Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = braking torque

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3188 KB  
Article
Research on Multi-Actuator Stable Control of Distributed Drive Electric Vehicles
by Peng Zou, Bo Huang, Shen Xu, Fei Liu and Qiang Shu
World Electr. Veh. J. 2026, 17(1), 45; https://doi.org/10.3390/wevj17010045 - 15 Jan 2026
Viewed by 61
Abstract
In this paper, a hierarchical adaptive control strategy is proposed to enhance the handling stability of distributed drive electric vehicles. In this strategy, the upper-level fuzzy controller calculates the additional yaw moment and rear wheel angle by utilizing the error between the actual [...] Read more.
In this paper, a hierarchical adaptive control strategy is proposed to enhance the handling stability of distributed drive electric vehicles. In this strategy, the upper-level fuzzy controller calculates the additional yaw moment and rear wheel angle by utilizing the error between the actual and the target yaw velocity, as well as the error between the actual and the target sideslip angle. The quadratic programming algorithm is adopted to achieve the optimal torque distribution scheme through the lower-level controller, and the electronic stability control system (ESC) is utilized to generate the braking force required for each wheel. The four-wheel steering controller optimizes the rear wheel angle by using proportional feedforward combined with fuzzy feedback or Akerman steering based on the steering wheel angle and vehicle speed, through actuators such as active front-wheel steering (AFS) and active rear-wheel steering (ARS), which generate the steering angle of each wheel. This approach is validated through simulations under serpentine and double-lane-change conditions. Compared to uncontrolled and single-control strategies, the actuators are decoupled, the actual sideslip angle and yaw velocity of the vehicle can effectively track the target value, the actual response is highly consistent with the expected response, the goodness of fit exceeds 90%, peak-to-peak deviation with a small tracking error. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

24 pages, 6868 KB  
Article
Study on Multi-Parameter Collaborative Optimization of Motor-Pump Stator Slotting for Cogging Torque and Noise Suppression Mechanism
by Geqiang Li, Xiaojie Guo, Xiaowen Yu, Min Zhao and Shuai Wang
World Electr. Veh. J. 2026, 17(1), 39; https://doi.org/10.3390/wevj17010039 - 13 Jan 2026
Viewed by 77
Abstract
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, [...] Read more.
As a highly integrated and compact power unit, the motor-pump finds critical applications in emerging electric vehicle (EV) domains such as electro-hydraulic braking and steering systems, where its vibration and noise performance directly impacts cabin comfort. A key factor limiting its NVH (Noise, Vibration, and Harshness) performance is the electromagnetic vibration and noise induced by the cogging torque of the built-in brushless DC motor (BLDCM). Traditional suppression methods that rely on stator auxiliary slots exhibit certain limitations. To address this issue, this paper proposes a collaborative optimization method integrating multi-parameter scanning and response surface methodology (RSM) for the design of auxiliary slots on the motor-pump’s stator teeth. The approach begins with a multi-parameter scanning phase to identify a promising region for global optimization. Subsequently, an accurate RSM-based prediction model is established to enable refined parameter tuning. Results demonstrate that the optimized stator structure achieves a 91.2% reduction in cogging torque amplitude for the motor-pump. Furthermore, this structure effectively suppresses radial electromagnetic force, leading to a 5.1% decrease in the overall sound pressure level. This work provides a valuable theoretical foundation and a systematic design methodology for cogging torque mitigation and low-noise design in motor-pumps. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

24 pages, 5531 KB  
Article
Regenerative Braking Torque Allocation Strategy for Dual-Rotor In-Wheel Motor Drive Electric Vehicle Based on the Maximum System Energy Recovery
by Junmin Li, Wenguang Guo, Zhihan Wang and Shuaiqi Zheng
World Electr. Veh. J. 2026, 17(1), 29; https://doi.org/10.3390/wevj17010029 - 6 Jan 2026
Viewed by 135
Abstract
The dual-rotor in-wheel motor (DRIWM) drive electric vehicle has multiple braking modes. Determining how to select the most suitable braking mode for the current driving conditions and dynamically allocate the regenerative braking torque of the inner and outer motors is the key to [...] Read more.
The dual-rotor in-wheel motor (DRIWM) drive electric vehicle has multiple braking modes. Determining how to select the most suitable braking mode for the current driving conditions and dynamically allocate the regenerative braking torque of the inner and outer motors is the key to achieving maximum energy recovery. On the basis of regenerative braking characteristic analyses of the DRIWM, the switching rules of the vehicle braking modes were designed based on the optimal system efficiency, and the specific working ranges of various braking modes were determined. According to the efficiency characteristics of the inner and outer motors, a regenerative braking torque allocation strategy based on the principle of maximizing the system energy recovery was proposed in the dual-motor coupled regenerative braking mode. The simulation results show that, during the entire CLTC-P cycle condition, the three regenerative braking modes of the DRIWM can effectively recover braking energy within their designed working ranges. Moreover, both the inner motor and outer motor can operate at the best efficiency when they undertake the optimal braking torque to achieve the maximum braking energy recovery. The experimental results show that a variable voltage charging scheme for the DRIWM is adopted, which can further ensure that both the inner and outer motors can simultaneously store energy with the maximum efficiency to the power battery pack. Full article
(This article belongs to the Section Vehicle and Transportation Systems)
Show Figures

Figure 1

18 pages, 1871 KB  
Article
Physics-Oriented Optimization of a Distributed Electro-Hydraulic Brake System for Electric Vehicles
by Gregorio Giannini, Mattia Belloni, Marco Ghigi, Lorenzo Savi, Michele Vignati and Francesco Braghin
Appl. Sci. 2026, 16(1), 506; https://doi.org/10.3390/app16010506 - 4 Jan 2026
Viewed by 170
Abstract
The transition to battery electric vehicles (BEVs) is enabling the significant redesign of key subsystems, including braking systems. This work presents a physics-based optimization framework for the preliminary design of a distributed electro-hydraulic brake-by-wire (DEHB) system tailored for electric vehicles. The DEHB system [...] Read more.
The transition to battery electric vehicles (BEVs) is enabling the significant redesign of key subsystems, including braking systems. This work presents a physics-based optimization framework for the preliminary design of a distributed electro-hydraulic brake-by-wire (DEHB) system tailored for electric vehicles. The DEHB system is modeled as a two-phase actuation process captured through a coupled electro-mechanical and hydraulic model: initial pad–disc clearance closure and subsequent pressure buildup. Sensitivity analysis is employed to identify critical design parameters, and a multi-objective genetic algorithm is used to minimize electrical power consumption, peak current, and maximum torque while satisfying performance constraints. The optimized configuration is benchmarked against commercially available solutions and validated against a multiphysics simulation, showing deviations below 8% for current and power. A dynamic analysis incorporating vehicle-level ABS logic demonstrates the improved performance and energy efficiency of the DEHB system during emergency braking, with a reduction of 50% in required power if compared to a non-optimized system. The results confirm the effectiveness of the proposed method for early-stage sizing and highlight the potential of DEHB architectures in future electric vehicle platforms. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

26 pages, 12330 KB  
Article
Comparative Machine Learning-Based Techniques to Provide Regenerative Braking Systems with High Efficiency for Electric Vehicles
by Omer Boyaci and Mustafa Tumbek
Sustainability 2026, 18(1), 414; https://doi.org/10.3390/su18010414 - 1 Jan 2026
Viewed by 482
Abstract
Electric vehicles rely on regenerative braking as a means of improving energy efficiency and extending driving range. However, the optimization of torque distribution between regenerative and mechanical braking remains a challenging aspect. This study investigates machine learning techniques for predicting braking torque in [...] Read more.
Electric vehicles rely on regenerative braking as a means of improving energy efficiency and extending driving range. However, the optimization of torque distribution between regenerative and mechanical braking remains a challenging aspect. This study investigates machine learning techniques for predicting braking torque in light EVs with a view to improving energy recovery and reducing mechanical brake usage. For this purpose, a simulation model was developed in MATLAB/Simulink to generate a data set of 113,622 points based on speed, acceleration, road grade, vehicle weight, and road condition. Four supervised ML algorithms—Linear Regression, K-Nearest Neighbors, Decision Tree, and Random Forest—were trained and evaluated using R2, MSE, RMSE, and MAE metrics. To verify the results under WLTP Class 1 driving conditions, a test was conducted on a hardware test platform for the best model. The findings indicate that Random Forest achieved the highest level of accuracy with an R2 value of 0.97 in the simulation and an R2 value of 0.98 in the experimental validation. These findings support the hypothesis that ML-based torque prediction is a promising approach for real-time EV braking control. Also, this study supports sustainable transportation by improving energy recovery and reducing environmental impact through advanced AI-based braking strategies. Full article
Show Figures

Figure 1

30 pages, 8648 KB  
Article
Research on Dynamic Center-of-Mass Reconfiguration for Enhancement of UAV Performances Based on Simulations and Experiment
by Anas Ahmed, Guangjin Tong and Jing Xu
Drones 2025, 9(12), 854; https://doi.org/10.3390/drones9120854 - 12 Dec 2025
Viewed by 1092
Abstract
The stability of unmanned aerial vehicles (UAVs) during propulsion failure remains a critical safety challenge. This study presents a center-of-mass (CoM) correction device, a compact, under-slung, and dual-axis prismatic stage, which can reposition a dedicated shifting mass within the UAV frame [...] Read more.
The stability of unmanned aerial vehicles (UAVs) during propulsion failure remains a critical safety challenge. This study presents a center-of-mass (CoM) correction device, a compact, under-slung, and dual-axis prismatic stage, which can reposition a dedicated shifting mass within the UAV frame to generate stabilizing gravitational torques by the closed-loop feedback from the inertial measurement unit (IMU). Two major experiments were conducted to evaluate the feasibility of the system. In a controlled roll test with varying payloads, the device produced a corrective torque up to 1.2375 N·m, reducing maximum roll deviations from nearly 90° without the device to less than 5° with it. In a dynamic free-fall simulation, the baseline UAV exhibited rapid tumbling and inverted impacts, whereas with the CoM system activated, the UAV maintained a near-level attitude to achieve the upright recovery and greatly reduced structural stress prior to ground contact. The CoM device, as a fail-safe stabilizer, can also enhance maneuverability by increasing control authority, enable a faster speed response and more efficient in-air braking without reliance on the rotor thrust, and achieve comprehensive energy saving, at about 7% of the total power budget. In summary, the roll stabilization and free-fall results show that the CoM device can work as a practical pathway toward the safer, more agile, and energy-efficient UAV platforms for civil, industrial, and defense applications. Full article
(This article belongs to the Special Issue Advanced Flight Dynamics and Decision-Making for UAV Operations)
Show Figures

Figure 1

44 pages, 20679 KB  
Article
Aero-Structural Analysis and Dimensional Optimization of a Prototype Hybrid Wind–Photovoltaic Rotor with 12 Pivoting Flat Blades and a Peripheral Stiffening Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(24), 13027; https://doi.org/10.3390/app152413027 - 10 Dec 2025
Viewed by 375
Abstract
We present the first aero-structural evaluation of a 3 m-diameter hybrid wind-PV rotor employing flat-plate blades stiffened by a peripheral ring. Owing to the lack of prior data, we combine low-Reynolds BEM, elastic FEM sizing, and steady-state CFD (k-ω SST) to build a [...] Read more.
We present the first aero-structural evaluation of a 3 m-diameter hybrid wind-PV rotor employing flat-plate blades stiffened by a peripheral ring. Owing to the lack of prior data, we combine low-Reynolds BEM, elastic FEM sizing, and steady-state CFD (k-ω SST) to build a coherent preliminary load and performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm) and spokes (Ø 40 mm), von Mises stresses stay below 25% of the 6061-T6 yield limit and tip deflection remains within 0.5% R across Cut-in (3 m/s), Nominal (5 m/s) and Extreme (25 m/s) wind cases. CFD confirms a flat efficiency plateau at λ = 2.4–2.8 (β = 10°) and zero braking torque at β = 90°, validating a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). The study addresses only the rotor; off-the-shelf generator, brake, screw-pitch and azimuth/tilt drives will be integrated later. These findings set a solid baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

29 pages, 7829 KB  
Article
Braking Force Coordination Control for In-Wheel Motor Drive Electric Vehicles with Electro-Hydraulic Composite Braking System
by Huichen Li, Liqiang Jin, Jianhua Li, Feng Xiao, Zhongshu Wang and Guangming Zhang
Vehicles 2025, 7(4), 119; https://doi.org/10.3390/vehicles7040119 - 17 Oct 2025
Cited by 1 | Viewed by 890
Abstract
This paper presents a coordinated control strategy for an electro-hydraulic composite braking system in in-wheel motor electric vehicles to enhance regenerative energy recovery and braking safety. A novel hydraulic control unit (HCU) without a pressure-reducing valve is designed to simplify structure and maximize [...] Read more.
This paper presents a coordinated control strategy for an electro-hydraulic composite braking system in in-wheel motor electric vehicles to enhance regenerative energy recovery and braking safety. A novel hydraulic control unit (HCU) without a pressure-reducing valve is designed to simplify structure and maximize energy utilization. Based on the ideal braking force distribution, a force allocation strategy coordinates motor and hydraulic braking across modes, ensuring motor torque can compensate total braking torque when wheel lock occurs. An anti-lock braking (ABS) strategy relying solely on motor torque adjustment is proposed, keeping hydraulic torque constant while rapidly stabilizing slip within 13–17%, thereby avoiding interference between hydraulic and motor braking. A joint Simulink–AMESim–CarSim platform evaluates the strategy under varying conditions, and real-vehicle tests in regenerative mode confirm feasibility and smooth switching. Results show the proposed approach achieves target braking intensity, improves energy recovery, reduces torque oscillations and valve actions, and maintains stability. The study offers a practical solution for integrating regenerative braking and ABS in in-wheel motor EVs, with potential for hardware-in-the-loop validation and advanced stability control applications. Full article
Show Figures

Figure 1

12 pages, 3514 KB  
Article
Evaluation of Road Dust Resuspension from Internal Combustion Engine and Electric Vehicles of the Same Model
by Worawat Songkitti, Sirasak Pong-A-Mas, Chawwanwit Boonsom, Tanet Aroonsrisopon and Ekathai Wirojsakunchai
Atmosphere 2025, 16(10), 1141; https://doi.org/10.3390/atmos16101141 - 28 Sep 2025
Viewed by 797
Abstract
As many countries transition to electric vehicles (EVs) to reduce tailpipe emissions from internal combustion engine vehicles (ICEVs), both vehicle types continue to generate non-exhaust particulate matter (PM), including tire wear, brake wear, road surface wear, and particularly road dust resuspension. Among these, [...] Read more.
As many countries transition to electric vehicles (EVs) to reduce tailpipe emissions from internal combustion engine vehicles (ICEVs), both vehicle types continue to generate non-exhaust particulate matter (PM), including tire wear, brake wear, road surface wear, and particularly road dust resuspension. Among these, road dust resuspension is a major contributor to non-exhaust PM. While factors such as vehicle weight and drivetrain configuration have been extensively studied in fleet-level research, direct comparisons between ICEVs and EVs of the same model have not been explored. This study investigates the effects of drivetrain, vehicle weight, and payload on road dust resuspension emissions from ICEV and EV models. Two experimental approaches were employed: (1) acceleration from 0 to 60 km/h, and (2) a simulated real-world driving cycle (RDC). Each test was conducted under both light and heavy payload conditions. The results show that the EV consistently emitted more PM than the ICEV during both acceleration and RDC tests, based on factory-standard vehicle weights. Under identical vehicle weight conditions, the EV demonstrated higher PM resuspension levels, likely due to its higher torque and more immediate power delivery, which increases friction between the tires and the road, particularly during rapid acceleration. Both vehicle types exhibited significant increases in PM emissions under heavy payload conditions. These findings underscore the importance of addressing non-exhaust emissions from EVs, particularly road dust resuspension, and highlight the need for further research into mitigation strategies, such as vehicle lightweighting. Full article
(This article belongs to the Special Issue Brake and Tire Non-Exhaust Emissions and Air Pollution)
Show Figures

Graphical abstract

17 pages, 2322 KB  
Article
Bifurcation in Stick–Slip-Induced Low-Frequency Brake Noises: Experimental and Numerical Study
by Deborah Audretsch, Daniel Wallner, Michael Frey and Frank Gauterin
Acoustics 2025, 7(4), 61; https://doi.org/10.3390/acoustics7040061 - 26 Sep 2025
Viewed by 932
Abstract
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of [...] Read more.
The term honk noise describes a low-frequency brake noise from approximately 400 Hz to 500 Hz which arises at extremely low speeds and low brake pressures. Manoeuvres like slowly releasing the brake at a hill or gently braking against the drag torque of an automatic gearbox lead to honk noise. Under the same conditions, we observed creep groan at about 80 Hz. It has been shown that honk noise usually occurs after or alternates with creep groan. For this reason, it is assumed that honk noise—like creep groan—is a stick–slip-induced phenomenon and therefore shows highly nonlinear behaviour. In this paper, we present an approach for explaining the onset of honk noise under stick–slip excitation. A minimal model consisting of coupled mass oscillators excited by stick–slip is investigated. The model was able to reproduce the phenomena observed in the experiments. Thus, it is suitable for explaining the mechanisms leading to honk and estimate the influence of basic parameter variations. The lessons learned are a crucial step towards more realistic finite element or multi-body simulation methods, which have high potential for saving costs in the noise, vibration, and harshness (NVH) development process of brake systems. Full article
Show Figures

Figure 1

15 pages, 1251 KB  
Article
Effects of Unilateral Swing Leg Resistance on Propulsion and Other Gait Characteristics During Treadmill Walking in Able-Bodied Individuals
by Sylvana Minkes-Weiland, Han Houdijk, Heleen A. Reinders-Messelink, Luc H. V. van der Woude, Paul P. Hartman and Rob den Otter
Biomechanics 2025, 5(4), 71; https://doi.org/10.3390/biomechanics5040071 - 23 Sep 2025
Viewed by 639
Abstract
Background/Objectives: Swing leg resistance may stimulate propulsive force, required for forward progression and leg swing, in post-stroke patients. To assess the potential of swing leg resistance in rehabilitation, more knowledge is needed on how this unilateral manipulation affects gait. Therefore, we explored [...] Read more.
Background/Objectives: Swing leg resistance may stimulate propulsive force, required for forward progression and leg swing, in post-stroke patients. To assess the potential of swing leg resistance in rehabilitation, more knowledge is needed on how this unilateral manipulation affects gait. Therefore, we explored the bilateral effects of a unilateral swing leg resistance on muscle activity, kinematics, and kinetics of gait in able-bodied individuals. Methods: Fourteen able-bodied participants (8 female, aged 20.7 ± 0.8 years, BMI 23.5 ± 1.9) walked on an instrumented treadmill at 0.28 m/s, 0.56 m/s, and 0.83 m/s with and without unilateral swing leg resistance provided by a weight (0 kg, 0.5 kg, 1.25 kg, and 2 kg) attached to the leg through a pulley system. Propulsion and braking forces, swing time, step length, transverse ground reaction torques, and muscle activity in the gluteus medius (GM), biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), medial gastrocnemius (MG), and soleus (SOL) were compared between conditions. Statistical analyses were performed using repeated measures ANOVAs, with a significance level of 5%. Results: Peak propulsive force and propulsive duration increased bilaterally, while peak braking force decreased bilaterally with unilateral swing leg resistance. In addition, the swing time of the perturbed leg increased with swing leg resistance. Muscle activity in the perturbed leg (GM, BF, RF, VM, MG) and the unperturbed leg (GM, BF, VM, MG, SOL) increased. Only in the BF (perturbed leg, late swing) and MG (unperturbed leg, early stance) did the muscle activity decrease with swing leg resistance. No adaptations in step length and transverse ground reaction torques were observed. Specific effects were enhanced by gait speed. Conclusions: Unilateral swing leg resistance can evoke effects that might stimulate the training of propulsion. A study in post-stroke patients should be conducted to test whether prolonged exposure to unilateral swing leg resistance leads to functional training effects. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

18 pages, 2277 KB  
Article
The Integrated Disturbance Estimation and Non-Singular Terminal Sliding Mode Longitudinal Motion Controller for Low-Speed Autonomous Electric Vehicles
by Boyuan Li, Wenfei Li, Wei Hua, Lei Guo, Haitao Xing, Hangbin Tang and Chao Huang
Sensors 2025, 25(18), 5799; https://doi.org/10.3390/s25185799 - 17 Sep 2025
Viewed by 545
Abstract
In the current literature, few motion control studies have considered the disturbances caused by road profile, model uncertainty, and actuator delay in regard to low-speed autonomous vehicles. In addition, motion controller designs usually rely on motor/brake torque control, which is not always available. [...] Read more.
In the current literature, few motion control studies have considered the disturbances caused by road profile, model uncertainty, and actuator delay in regard to low-speed autonomous vehicles. In addition, motion controller designs usually rely on motor/brake torque control, which is not always available. This study outlines an integrated disturbance estimation and non-singular terminal sliding mode controller (NS-TSMC) to overcome disturbances in low-speed scenarios through traction/brake pedal position control. First, a longitudinal dynamic model that considers a detailed brake-by-wire hydraulic braking system model and a motor actuator model is proposed. Road disturbances, model uncertainty, and actuator delays are also considered in vehicle modelling. This vehicle model was verified through experimental data from a low-speed autonomous sightseeing vehicle. Then, based on the proposed vehicle model, the disturbance and uncertain parameter estimator was designed and integrated with NS-TSMC to achieve longitudinal motion control through throttle/brake pedal control. Experimental results from the experimental sightseeing vehicle and simulation results demonstrated the improvement of the longitudinal motion tracking performance and motion comfort compared with a benchmark proportional–integral–derivative (PID) longitudinal motion controller. Full article
Show Figures

Figure 1

20 pages, 3671 KB  
Article
Simulation-Based Performance Analysis of Electrically Assisted Turbocharging in Diesel Engine
by Tayfun Ozgur and Kadir Aydin
Processes 2025, 13(9), 2718; https://doi.org/10.3390/pr13092718 - 26 Aug 2025
Cited by 1 | Viewed by 1380
Abstract
This study explores the effects of electrically assisted turbochargers (EAT) on the performance of diesel engines by incorporating an electrical motor/generator into a conventional turbocharged model. The engine simulations were conducted at three different power levels of 2, 2.5, and 3 kW to [...] Read more.
This study explores the effects of electrically assisted turbochargers (EAT) on the performance of diesel engines by incorporating an electrical motor/generator into a conventional turbocharged model. The engine simulations were conducted at three different power levels of 2, 2.5, and 3 kW to assess the impact of electrical assistance. The results demonstrated that EAT significantly boosts engine performance, with an increase in boost pressure of up to 58.9% at 1000 rpm and an average increase of 30.9% across the low engine speed range (1000–2200 rpm). Additionally, the maximum turbocharger speed was achieved at lower engine speeds, dropping from 2400 rpm to as low as 1600 rpm with 3 kW assistance. Engine torque improved by up to 28.2% at 1000 rpm, and brake-specific fuel consumption (BSFC) was reduced by as much as 8.1%. Transient simulations showed notable improvements in response times, with turbo lag reduced by up to 53% under acceleration conditions. Overall, EAT technology provides significant enhancements in engine efficiency, torque output, fuel economy, and transient response, positioning it as a promising solution for improving diesel engine performance, particularly in addressing turbo lag and low-speed inefficiencies. Full article
(This article belongs to the Special Issue Numerical Modeling and Optimization of Fluid Flow in Engines)
Show Figures

Figure 1

15 pages, 5053 KB  
Article
Master Cylinder Pressure Control Based on Piecewise-SMC in Electro-Hydraulic Brake System
by Cong Liang, Xing Xu, Hui Deng, Chuanlin He, Long Chen and Yan Wang
Actuators 2025, 14(9), 416; https://doi.org/10.3390/act14090416 - 24 Aug 2025
Viewed by 833
Abstract
This paper focuses on enhancing master cylinder pressure control in pressure-sensorless Electro-Hydraulic Brake (EHB) systems. A novel control strategy is developed, integrating a Piecewise Sliding Mode Controller (Piecewise-SMC) with an Extended Sliding Mode Observer (ESMO) based on a newly derived pressure–position–velocity model that [...] Read more.
This paper focuses on enhancing master cylinder pressure control in pressure-sensorless Electro-Hydraulic Brake (EHB) systems. A novel control strategy is developed, integrating a Piecewise Sliding Mode Controller (Piecewise-SMC) with an Extended Sliding Mode Observer (ESMO) based on a newly derived pressure–position–velocity model that accounts for rack position and velocity effects. To handle external disturbances and parameter uncertainties, the ESMO provides accurate pressure estimation. The nonlinear EHB model is approximated piecewise linearly to facilitate controller design. The proposed Piecewise-SMC regulates motor torque to achieve precise pressure tracking. Experimental validation under step-change braking conditions demonstrates that the Piecewise-SMC reduces response time by 31.8%, overshoot by 35.8%, and tracking root mean square error by 9.6% compared to traditional SMC, confirming its effectiveness and robustness for pressure-sensorless EHB applications. Full article
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 1311
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

Back to TopTop