Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = brain-to-vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1461 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 (registering DOI) - 1 Aug 2025
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the kivalue estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
24 pages, 8938 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 109
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

22 pages, 9880 KiB  
Article
Dynamic Correction of Preview Weighting in the Driver Model Inspired by Human Brain Memory Mechanisms
by Chang Li, Hengyu Wang, Bo Yang, Haotian Luo, Jianjin Liu and Wei Zheng
Machines 2025, 13(7), 617; https://doi.org/10.3390/machines13070617 - 17 Jul 2025
Viewed by 262
Abstract
Driver models, which provide mathematical or computational representations of human driving behavior, are crucial for intelligent driving systems by enabling stable and repeatable operations. However, existing models typically employ fixed weighting parameters to simulate preview delay, failing to reflect individual driver differences and [...] Read more.
Driver models, which provide mathematical or computational representations of human driving behavior, are crucial for intelligent driving systems by enabling stable and repeatable operations. However, existing models typically employ fixed weighting parameters to simulate preview delay, failing to reflect individual driver differences and real-time dynamic behaviors. This paper proposes a Brain-Memory Driver Model (BMDM) that emulates human brain memory mechanisms to dynamically adjust preview weights by integrating global path curvature, real-time vehicle speed, and steering torque. This emulation involves a three-stage process: capturing data in an Instantaneous Memory (IM) region, filtering data via a forgetting mechanism in a Short-Time Memory (STM) region to reduce scale, and retaining data based on correlation strength in a Long-Time Memory (LTM) region for persistent mining. By deploying a trained behavioral memory database, the model dynamically calibrates preview weights based on the driver’s state and real-time curvature variations under different road conditions. This enables the model to more accurately simulate authentic preview characteristics and improves its adaptability. Simulation results from an automated steering case study demonstrate that the improved model exhibits control performance closer to the real driving process, reproducing authentic steering behavior within the human–vehicle–road closed-loop system from an intelligent biomimetic perspective. Full article
(This article belongs to the Special Issue Advances in Autonomous Vehicles Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

25 pages, 5014 KiB  
Article
Investigating Psychopharmaceutical Effects on Early Vertebrate Development Using a Zebrafish Model System
by Nathan Zimmerman, Aaron Marta, Carly Baker, Zeljka Korade, Károly Mirnics and Annemarie Shibata
J. Dev. Biol. 2025, 13(3), 22; https://doi.org/10.3390/jdb13030022 - 27 Jun 2025
Viewed by 452
Abstract
Cholesterol homeostasis is necessary for normal vertebrate development. The disruption of cholesterol homeostasis can cause abnormal body and nervous system development and lead to dysfunctional behavior and increased mortality. Commonly prescribed psychopharmaceuticals can alter cholesterol synthesis and may disrupt early vertebrate development. A [...] Read more.
Cholesterol homeostasis is necessary for normal vertebrate development. The disruption of cholesterol homeostasis can cause abnormal body and nervous system development and lead to dysfunctional behavior and increased mortality. Commonly prescribed psychopharmaceuticals can alter cholesterol synthesis and may disrupt early vertebrate development. A high-throughput vertebrate zebrafish model system was used to test the hypothesis that exposure to psychopharmaceutical medications alters cholesterol biosynthesis and disrupts gene transcription, early whole-body and brain development, and nervous system function, resulting in abnormal behavior. Exposure to cariprazine, aripiprazole, trazodone, and AY9944 increased 7-dehydrocholesterol levels compared to vehicle-treated zebrafish. Significant differences in disease-associated gene expression, brain structure, and functional behaviors were observed in psychopharmaceutical and AY9944-treated zebrafish compared to controls. These data reveal that the high-throughput zebrafish model system can discern psychopharmaceutical effects on cholesterol synthesis, gene transcription, and key features of early vertebrate development that influences behavior. Full article
Show Figures

Figure 1

19 pages, 1132 KiB  
Review
The Interplay Between Exosomes and Gut Microbiota in Neuroinflammation: A New Frontier in Alzheimer’s Disease
by Sara Uceda, Manuel Reiriz, Víctor Echeverry-Alzate and Ana Isabel Beltrán-Velasco
Int. J. Mol. Sci. 2025, 26(12), 5828; https://doi.org/10.3390/ijms26125828 - 18 Jun 2025
Viewed by 823
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative condition that is characterized by the accumulation of amyloid-β, the hyperphosphorylation of tau, and persistent neuroinflammation. However, these hallmarks alone do not fully capture the intricacies of AD pathology, thus necessitating the investigation of emerging mechanisms [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative condition that is characterized by the accumulation of amyloid-β, the hyperphosphorylation of tau, and persistent neuroinflammation. However, these hallmarks alone do not fully capture the intricacies of AD pathology, thus necessitating the investigation of emerging mechanisms and innovative tools. Exosomes (nanoscale vesicles involved in cell communication and immune modulation) have emerged as pivotal cellular vehicles due to their dual role—both in the propagation of pathological proteins and the regulation of inflammatory responses. Furthermore, these vesicles have been demonstrated to play a crucial role in the mediation of the effects of microbiota-derived metabolites and the reflection of systemic influences such as dysbiosis, thereby establishing a link between the gut–brain axis and the progression of AD. A comprehensive narrative literature review was conducted using the following databases: ScienceDirect, Scopus, Wiley, Web of Science, Medline, and PubMed, covering studies published between 2015 and 2025. Inclusion and exclusion criteria were established to select research addressing exosomal biogenesis, their functional and diagnosis role, their therapeutic potential, and the emerging evidence on microbiota–exosome interplay in Alzheimer’s disease. Exosomes have been identified as integral mediators of intercellular communication, reflecting the molecular state of the central nervous system. These particles have been shown to promote the propagation of pathological proteins, modulate neuroinflammatory responses, and serve as non-invasive biomarkers due to their detectability in peripheral fluids. Advances in exosomal engineering and microbiome-based interventions underscore the potential for targeting systemic and CNS-specific mechanisms to develop integrative therapies for AD. Exosomes present a promising approach for the early diagnosis and personalized treatment of Alzheimer’s disease. However, methodological challenges and ongoing controversies, including those related to the influence of systemic factors such as dysbiosis, necessitate multidisciplinary research to optimize and standardize these strategies. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1380
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

17 pages, 1096 KiB  
Article
Subchronic Intranasal Administration of NeuroEPO Reduces Long-Term Consequences of Severe Traumatic Brain Injury in Male Rats
by Félix Iván López-Preza, Maria de los Angeles Nuñez-Lumbreras, Iliana Sosa-Testé, Alonso Fernández-Guasti, Luis Concha, Teresita Rodríguez-Obaya and Luisa Rocha
Antioxidants 2025, 14(6), 710; https://doi.org/10.3390/antiox14060710 - 11 Jun 2025
Viewed by 953
Abstract
Current treatments fail to prevent long-term consequences induced by a severe traumatic brain injury (TBI). This study aimed to evaluate the efficacy of repetitive intranasal administration of NeuroEPO (a derivative of erythropoietin) on long-term alterations after a severe TBI induced by the application [...] Read more.
Current treatments fail to prevent long-term consequences induced by a severe traumatic brain injury (TBI). This study aimed to evaluate the efficacy of repetitive intranasal administration of NeuroEPO (a derivative of erythropoietin) on long-term alterations after a severe TBI induced by the application of a lateral fluid percussion in male rats. A otal of 30–31 days after the trauma, TBI+vehicle group showed sensorimotor dysfunction (Neuroscore, p < 0.0009; beam walking test, p < 0.0001 vs. Sham+vehicle group) and depressive-like behavior suggested by increased immobility (p = 0.0009 vs. baseline) during the forced swim test. Rats also showed increased production of malondialdehyde (a marker of oxidative damage), increased catalase activity (an antioxidant enzyme), and atrophy of brain areas evaluated with Magnetic Resonance Imaging 31 days after the trauma. TBI+NeuroEPO group received intranasal administration of NeuroEPO (0.136 mg/kg) starting 3 h post-TBI and continued every 8 h for four days. This group showed less sensorimotor dysfunction (Neuroscore, p = 0.020; beam walking test, p = 0.001, vs. TBI+vehicle group) and normal immobility behavior (p = 0.998 vs. Sham+vehicle group). Levels of malondialdehyde and catalase as well as the volume of brain structures of this group were like the Sham+vehicle group. These findings support the potential of NeuroEPO as a therapeutic agent to reduce long-term consequences of TBI. Full article
(This article belongs to the Special Issue Redox Signaling in Brain Aging and Neurodegeneration)
Show Figures

Figure 1

23 pages, 411 KiB  
Review
Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury
by Gerald Young, Hella Thielen, Kristin Samuelson and Joel Jin
Biology 2025, 14(6), 662; https://doi.org/10.3390/biology14060662 - 7 Jun 2025
Viewed by 956
Abstract
Objectives: This article describes the neurobiology of psychological injuries—chronic pain, concussion/mild traumatic brain injury (MTBI), and fear/posttraumatic stress disorder (PTSD)—toward elucidating common mechanisms in central and peripheral sensitization that contribute to their onset, exacerbation, and maintenance. Central sensitization refers to central nervous system [...] Read more.
Objectives: This article describes the neurobiology of psychological injuries—chronic pain, concussion/mild traumatic brain injury (MTBI), and fear/posttraumatic stress disorder (PTSD)—toward elucidating common mechanisms in central and peripheral sensitization that contribute to their onset, exacerbation, and maintenance. Central sensitization refers to central nervous system (CNS) and related processes, while peripheral sensitization is typically referred to as receptor field expansion. The three psychological injury diagnoses/conditions are accompanied by impairments in function after negligent events (such as motor vehicle accidents (MVAs)) that lead to tort court action. Methods: The conducted literature review involved an extensive scoping review of recent neurobiological literature on chronic pain, PTSD, and MTBI. The literature review sought biological markers that distinguish them. Results: For chronic pain, concussion/MTBI, and fear/PTSD, this article reviewed definitions and critical neurobiological research. The literature review did not find evidence of biological markers, but the role of sensitization emerged as important. Conclusions: Common therapeutic processes, such as focusing on sensitization, might be helpful for these conditions. As for causal mechanisms related to sensitization in the causality of psychological injuries, the major ones hypothesized relate to the biopsychosocial model, psychological control, and activation–inhibition coordination. Full article
(This article belongs to the Special Issue Neurobiology of Traumatic Brain Injury)
Show Figures

Figure 1

18 pages, 1304 KiB  
Systematic Review
The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement
by Alfonso Filippone, Umberto Barbieri, Maria Rosaria Corbo, Milena Sinigaglia and Antonio Bevilacqua
Beverages 2025, 11(3), 85; https://doi.org/10.3390/beverages11030085 - 6 Jun 2025
Viewed by 1291
Abstract
The gut–brain axis links the health of the gut microbiota to cognitive function and mental well-being. Numerous studies suggest that probiotics, particularly strains belonging to Lactobacillus spp. and Bifidobacterium spp., can positively modulate memory, attention, and executive functions, contributing to the prevention of [...] Read more.
The gut–brain axis links the health of the gut microbiota to cognitive function and mental well-being. Numerous studies suggest that probiotics, particularly strains belonging to Lactobacillus spp. and Bifidobacterium spp., can positively modulate memory, attention, and executive functions, contributing to the prevention of cognitive decline. However, while the use of probiotic capsules and powders is widely documented, the role of probiotic beverages or liquid preparations in brain health remains poorly explored. This systematic review analyzes studies on the efficacy of probiotics in improving cognitive functions from 2020 to 2025, evaluating the potential of probiotic liquid preparations as a delivery vehicle. The results indicate that fermented beverages or liquid suspensions containing probiotics could improve the bioavailability of beneficial microorganisms, promoting synergistic effects with other bioactive components and facilitating treatment adherence. However, the current literature still has methodological limitations and there is a need for further clinical studies to validate the efficacy of this strategy. Probiotic supplementation through functional beverages could represent a promising innovation to improve cognitive health and counteract neurocognitive decline. Full article
Show Figures

Figure 1

16 pages, 1481 KiB  
Article
Arsenite-Mediated Transcriptional Regulation of Glutathione Synthesis in Mammalian Primary Cortical Astrocytes
by Jacob P. Leisawitz, Jiali He, Caroline Baggeroer and Sandra J. Hewett
Int. J. Mol. Sci. 2025, 26(11), 5375; https://doi.org/10.3390/ijms26115375 - 4 Jun 2025
Viewed by 567
Abstract
Arsenic, a potent metalloid contaminant of drinking water, is known for its ability to act as an initiator and modulator of disease in a variety of human tissues. Upon ingestion, arsenic is bio-transformed in the liver into a variety of metabolites, including arsenite. [...] Read more.
Arsenic, a potent metalloid contaminant of drinking water, is known for its ability to act as an initiator and modulator of disease in a variety of human tissues. Upon ingestion, arsenic is bio-transformed in the liver into a variety of metabolites, including arsenite. Arsenite permeates the blood–brain barrier (BBB), inducing oxidative stress that can be detrimental to brain neurons. As the primary glial cell at the BBB interface, astrocytes play a pivotal role in detoxifying xenobiotics such as arsenite via the production of the tripeptide antioxidant γ-glutamylcysteine, or glutathione (GSH). In this study, we assessed the mRNA levels of key components of the GSH synthetic pathway in astrocytes exposed to arsenite compared to vehicle controls. These components included xCT [substrate-specific light chain of the substrate importing transporter, system xc (Sxc)], glutamate-cysteine ligase [both catalytic (GCLC) and modifying (GCLM) subunits], and glutathione synthetase (GS). Additionally, we analyzed protein levels of some components by Western blotting and evaluated functional activity of Sxc using a fluorescence-based cystine uptake assay. Finally, we utilized a luminescence-based glutathione assay to determine the intracellular and extracellular GSH content in arsenite-treated cells. Arsenite significantly increased xCT, GCLC, GCLM, and GS mRNA levels, an effect blocked by the transcriptional inhibitor actinomycin D (ActD). A corresponding increase in Sxc activity was also observed in the arsenite treatment groups, along with significant increases in GCLC and GCLM protein expression. However, no increase in GS protein expression was detected. Finally, arsenite treatment significantly increased extracellular GSH levels, an effect which was also prevented by the inclusion of ActD. Overall, our study provides evidence that arsenite transcriptionally regulates several cellular processes necessary for GSH synthesis in primary cortical astrocyte cultures, thereby contributing to a better understanding of how this environmental toxicant influences antioxidant defenses in the brain. However, these results should be interpreted with caution regarding their applicability to vivo systems. Full article
(This article belongs to the Special Issue The Role of Glutathione Metabolism in Health and Disease)
Show Figures

Figure 1

13 pages, 2603 KiB  
Article
Metabolic Imaging of Hyperpolarized [1-13C]Pyruvate in a Ferret Model of Traumatic Brain Injury
by Dirk Mayer, Abubakr Eldirdiri, Amanda L. Hrdlick, Boris Piskoun, Joshua C. Rogers, Aditya Jhajharia, Minjie Zhu, Julie L. Proctor, Ulrich H. Leiste, William L. Fourney, Jody C. Cantu, Gary Fiskum and Molly J. Goodfellow
Int. J. Mol. Sci. 2025, 26(11), 5327; https://doi.org/10.3390/ijms26115327 - 1 Jun 2025
Viewed by 565
Abstract
It is increasingly recognized that early perturbation of energy metabolism might have important implications in management and ultimately the neurological outcome in patients with traumatic brain injury (TBI). At the same time, treatments and screening tools successfully developed in preclinical TBI models have [...] Read more.
It is increasingly recognized that early perturbation of energy metabolism might have important implications in management and ultimately the neurological outcome in patients with traumatic brain injury (TBI). At the same time, treatments and screening tools successfully developed in preclinical TBI models have failed to translate to the clinic. As ferrets possess primate-like gyrencephalic brains that may better replicate the human response to neurologic injury, the goal of this study was to noninvasively measure brain energy metabolism after injury in a ferret model of TBI. To this end, metabolic imaging of hyperpolarized (HP) [1-13C]pyruvate (Pyr) and its conversion to lactate (Lac) and bicarbonate (Bic) was performed in ferrets before and after combined under-vehicle blast and controlled cortical impact injury. Reduced Bic/Pyr, reflecting reduced pyruvate dehydrogenase activity, was detected 8–10 days post-injury whereas no difference in Lac/Pyr was observed. These results demonstrate the feasibility of using metabolic imaging of HP [1-13C]Pyr to measure perturbations in brain energy metabolism in a novel highly translatable animal model of TBI. The method may contribute to both improved understanding of injury mechanisms and more effective drug development. Full article
(This article belongs to the Special Issue New Breakthroughs in Molecular Diagnostic Tools for Human Diseases)
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 737
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

19 pages, 3012 KiB  
Article
A Novel Brain-Targeting Nanoparticle Loaded with Biatractylolide and Its Protective Effect on Alzheimer’s Disease
by Qianmei Hu, Candi Liu, Jiawang Tan, Jixiang Wang, Hao Yang, Yi Liu, Haochu Mao, Zixuan Jiang, Xing Feng and Xiaojun Tao
Pharmaceuticals 2025, 18(6), 809; https://doi.org/10.3390/ph18060809 - 28 May 2025
Viewed by 583
Abstract
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which [...] Read more.
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which polysorbate 80 (Tween-80) was subsequently adsorbed. The PUC polymers with CDCA substitution levels were analyzed by 1H NMR spectroscopy. Nanoparticles were fabricated via the dialysis method and characterized by transmission electron microscopy and dynamic light scattering for morphology, size, and surface charge. In vitro neuroprotection was assessed by exposing SH-SY5Y and PC12 cells to 20 µM Aβ25-35 to induce cytotoxicity, followed by pretreatment with biatractylolide-loaded PUC (BD-PUC) nanoparticle solutions at various biatractylolide concentrations. The in vivo brain-targeting capability of both empty PUC and BD-PUC particles was evaluated using a live imaging system. Results: The 1H NMR analysis confirmed three distinct CDCA substitution degrees (8.97%, 10.66%, 13.92%). Transmission electron microscopy revealed uniformly dispersed, spherical nanoparticles. Dynamic light scattering measurements showed a hydrodynamic diameter of ~200 nm and a negative zeta potential. Exposure to 20 µM Aβ25-35 significantly reduced SH-SY5Y and PC12 cell viability; pretreatment with BD-PUC nanoparticles markedly enhanced cell survival rates and preserved cellular morphology compared to cells treated with free biatractylolide. Notably, the cytoprotective effect of BD-PUC exceeded that of the free drug. In vivo imaging demonstrated that both empty PUC and Tween-80-adsorbed BD-PUC nanoparticles effectively accumulated in the brain. Conclusions: The protective effect of BD-PUC on SH-SY5Y and PC12 cells induced by Aβ25-35 was higher than free biatractylolide solution, and the BD-PUC nanosolution modified with Tween-80 showed a brain-targeting effect. Full article
(This article belongs to the Special Issue Natural Products for Therapeutic Potential)
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
In Vivo Neuroprotective Effects of Alpinetin Against Experimental Ischemic Stroke Damage Through Antioxidant and Anti-Inflammatory Mechanisms
by Ratchaniporn Kongsui, Sitthisak Thongrong and Jinatta Jittiwat
Int. J. Mol. Sci. 2025, 26(11), 5093; https://doi.org/10.3390/ijms26115093 - 26 May 2025
Viewed by 1358
Abstract
Ischemic stroke is the most common type of stroke and poses a major global health challenge due to its high mortality and lasting disability impact. The onset and progression of ischemic stroke are largely linked to oxidative stress and inflammatory responses. Alpinetin, a [...] Read more.
Ischemic stroke is the most common type of stroke and poses a major global health challenge due to its high mortality and lasting disability impact. The onset and progression of ischemic stroke are largely linked to oxidative stress and inflammatory responses. Alpinetin, a natural flavonoid found in the ginger family, exhibits various pharmacological properties, including antioxidant and anti-inflammatory activities. In this study, the neuroprotective potential of alpinetin in attenuating oxidative stress and inflammation against cerebral ischemic stroke was evaluated. Ninety male Wistar rats were randomly assigned to the sham operation group, the Rt.MCAO group, the Rt.MCAO+piracetam group, and the Rt.MCAO+alpinetin groups (25, 50, and 100 mg/kg BW). Cerebral infarction size, neuronal density, and antioxidant and anti-inflammatory activities were measured. Three days of treatment with alpinetin markedly reduced the infarct volume by 30% compared to the Rt.MCAO+vehicle-treated group. Additionally, rats treated with alpinetin exhibited a significant increase in neuronal density in the cortex, as well as in the CA1 and CA3 regions of the hippocampus. Furthermore, treatment with alpinetin ameliorated both the Rt.MCAO-induced increase in malondialdehyde (MDA) activity and the Rt.MCAO-induced decrease in catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities in the cortex and hippocampus. Moreover, COX-2 and IL-6 protein levels were assessed using western blotting. The results showed that treatment with alpinetin (100 mg/kg BW) significantly reduced the expression levels of COX-2 and IL-6 in both the cortex and hippocampus. Our findings suggest that alpinetin significantly mitigates the effects of cerebral ischemia-induced brain damage through its antioxidant and anti-inflammatory properties and could potentially be developed as a therapeutic agent for stroke treatment. Full article
(This article belongs to the Special Issue Advanced Research in Antioxidant Activity)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Effectiveness of Psychotherapy for Post-Traumatic Stress Disorder in Subjects Suffering from Traumatic Brain Injuries After Motor Vehicle Accidents
by Agnieszka Popiel, Beata Banaszak, Ewa Pragłowska and Bogdan Zawadzki
Healthcare 2025, 13(10), 1194; https://doi.org/10.3390/healthcare13101194 - 20 May 2025
Viewed by 588
Abstract
Background and Objectives: PTSD and traumatic brain injury (TBI) frequently co-occur in survivors of combat exposure, blasts, assaults, or motor vehicle accidents (MVAs), yet the impact of TBI on the psychotherapy outcomes for PTSD, especially in civilians, remains underexplored and frequently underestimated. Methods [...] Read more.
Background and Objectives: PTSD and traumatic brain injury (TBI) frequently co-occur in survivors of combat exposure, blasts, assaults, or motor vehicle accidents (MVAs), yet the impact of TBI on the psychotherapy outcomes for PTSD, especially in civilians, remains underexplored and frequently underestimated. Methods: This study focused on analysis of the effectiveness of psychotherapies (trauma-focused: prolonged exposure (PE); non-trauma-focused: self-efficacy-focused cognitive therapy (SEF-CT)) in individuals with PTSD, comparing those with and without TBIs. The data of 45 PTSD patients with TBIs were drawn from a clinical trial cohort, with a total of 134 completing treatment. PTSD symptoms were assessed pre- and post-treatment using CAPS-5 and PDS-5. Cognitive functioning was measured via tests of fluid and crystallized intelligence. ANCOVA models examined the level of post-treatment PTSD symptoms with the control of pretreatment symptoms and the effects of TBI, treatment type, gender, age, education, time since the MVA, and level of cognitive functioning. Results: Both psychotherapies were equally effective in reducing PTSD symptoms, regardless of TBI status. The early initiation of treatment predicted better outcomes in non-TBI patients but not in those with TBIs. The TBI participants who began treatment earlier exhibited lower fluid intelligence scores, suggesting mild cognitive impairments that may have moderated the therapy benefits. Conclusions: Patients with PTSD and TBIs can benefit from both trauma-focused and non-trauma-focused CBT. While earlier intervention is beneficial for patients with PTSD alone, cognitive impairments may reduce this advantage in those with TBIs. Full article
(This article belongs to the Special Issue Psychological Diagnosis and Treatment of People with Mental Disorders)
Show Figures

Figure 1

Back to TopTop