The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy: Steps for Article Selection
2.2. Quality and BIAS Assessment
3. Results
- -
- -
- -
- Studies using probiotics delivered through liquid suspensions [29];
- -
- Studies using bacteria which is potentially usable in beverages, even if in some cases the main way of delivery in the study was through capsules. They were included due to the possibility of using the particular strain in a liquid preparation or because it is used in probiotic drinks [29,32,34,35];
- -
- -
4. Discussion
4.1. Microbiota Modulation, Cognitive Effects, and Stress Regulation
4.2. Probiotic Drinks as a Vector for Cognitive Enhancement
4.3. Limitations of the Study
5. Study Implications and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrari, S.; Mulè, S.; Parini, F.; Galla, R.; Ruga, S.; Rosso, G.; Brovero, A.; Molinari, C.; Uberti, F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J. Tradit. Complement. Med. 2024, 14, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J.T. Exploring the influence of gut-brain axis modulation on cognitive health: A comprehensive review of prebiotics, probiotics, and symbiotics. Nutrients 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sivamaruthi, B.S.; Dey, S.; Kumar, Y.; Malviya, R.; Prajapati, B.G.; Chaiyasut, C. Probiotics as modulators of gut-brain axis for cognitive development. Front. Pharmacol. 2024, 15, 1348297. [Google Scholar] [CrossRef] [PubMed]
- Ghassab, F.T.; Mahmoudi, F.S.; Tinjani, R.T.; Meibodi, A.E.; Zali, M.R.; Yadegar, A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci. 2024, 350, 122748. [Google Scholar] [CrossRef]
- Mudaliar, S.B.; Poojary, S.S.; Bharath Prasad, A.S.; Mazumder, N. Probiotics and paraprobiotics: Effects on Microbiota-gut-brain axis and their consequent potential in neuropsychiatric therapy. Probiotics Antimicrob. Proteins 2024, 16, 1440–1464. [Google Scholar] [CrossRef]
- Accettulli, A.; Corbo, M.R.; Sinigaglia, M.; Speranza, B.; Campaniello, D.; Racioppo, A.; Altieri, C.; Bevilacqua, A. Psycho-Microbiology, a New Frontier for Probiotics: An exploratory overview. Microorganisms 2022, 10, 2141. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Clinical potential of microbial strains, used in fermentation for probiotic food, beverages and in synbiotic supplements, as psychobiotics for cognitive treatment through gut–brain signaling. Microorganisms 2022, 10, 1687. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagone, G.M.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Ķimse, L.; Reinis, A.; Miķelsone-Jansone, L.; Gintere, S.; Krūmiņa, A. A narrative review of psychobiotics: Probiotics that influence the gut–brain axis. Medicina 2024, 60, 601. [Google Scholar] [CrossRef]
- Verma, A.; Inslicht, S.S.; Bhargava, A. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders. Cells 2024, 13, 1436. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Braun, C.; Murphy, E.F.; Enck, P. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 2019, 114, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Koser, N.; Aun, S.M.; Siddiqui, M.F.; Malik, S.; Ali, S.A. Deciphering the role of probiotics in mental health: A systematic literature review of psychobiotics. Benef. Microbes 2024, 16, 135–156. [Google Scholar] [CrossRef] [PubMed]
- El-Heis, S.; Barton, S.J.; Chang, H.F.; Nield, H.; Cox, V.; Galani, S.; Cutfield, W.; Chan, S.Y.; Godfrey, K.M.; NiPPeR Study Group. Maternal mood, anxiety and mental health functioning after combined myo-inositol, probiotics, micronutrient supplementation from preconception: Findings from the NiPPeR RCT. Psychiatry Res. 2024, 334, 115813. [Google Scholar] [CrossRef]
- Rahmannia, M.; Poudineh, M.; Mirzaei, R.; Aalipour, M.A.; Bonjar, A.H.S.; Goudarzi, M.; Kheradmand, A.; Aslani, H.R.; Sadeghian, M.; Nasiri, M.J.; et al. Strain-specific effects of probiotics on depression and anxiety: A meta-analysis. Gut Pathog. 2024, 16, 46. [Google Scholar] [CrossRef]
- Okubo, R.; Kogaa, M.; Katsumatac, N.; Odamakic, T.; Matsuyamaa, S.; Okaa, M.; Narita, H.; Hashimoto, N.; Kusumi, I.; Xiao, J.; et al. Effect of Bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J. Affect. Disord. 2019, 245, 377–385. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Park, S.; Paik, J.-W.; Chae, S.-W.; Kim, D.-H.; Jeong, D.-G.; Ha, E.; Kim, M.; Hong, G.; Park, S.-H.; et al. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients 2019, 11, 305. [Google Scholar] [CrossRef]
- Slykerman, R.F.; Davies, N.; Donohoe, R. Evaluating the scientific evidence to support mental health and well-being claims made on probiotic products. Nutr. Health 2025. [Google Scholar] [CrossRef]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The potential impact of probiotics on human health: An update on their health-promoting properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef]
- Massoud, R.; Jafari, R.; Khosravi-Darani, K. Kombucha as a health-beneficial drink for human health. Plant Foods Hum. Nutr. 2024, 79, 251–259. [Google Scholar] [CrossRef]
- Khatun, R.; Bhattacharya, M. Probiotics Drinks: Balancing the Benefits with Possible Side-Effects. Int. J. Biotechnol. Trends Technol. 2024, 14, 6–14. [Google Scholar] [CrossRef]
- Gebre, T.S.; Emire, S.A.; Aloo, S.O.; Chelliah, R.; Vijayalakshmi, S.; Oh, D.H. Unveiling the potential of African fermented cereal-based beverages: Probiotics, functional drinks, health benefits and bioactive components. Food Res. Int. 2024, 191, 114656. [Google Scholar] [CrossRef] [PubMed]
- Stachelska, M.A.; Karpiński, P.; Kruszewski, B. Health-promoting and functional properties of fermented milk beverages with probiotic bacteria in the prevention of civilization diseases. Nutrients 2024, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Meenu, M.; Kaur, S.; Kaur, M.; Mradula, M.; Khandare, K.; Xu, B.; Pati, P.K. The golden era of fruit juices-based probiotic beverages: Recent advancements and future possibilities. Process Biochem. 2024, 142, 113–135. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Cáceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Problematic internet use as a predictor of eating disorders in students: A systematic review and meta-analysis study. Nutrients 2019, 11, 2151. [Google Scholar] [CrossRef]
- Salisbury, L. Web of Science and Scopus: A Comparative Review of Content and Searching Capabilities. Charlest. Advis. 2009, 11, 5–18. [Google Scholar]
- Kalogiannakis, M.; Papadakis, S.; Zourmpakis, A.I. Gamification in Science Education. A systematic review of the literature. Educ. Sci. 2021, 11, 22. [Google Scholar] [CrossRef]
- Zheng, M.; Ye, H.; Yang, X.; Shen, L.; Dang, X.; Liu, X.; Gong, Y.; Wu, Q.; Wang, L.; Ge, X.; et al. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav. Immun. 2024, 115, 565–587. [Google Scholar] [CrossRef]
- Lof, J.; Smits, K.; Melotte, V.; Kuil, L.E. The health effect of probiotics on high-fat diet-induced cognitive impairment, depression and anxiety: A cross-species systematic review. Neurosci. Biobehav. Rev. 2022, 136, 104634. [Google Scholar] [CrossRef]
- Kou, J.; Hu, L.; Wang, D.; Wang, S.; Wang, Q.; Yang, Z. Evaluation of improvement of cognitive impairment in older adults with probiotic supplementation: A systematic review and meta-analysis. Geriatr. Nurs. 2023, 54, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi-Hayakawa, H.; Ishikawa, H.; Suda, K.; Gondo, Y.; Hirasawa, G.; Nakamura, H.; Takada, M.; Kawai, M.; Matsuda, K. Effects of Lacticaseibacillus paracasei strain Shirota on day time performance in healthy office workers: A double-blind, randomized, crossover, placebo-controlled trial. Nutrients 2023, 15, 5119. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, M.; Counts, S.E.; Zhou, C.; Hida, H.; Kim, J.I.; Michikawa, M.; Jung, C.G. Protective Effects of Bifidobacterium breve MCC1274 as a Novel Therapy for Alzheimer’s Disease. Nutrients 2025, 17, 558. [Google Scholar] [CrossRef] [PubMed]
- Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr. 2022, 41, 2565–2576. [Google Scholar] [CrossRef]
- Cannavale, C.N.; Mysonhimer, A.R.; Bailey, M.A.; Cohen, N.J.; Holscher, H.D.; Khan, N.A. Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial. Nutr. Neurosci. 2022, 26, 265–274. [Google Scholar] [CrossRef]
- Gaougaou, G.; Zahra, R.; Morel, S.; Bélanger, V.; Knoth, I.S.; Cousineau, D.; D’Arc, B.F.; Grzywacz, K.; Rousseau, G.; Déziel, E.; et al. Acceptability and Safety of a Probiotic Beverage Supplementation (Bio-K+) and Feasibility of the Proposed Protocol in Children with a Diagnosis of Autism Spectrum Disorder. Available online: https://www.researchsquare.com/article/rs-5897786/v1 (accessed on 10 May 2025).
- Yang, X.; He, S.; Xu, S.; Zhang, Y.; Mo, C.; Lai, Y.; Song, Y.; Yan, Z.; Ai, P.; Qian, Y.; et al. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease. Food Funct. 2023, 14, 6828–6839. [Google Scholar] [CrossRef]
- Pereira, T.M.C.; Coco, L.Z.; Ton, A.M.M.; Metrelles, S.S.; Campos-Toimil, M.; Campagnaro, M.; Elisardo, E.C. The emerging scenario of the gut–brain axis: The therapeutic actions of the new actor kefir against neurodegenerative diseases. Antioxidants 2021, 10, 1845. [Google Scholar] [CrossRef]
- Otaka, M.; Kikuchi-Hayakawa, H.; Ogura, J.; Ishikawa, H.; Yomogida, Y.; Ota, M.; Hidese, S.; Ishida, I.; Aida, M.; Matsuda, K.; et al. Effect of Lacticaseibacillus paracasei strain Shirota on improvement in depressive Symptoms, and its association with abundance of Actinobacteria in gut microbiota. Microorganisms 2021, 9, 1026. [Google Scholar] [CrossRef]
- Lima, N.C.; Kirov, R.; de Almondes, K.M. Impairment of executive functions due to sleep alterations: An integrative review on the use of P300. Front. Neurosci. 2022, 16, 906492. [Google Scholar] [CrossRef]
- Koblinsky, N.D.; Power, K.A.; Middleton, L.; Ferland, G.; Anderson, N.D. The Role of the gut microbiome in diet and exercise effects on cognition: A review of the intervention literature. J. Gerontol. Ser. A 2022, 78, 195–205. [Google Scholar] [CrossRef]
- Jia, L.; Xiao, L.; Fu, Y.; Shao, Z.; Jing, Z.; Yuan, J.; Xie, Y.; Guo, J.; Wang, Y.; Geng, W. Neuroprotective effects of probiotics on anxiety-and depression-like disorders in stressed mice by modulating tryptophan metabolism and the gut microbiota. Food Funct. 2024, 15, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Xin, C.; Huo, J.; Liu, Q.; Dong, H.; Li, R.; Liu, Y. Neuroprotective effect of a multistrain probiotic mixture in SOD1G93A mice by reducing SOD1 aggregation and targeting the microbiota-gut-brain axis. Mol. Neurobiol. 2024, 61, 10051–10071. [Google Scholar] [CrossRef]
- Anwar, M.M.; Boseila, A.A.; Mabrouk, A.A.; Abdelkhalek, A.A.; Amin, A. Impact of lyophilized milk Kefir-based self-nanoemulsifying system on cognitive enhancement via the microbiota–gut–brain axis. Antioxidants 2024, 13, 1205. [Google Scholar] [CrossRef] [PubMed]
- Apalowo, O.E.; Adegoye, G.A.; Mbogori, T.; Kandiah, J.; Obuotor, T.M. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.P. The Promising Connection Between Gut Microbiota and Mental Health: Overview of Kefir in Relation to Mental Health. Am. J. Stud. Res. 2024, 2, 34–40. [Google Scholar] [CrossRef]
- Clerici, L.; Bottari, D.; Bottari, B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr. Nutr. Rep. 2025, 14, 30. [Google Scholar] [CrossRef]
- Brusnic, O.; Onisor, D.; Boicean, A.; Hasegan, A.; Ichim, C.; Guzun, A.; Chicea, R.; Todor, S.B.; Vintila, B.I.; Anderco, P.; et al. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J. Clin. Med. 2024, 13, 6578. [Google Scholar] [CrossRef]
- Goldenberg, D.; Melmed, G.Y. Fecal transplant: The benefits and harms of fecal microbiota transplantation. In Clinical Understanding of the Human Gut Microbiome; Springer Nature: Cham, Switzerland, 2024; pp. 129–140. [Google Scholar]
- Widyadharma, I.P.E.; Hendellyn, A.; de Liyis, B.G.; Putri, N.L.P.S.W.; Indrayani, A.W.; Darwinata, A.E.; Sujaya, I.N. The effects of probiotic supplementation on cerebral cognitive function: A systematic review. Egypt. J. Neurol. Psychiatry Neurosurg. 2024, 60, 65. [Google Scholar] [CrossRef]
- Freijy, T.M.; Cribb, L.; Oliver, G.; Metri, N.-J.; Opie, R.S.; Jacka, F.N.; Hawrelak, J.A.; Rucklidge, J.J.; Ng, C.H.; Sarris, J. The impact of a prebiotic-rich diet and/or probiotic supplements on human cognition: Secondary outcomes from the ‘gut feelings’ randomised controlled trial. Nutr. Neurosci. 2024, 15, 1–11. [Google Scholar] [CrossRef]
- Elhassan, M.; Ahmed, L.; Adil, R.; Mohamed, L.; Mussaad, A.; Abdelrahman, N. Probiotics and nutrient supplements in mild cognitive impairment: A systematic review and meta-analysis. Innov. Aging 2024, 8 (Suppl. S1), 1268. [Google Scholar] [CrossRef]
- Takada, M.; Nishida, K.; Gondo, Y.; Kikuchi-Hayakawa, H.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Kuwano, Y.; Miyazaki, K.; et al. Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: A double-blind, randomised, placebo-controlled trial. Benef. Microbes 2017, 8, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrie Dysfunction in Alzheimer’s Disease. Front. Cell. Neurosci. 2021, 15, 695479. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Y.; Han, J.; Wei, W.; Chen, F. Blood-brain barrier dysfunction and Alzheimer’s disease: Associations, pathogenic mechanisms, and therapeutic potential. Front. Aging Neurosci. 2023, 15, 1258640. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kuhara, T.; Oki, M.; Xiao, J.Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomised, double-blind, placebo-controlled trial. Beneficial. Microbes 2019, 10, 511–520. [Google Scholar] [CrossRef]
- Merkouris, E.; Mavroudi, T.; Miliotas, D.; Tsiptsios, D.; Serdari, A.; Christidi, F.; Doskas, T.K.; Mueller, C.; Tsamakis, K. Probiotics’ effects in the treatment of anxiety and depression: A comprehensive review of 2014–2023 clinical trials. Microorganisms 2024, 12, 411. [Google Scholar] [CrossRef]
- De Santa, F.; Strimpakos, G.; Marchetti, N.; Gargari, G.; Torcinaro, A.; Arioli, S.; Mora, D.; Petrella, C.; Farioli-Vecchioli, S. Effect of a multi-strain probiotic mixture consumption on anxiety and depression symptoms induced in adult mice by postnatal maternal separation. Microbiome 2024, 12, 29. [Google Scholar] [CrossRef]
- Hasaniani, N.; Ghasemi-Kasman, M.; Halaji, M.; Rostami-Mansoor, S. Bifidobacterium breve probiotic compared to Lactobacillus casei causes a better reduction in demyelination and oxidative stress in cuprizone-induced demyelination model of rat. Mol. Neurobiol. 2024, 61, 498–509. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Yaghoobi, M.; Zhang, S.; Li, P.; Li, Q.; Dogan, B.; Ahnrud, G.P.; Flock, G.; Marek, P.; Simpson, K.W.; et al. Adaptive Laboratory Evolution of Probiotics toward Oxidative Stress Using a Microfluidic-Based Platform. Small 2024, 20, 2306974. [Google Scholar] [CrossRef]
- Ruiz-Gonzalez, C.; Cardona, D.; Rueda-Ruzafa, L.; Rodriguez-Arrastia, M.; Ropero-Padilla, C.; Roman, P. Cognitive and Emotional Effect of a Multi-species Probiotic Containing Lactobacillus rhamnosus and Bifidobacterium lactis in Healthy Older Adults: A Double-Blind Randomized Placebo-Controlled Crossover Trial. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Xiao-Hang, Q.; Si-Yue, C.; Hui-Dong, T. Multi-strain probiotics ameliorate Alzheimer’s-like cognitive impairment and pathological changes through the AKT/GSK-3β pathway in senescence-accelerated mouse prone 8 mice. Brain Behav. Immun. 2024, 119, 14–27. [Google Scholar] [CrossRef]
- Lalowski, P.; Zielińska, D. The most promising next-generation probiotic candidates—Impact on Human Health and potential application in Food Technology. Fermentation 2024, 10, 444. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Costacurta, M.; Merra, G.; Gualtieri, P.; Cioccoloni, G.; Marchetti, M.; Varvaras, D.; Docimo, R.; Di Renzo, L. Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J. Transl. Med. 2017, 15, 135. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies evaluating the efficacy of probiotics on cognitive performance | Articles not complying with inclusion criteria |
Probiotic in beverages or liquid preparations or usable in these systems | Duplicate articles |
Measures or assessments of cognitive performance (e.g., memory, attention, executive functions) | Articles not written in English |
Studies conducted on humans, including healthy subjects and subjects with cognitive impairment, or if conducted on models with results applicable to humans | Proceedings of congresses, conference papers, books, book chapters, and other nonpeer-reviewed publications |
Original study designs (randomized, controlled, quasi-experimental, and observational) that allow the evaluation of the effect of the intervention | Articles written before 2020 |
Studies in which probiotics are NOT administered in combination with other substances or supplements | Narrative reviews and/or meta-analyses which do not strictly adhere to the inclusion criterion on reviews |
Studies that report specific measures of cognitive performance or that provide sufficient data to evaluate their effectiveness | |
Reviews or meta-analyses if they clearly report specific outcomes, demonstrate with well-defined parameters an effect on cognitive functions, and focus on probiotic species which could be used in beverages or liquid preparations |
Author | Title | Journal | NOS Score |
---|---|---|---|
Zheng et al. [29] | Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via microbiota–gut–brain axis | Brain Behaviour and Immunity 2024, 115, 565–587 | 7 |
Lof et al. [30] | The health effect of probiotics on high-fat diet-induced cognitive impairment, depression, and anxiety: A cross-species systematic review | Neuroscience and Biobehavioural Reviews 2022, 136, 104634 | na |
Kou et al. [31] | Evaluation of improvement of cognitive impairment in older adults with probiotic supplementation: A systematic review and meta-analysis | Geriatric Nursing 2023, 54, 155–162 | na |
Kikuchi-Hayakawa et al. [32] | Effects of Lacticaseibacillus paracasei strain Shirota on daytime performance in healthy office workers: A double-blind, randomized, crossover, placebo-controlled trial | Nutrients 2023, 15, 5159 | 7 |
Abdelhamid et al. [33] | Protective effects of Bifidobacterium breve MCC1274 as a novel therapy for Alzheimer’s disease | Nutrients 2025, 17, 558 | na |
Aljumaah et al. [34] | The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults | Clinical Nutrition 2022, 41, 2565–2576 | 8 |
Cannavale et al. [35] | Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial | Nutritional Neuroscience 2022, 26, 265–274 | 8 |
Gaougaou et al. [36] | Acceptability and safety of a probiotic beverage supplementation (Bio-K+) and feasibility of the proposed protocol in children with a diagnosis of autism spectrum disorder | Research Square 2025, 1–38 | 8 |
Yang et al. [37] | Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease | Food and Function 2023, 14, 6828–6839 | 8 |
Pereira et al. [38] | The emerging scenario of the gut–brain axis: the therapeutic actions of the new actor Kefir against neurodegenerative diseases | Antioxidants 2021, 10, 1845 | na |
Author | Type of the Study | Objectives of the Study | Microorganisms Used and Studied |
---|---|---|---|
Zheng et al. [29] | Combined study (observational analysis on human subjects and experiments on a mouse model) | To investigate the potential neuroprotective effect of C. butyricum on obesity-induced hippocampal cognitive deficits | C. butyricum |
Lof et al. [30] | Systematic review (one human study and sixteen animal studies) | To evaluate the efficacy of probiotic intervention in alleviating cognitive impairment, depression, and anxiety induced by a high-fat diet (HFD) | Lactobacillus spp. Bifidobacterium spp. Akkermansia spp. |
Kou et al. [31] | Systematic review and meta-analysis | To assess the effects of probiotics on the cognitive levels, psychological symptoms, and oxidative stress levels of elderly people To investigate the impact of disease type, different cognitive rating scales, and types of probiotics | Lactobacillus spp. Bifidobacterium spp. |
Kikuchi-Hayakawa et al. [32] | Double-blind, randomized, crossover, placebo-controlled study | To explore the possible efficacy of Lacticaseibacillus paracasei strain Shirota (LcS) in improving daytime performance | Lcb. paracasei strain Shirota (LcS) |
Abdelhamid et al. [33] | Review | Examining the beneficial effects of Bifidobacterium breve MCC1274 on Alzheimer’s disease (AD) | B. breve MCC1274 |
Aljumaah et al. [34] | Randomized, placebo-controlled, double-blind clinical trial | To identify differences in gut microbiota composition and predicted microbial functional pathways between middle-aged and older adults with mild cognitive impairment (MCI) compared to neurologically healthy individuals To investigate the impact of supplementation with the probiotic Lcb. rhamnosus GG (LGG) on the composition of the intestinal microbiota | Lacticaseibacillus rhamnsosus GG (LGG) |
Cannavale et al. [35] | Randomized, controlled, cross-over clinical trial | To assess the effects of probiotics on mood states, stress, and hippocampal-dependent memory performance in healthy adults. | Lactobacillus spp. |
Gaougaou et al. [36] | Acceptability, safety and feasibility, open-label, and non-randomized | To evaluate the acceptability and safety of a probiotic drink (Bio-K+) in autistic children aged 4 to 11 years To evaluate the feasibility of the proposed research protocol to measure the impact of supplementation on behaviors and comorbidities To collect preliminary data to evaluate the impact of probiotic drink supplementation on behaviors, as well as gastrointestinal symptoms and sleep disturbances | Lactobacillus acidophilus CL1285 Lccb LBC80R Lcb. rhamnosus CLR2 |
Yang et al. [37] | Randomized, double-blind, placebo-controlled trial | To investigate the effect of Lcb. paracasei strain Shirota (LcS) supplementation on clinical outcomes and intestinal microbial homeostasis in neo-patients with Parkinson’s disease | Lcb. paracasei strain Shirota (LcS) |
Pereira et al. [38] | Review | Discuss the data available in the last two decades regarding the therapeutic benefits of the probiotic kefir on oxidative stress and inflammation (contributors to chronic neuronal disorders). Promote the development of programs for the next steps needed to obtain confirmation through clinical studies on the breadth of the effects of kefir on large samples | Lactobacillus spp. Lactococcus spp. Leuconostoc spp. Acetobacter spp. Kluyveromyces spp. Saccharomyces spp. |
Author | Type of Administration | Potential Use of Microorganisms in Beverages/Liquid Preparations | Type of Beneficial Effect on Cognitive Performance and Brain Well-Being |
---|---|---|---|
Zheng et al. [29] | Oral in aqueous solution (21 weeks, 5 × 108 CFU/mL) | Yes | Alleviation of cognitive impairment Improved behavioral performance Attenuation of the deficit of hippocampal neuritis growth and synaptic ultrastructure Prevention of intestinal microbiota dysbiosis, colonic barrier damage, and inflammation Attenuation of endotoxemia |
Lof et al. [30] | Oral gavage, added to water or mixed with food (various conditions depending on the target) | Yes | Alleviation of cognitive impairment |
Kou et al. [31] | Supplements, capsules, and milk as a supplement (various conditions depending on the target) | Yes | Improvement of cognitive symptoms, particularly on memory and global cognitive function Reduction in oxidative stress levels |
Kikuchi-Hayakawa et al. [32] | Fermented milk containing viable LcS (4 weeks, 1.0 × 1010 CFU/mL) | Yes | Improved daytime attention Reduction in theta power on an EEG in the afternoon Tendency towards shorter reaction times Increased level of arousal Effect on the autonomic nervous system |
Abdelhamid et al. [33] | Oral gavage (various conditions, depending on the target) | Yes | Immediate and delayed memory improvement Improved MMSE (mini-mental state examination) scores Potential slowing of the progression of brain atrophy in patients with suspected mild cognitive impairment (MCI) Reduction in symptoms of anxiety and depression |
Aljumaah et al. [34] | Vegetarian capsules containing microcrystalline cellulose (1 × 1010 CFU Lcb. rhamnosus, 90 days) | Yes | Improved cognitive performance in participants with mild cognitive impairment (MCI) Cognitive score improvement |
Cannavale et al. [35] | Milk drink (kefir) (3 × 1010 live microorganisms, 4 weeks) | Yes | Improved performance in two parameters of hippocampal-dependent relational memory |
Gaougaou et al. [36] | Bio-K+ Probiotic Drink (5 × 1010 CFU of probiotics, 14 weeks) | Yes | Improved Autism-related behaviors, sensory/cognitive awareness, cognitive performance, and brain well-being |
Yang et al. [37] | Fermented milk containing live LcS cells (1 × 1010 CFU of probiotics, 12 weeks) | Yes | Significant improvement in non-motor symptoms (NMSs) including depression and anxiety |
Pereira et al. [38] | Oral gavage Milk drink (kefir) (various conditions; generally probiotic at least 108–109 CFU/mL or g; some weeks) | Yes | Therapeutic action against degenerative diseases Reduction in oxidative stress and inflammation Restoration/preservation of the intestinal microbiota Enhanced global cognitive performance, with notable gains in immediate and delayed memory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippone, A.; Barbieri, U.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement. Beverages 2025, 11, 85. https://doi.org/10.3390/beverages11030085
Filippone A, Barbieri U, Corbo MR, Sinigaglia M, Bevilacqua A. The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement. Beverages. 2025; 11(3):85. https://doi.org/10.3390/beverages11030085
Chicago/Turabian StyleFilippone, Alfonso, Umberto Barbieri, Maria Rosaria Corbo, Milena Sinigaglia, and Antonio Bevilacqua. 2025. "The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement" Beverages 11, no. 3: 85. https://doi.org/10.3390/beverages11030085
APA StyleFilippone, A., Barbieri, U., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2025). The Gut–Brain Axis and Probiotics in Beverages and Liquid Preparations: A PRISMA Systematic Review on Cognitive Function Enhancement. Beverages, 11(3), 85. https://doi.org/10.3390/beverages11030085