Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (374)

Search Parameters:
Keywords = brake force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 339
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

16 pages, 2084 KiB  
Article
Accelerometer Measurements: A Learning Tool to Help Older Adults Understand the Importance of Soft-Landing Techniques in a Community Walking Class
by Tatsuo Doi, Ryosuke Haruna, Naoyo Kamioka, Shuzo Bonkohara and Nobuko Hongu
Sensors 2025, 25(15), 4546; https://doi.org/10.3390/s25154546 - 22 Jul 2025
Viewed by 220
Abstract
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of [...] Read more.
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of soft-landing walking techniques in a 90 min, instructor-led group class for older adults. To evaluate a landing impact, an accelerometer measurement system (Descente LTD., Tokyo, Japan) was used to measure a participant 10 meter (m) of walking. Assessment outcomes included the average number of steps, step length, upward acceleration which reflects the landing impact, and survey questions. A total of 223 older adults (31 men, 192 women, mean age 74.4 ± 5.7 years) completed the walking lesson. Following the lesson, participants decreased their step lengths and reduced upward acceleration, along with an increased step count. The number of steps increased, and a positive correlation (r = 0.73, p < 0.01) was observed between the rate of change in step length and upward acceleration. Over 95% of participants gave high marks for practicality and understanding the accelerometer measurements. The information derived from this study will provide valuable insight into the effectiveness of soft-landing techniques as a promotion of a healthy walking program for older adults. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

20 pages, 4503 KiB  
Article
Comparative Validation of the fBrake Method with the Conventional Brake Efficiency Test Under UNE 26110 Using Roller Brake Tester Data
by Víctor Romero-Gómez and José Luis San Román
Sensors 2025, 25(14), 4522; https://doi.org/10.3390/s25144522 - 21 Jul 2025
Viewed by 237
Abstract
In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake method is proposed [...] Read more.
In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake method is proposed to overcome this issue by estimating braking efficiency at MAM based on measurements taken from vehicles in more accessible loading conditions. In this study, the fBrake method is validated by demonstrating the equivalence of its efficiency estimates extrapolated from two distinct configurations: an unladen state near the curb weight and a partially laden condition closer to MAM. Following the UNE 26110 standard (Road vehicles. Criteria for the assessment of the equivalence of braking efficiency test methods in relation to the methods defined in ISO 21069), roller brake tester measurements were used to obtain force data under both conditions. The analysis showed that the extrapolated efficiencies agree within combined uncertainty limits, with normalized errors below 1 in all segments tested. Confidence intervals were reduced by up to 74% after electronics update. These results confirm the reliability of the fBrake method for M1 and N1 vehicles and support its adoption as an equivalent procedure in compliance with UNE 26110, particularly when fully laden testing is impractical. Full article
(This article belongs to the Special Issue Advanced Sensing and Analysis Technology in Transportation Safety)
Show Figures

Figure 1

32 pages, 6510 KiB  
Article
Multiphysics Finite Element Analysis and Optimization of Load-Bearing Frame for Pure Electric SUVs
by Yingshuai Liu, Chenxing Liu, Xueming Gao and Jianwei Tan
Symmetry 2025, 17(7), 1143; https://doi.org/10.3390/sym17071143 - 17 Jul 2025
Viewed by 348
Abstract
With the increasing environmental pollution and resource consumption caused by automobiles, a lightweight design of automobiles is the best solution at present. In this paper, the load-bearing frame of pure electric SUVs is taken as the research object. The finite element analysis method [...] Read more.
With the increasing environmental pollution and resource consumption caused by automobiles, a lightweight design of automobiles is the best solution at present. In this paper, the load-bearing frame of pure electric SUVs is taken as the research object. The finite element analysis method is used to analyze the strength, stiffness and modal performance of the load-bearing frame, and the material selection of the frame is optimized according to the analysis results to achieve a lightweight design. First, a three-dimensional model of the pure electric SUV frame is established using SolidWorks software 2019 and then imported into ANSYS 2024 R1 Workbench for meshing and material property definition. Then, through finite element static analysis, the various force conditions of the frame under three typical working conditions of full-load bending, full-load braking and full-load turning are simulated; the stress distribution and deformation of the frame under different working conditions are confirmed; and the strength and stiffness performance of the frame are evaluated. After the above analysis, a modal analysis of the frame is carried out, and the natural frequency and vibration mode of the frame are finally obtained. According to the analysis results, the material replacement method is selected to optimize the lightweight design of the frame. The results show that the weight of the frame is significantly reduced after material optimization, while still meeting the strength, stiffness and modal performance requirements. This article provides a certain reference value for the lightweight design of pure electric SUV frames in the future. Full article
Show Figures

Figure 1

23 pages, 5983 KiB  
Article
Fuzzy Logic Control for Adaptive Braking Systems in Proximity Sensor Applications
by Adnan Shaout and Luis Castaneda-Trejo
Electronics 2025, 14(14), 2858; https://doi.org/10.3390/electronics14142858 - 17 Jul 2025
Viewed by 316
Abstract
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, [...] Read more.
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, the system facilitates real-time adjustments to braking force, enhancing both vehicle safety and driver comfort. The fuzzy logic controller processes three inputs to deliver a smooth and adaptive brake response, thus addressing the shortcomings of traditional binary systems that can lead to abrupt and unsafe braking actions. The effectiveness of the system is validated through several test cases, demonstrating improved responsiveness and safety across various driving scenarios. This paper presents a cost-effective model for a straightforward braking system using fuzzy logic, laying the groundwork for the development of more advanced systems in emerging technologies. Full article
Show Figures

Figure 1

34 pages, 17167 KiB  
Article
An Enhanced ABS Braking Control System with Autonomous Vehicle Stopping
by Mohammed Fadhl Abdullah, Gehad Ali Qasem and Mazen Farid
World Electr. Veh. J. 2025, 16(7), 400; https://doi.org/10.3390/wevj16070400 - 16 Jul 2025
Viewed by 358
Abstract
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and [...] Read more.
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and proportional-integral-derivative (PID) controller to improve braking efficiency and vehicle stability under diverse driving conditions. Simulation results showed significant enhancements in stopping performance across various road conditions. The integrated system exhibited a marked improvement in braking performance, achieving significantly shorter stopping distances across all evaluated surface conditions—including dry concrete, wet asphalt, snowy roads, and icy roads—compared with scenarios without ABS. These results highlight the system’s ability to dynamically adapt braking forces to different conditions, significantly improving safety and stability for autonomous vehicles. The limitations are acknowledged, and directions for real-world validation are outlined to ensure system robustness under diverse environmental conditions. Full article
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 678
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

9 pages, 1693 KiB  
Proceeding Paper
Methodology for the Design and Verification of a Securing Structure for Transporting Cylindrical Rollers on Load Bogies
by Plamen Kasabov and Marian Kalestrov
Eng. Proc. 2025, 100(1), 26; https://doi.org/10.3390/engproc2025100026 - 10 Jul 2025
Viewed by 101
Abstract
The safe transport of cylindrical loads such as metal, paper, or polymer rollers requires specialized securing structures that address the complex dynamic forces encountered during rail movement. This paper presents a structured methodology for the design and verification of such securing systems, combining [...] Read more.
The safe transport of cylindrical loads such as metal, paper, or polymer rollers requires specialized securing structures that address the complex dynamic forces encountered during rail movement. This paper presents a structured methodology for the design and verification of such securing systems, combining theoretical analysis, standardized load models, and numerical simulations. The method includes load calculations based on EN 12195-1:2010, EN 15551, and Eurocode 1, and validation through finite element modeling in Ansys Workbench. The proposed structure ensures stability under static and dynamic loads, including acceleration, braking, turning, and wind forces, while optimizing wagon space utilization. Simulation results confirm that the design meets strength and safety criteria without exceeding material stress limits, offering a reliable solution for the secure transport of cylindrical rollers. Full article
Show Figures

Figure 1

8 pages, 869 KiB  
Proceeding Paper
Research on and Analysis of Brake Fluid Impact on Brake System Performance
by Georgi Mladenov, Nikola Kuzmanov and Vladimir Hristov
Eng. Proc. 2025, 100(1), 27; https://doi.org/10.3390/engproc2025100027 - 10 Jul 2025
Viewed by 236
Abstract
The present study focuses on the influence of brake fluid on the efficiency of a braking system. Consecutive tests were conducted on the brake discs of a laboratory vehicle heated to approximately 400 °C, and the temperature of the brake fluid was measured. [...] Read more.
The present study focuses on the influence of brake fluid on the efficiency of a braking system. Consecutive tests were conducted on the brake discs of a laboratory vehicle heated to approximately 400 °C, and the temperature of the brake fluid was measured. The boiling points of the brake fluid in the brake system of the test vehicle were also measured and compared with other brake fluids of different brands but identical specifications. The brake fluids tested were both new brake fluids stored in an unopened state and brake fluids that had been opened for more than a year. This was intended to determine which of the elements has the most critical effect on the braking properties of the brake system. Full article
Show Figures

Figure 1

19 pages, 6211 KiB  
Article
Contact Analysis of EMB Actuator Considering Assembly Errors with Varied Braking Intensities
by Xinyao Dong, Lihui Zhao, Peng Yao, Yixuan Hu, Liang Quan and Dongdong Zhang
Vehicles 2025, 7(3), 70; https://doi.org/10.3390/vehicles7030070 - 9 Jul 2025
Viewed by 284
Abstract
Differential planetary roller lead screw (DPRS) serves as a quintessential actuating mechanism within the electromechanical braking (EMB) systems of vehicles, where its operational reliability is paramount to ensuring braking safety. Considering different braking intensities, how assembly errors affect the contact stress in DPRS [...] Read more.
Differential planetary roller lead screw (DPRS) serves as a quintessential actuating mechanism within the electromechanical braking (EMB) systems of vehicles, where its operational reliability is paramount to ensuring braking safety. Considering different braking intensities, how assembly errors affect the contact stress in DPRS was analyzed via the finite element method. Firstly, the braking force of the EMB system that employed DPRS was verified by the braking performance of legal provisions. Secondly, a rigid body dynamics model of DPRS was established to analyze the response time, braking clamping force, and axial contact force of DPRS under varied braking intensities. Finally, a finite element model of DPRS was constructed. The impact of assembly errors in the lead screw and rollers on the contact stress were investigated within the DPRS mechanism based on this model. The results indicate that as braking intensity increases, the deviation of the lead screw exerts a greater influence on the contact stress generated by the engagement between the lead screw and rollers compared to that between the nut and rollers. The skewness of the rollers also affects the contact stress generated by the engagement of both the lead screw with rollers and the nut with rollers. When assembly errors reach a certain threshold, the equivalent plastic strain is induced to exceed the critical value. This situation significantly impairing the normal operation of DPRS. This study provides guidance for setting the threshold of assembly errors in DPRS mechanisms. It also holds significant implications for the operational reliability of EMB systems. Full article
(This article belongs to the Special Issue Reliability Analysis and Evaluation of Automotive Systems)
Show Figures

Figure 1

28 pages, 4321 KiB  
Article
Energy Efficiency Assessment of Electric Bicycles
by Tomasz Matyja, Zbigniew Stanik and Andrzej Kubik
Energies 2025, 18(13), 3525; https://doi.org/10.3390/en18133525 - 3 Jul 2025
Viewed by 269
Abstract
Electric-assist bicycles have recently become very popular. However, riding them generally requires significantly more energy, generated simultaneously by the motor and the rider, compared to much lighter traditional bicycles. Assessing the energy efficiency of electric-assist bicycles in comparison to traditional bikes allows us [...] Read more.
Electric-assist bicycles have recently become very popular. However, riding them generally requires significantly more energy, generated simultaneously by the motor and the rider, compared to much lighter traditional bicycles. Assessing the energy efficiency of electric-assist bicycles in comparison to traditional bikes allows us to determine in which cases using electric bikes is cost-effective and in which it is not. This study proposes a method for evaluating the energy efficiency of bicycles, which stands out by relying on relatively imprecise data recorded at low frequency by a commercial bike computer with accessories. The core of the method is an algorithm developed by the authors to determine the tractive force acting on the bicycle and rider, based on a minimal set of recorded data: road incline, riding speed, and the wind speed component parallel to the direction of movement. Depending on the situation, the tractive force may act as a driving force or as a braking force. Based on the calculated tractive force, the power required to maintain the recorded bicycle speed can be estimated. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

35 pages, 7034 KiB  
Article
Dynamic Simulation of Ground Braking Force Control Based on Fuzzy Adaptive PID for Integrated ABS-RBS System with Slip Ratio Consideration
by Pinjia Shi, Yongjun Min, Hui Wang and Liya Lv
World Electr. Veh. J. 2025, 16(7), 372; https://doi.org/10.3390/wevj16070372 - 3 Jul 2025
Viewed by 285
Abstract
This study resolves a critical challenge in electromechanical brake system validation: conventional ABS/RBS integrated platforms’ inability to dynamically simulate tire-road adhesion characteristics during braking. We propose a fuzzy adaptive PID-controlled magnetic powder clutch (MPC) system that achieves ground braking force simulation synchronized with [...] Read more.
This study resolves a critical challenge in electromechanical brake system validation: conventional ABS/RBS integrated platforms’ inability to dynamically simulate tire-road adhesion characteristics during braking. We propose a fuzzy adaptive PID-controlled magnetic powder clutch (MPC) system that achieves ground braking force simulation synchronized with slip ratio variations. The innovation encompasses: (1) Dynamic torque calculation model incorporating the curve characteristics of longitudinal friction coefficient (φ) versus slip ratio (s), (2) Nonlinear compensation through fuzzy self-tuning PID control, and (3) Multi-scenario validation platform. Experimental validation confirms superior tracking performance across multiple scenarios: (1) Determination coefficients R2 of 0.942 (asphalt), 0.926 (sand), and 0.918 (snow) for uniform surfaces, (2) R2 = 0.912/0.908 for asphalt-snow/snow-asphalt transitions, demonstrating effective adhesion characteristic simulation. The proposed control strategy achieves remarkable precision improvements, reducing integral time absolute error (ITAE) by 8.3–52.8% compared to conventional methods. Particularly noteworthy is the substantial ITAE reduction in snow conditions (236.47 vs. 500.969), validating enhanced simulation fidelity under extreme road surfaces. The system demonstrates consistently rapid response times. These improvements allow for highly accurate replication of dynamic slip ratio variations, establishing a refined laboratory-grade solution for EV regenerative braking coordination validation that greatly enhances strategy optimization efficiency. Full article
Show Figures

Figure 1

20 pages, 4574 KiB  
Article
Experimental and Numerical Flow Assessment of the Main and Additional Tract of Prototype Differential Brake Valve
by Marcin Kisiel and Dariusz Szpica
Appl. Sci. 2025, 15(13), 7483; https://doi.org/10.3390/app15137483 - 3 Jul 2025
Viewed by 219
Abstract
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was [...] Read more.
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was to determine the throughput of brake valve tracts using numerical and experimental methods. These tracts are supposed to provide the tracking and acceleration function of the valve depending on the setting of the correction system. The first numerical method was based on polyhedral meshes using computational fluid dynamics (CFD) and Ansys Fluent software. The second research method—experimental tests on the author’s bench using the reservoir method—consisted of identifying throughputs based on pressure waveforms in the measurement tanks. The determined throughputs were averaged over the range of pressure differences tested and allowed the final calculation of the mass flow rate. The analysis of the obtained results showed an average discrepancy between the two research methods for both tracts, in which the flow in both directions was considered to be 9.43%, taking into account the use of a polyhedral numerical mesh ensuring high-quality results with an optimal simulation duration. The analysis of the pressure distribution inside the working chambers showed local areas of increased pressure and negative pressure resulting from the acceleration of the flow in narrow flow channels and the occurrence of the Venturi effect. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 25417 KiB  
Article
Pectoral Fin-Assisted Braking and Agile Turning: A Biomimetic Approach to Improve Underwater Robot Maneuverability
by Qu He, Yunpeng Zhu, Weikun Li, Weicheng Cui and Dixia Fan
J. Mar. Sci. Eng. 2025, 13(7), 1295; https://doi.org/10.3390/jmse13071295 - 30 Jun 2025
Viewed by 274
Abstract
The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. Through force measurements [...] Read more.
The integration of biomimetic pectoral fins into robotic fish presents a promising approach to enhancing maneuverability, stability, and braking efficiency in underwater robotics. This study investigates a 1-DOF (degree of freedom) pectoral fin mechanism integrated into the SpineWave robotic fish. Through force measurements and particle image velocimetry (PIV), we optimized control parameters to improve braking and turning performances. The results show a 50% reduction in stopping distance, significantly enhancing agility and control. The fin-assisted braking and turning modes enable precise movements, making this approach valuable for autonomous underwater vehicles. This research lays the groundwork for adaptive fin designs and real-time control strategies, with applications in underwater exploration, environmental monitoring, and search-and-rescue operations. Full article
(This article belongs to the Special Issue Advancements in Deep-Sea Equipment and Technology, 3rd Edition)
Show Figures

Figure 1

23 pages, 8211 KiB  
Article
An Experimental Study of Wheel–Rail Creep Curves Under Dry Contact Conditions Using V-Track
by Gokul J. Krishnan, Jan Moraal, Zili Li and Zhen Yang
Lubricants 2025, 13(7), 287; https://doi.org/10.3390/lubricants13070287 - 26 Jun 2025
Viewed by 478
Abstract
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry [...] Read more.
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry interface conditions, utilising contact pressures representative of operational railway wheel–rail systems. The novelties of this study are threefold. 1. With proper representations of train/track components, the V-Track tests revealed the effects of structural dynamics on measuring wheel–rail creep curves in real life. 2. Pure lateral and longitudinal creepage conditions were produced with two distinct experimental principles—displacement- and force-controlled—on the V-Track, i.e., by carefully controlling the angle of attack and the traction/braking torque, respectively, and thus the coefficient of friction from lateral and longitudinal creep curves measured on the same platform could be cross-checked. 3. The uncertainties in the measured creep curves were analysed, which was rarely addressed in previous studies on creep curve measurements. In addition, the measured creep curves were compared against the theoretical creep curves obtained from Kalker’s CONTACT. The influence of wheel rolling speed and torque direction on the creep curve characteristics was then investigated. The measurement results and findings demonstrate the reliability of the V-Track to measure wheel–rail creep curves and study the wheel–rail frictional rolling contact. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

Back to TopTop