Simvastatin as a therapeutic agent to suppress TNBC cell growth. Further analysis shows that Simvastatin downregulates cyclin-dependent kinase 4 (CDK4), a key regulator of the G1/S cell cycle transition and a known marker of poor prognosis in breast cancer. These findings highlight a novel, apoptosis-independent mechanism of Simvastatin’s anticancer action in TNBC. Importantly, given that many breast cancer patients also suffer from hyperlipidemia, Simvastatin offers dual therapeutic benefits—managing both lipid metabolism and tumor cell proliferation. Thus, Simvastatin holds promise as an adjunctive therapy in the treatment of TNBC and warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop