Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = bouncing cosmologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1237 KB  
Article
Counting Cosmic Cycles: Past Big Crunches, Future Recurrence Limits, and the Age of the Quantum Memory Matrix Universe
by Florian Neukart, Eike Marx and Valerii Vinokur
Entropy 2025, 27(10), 1043; https://doi.org/10.3390/e27101043 - 7 Oct 2025
Viewed by 1300
Abstract
We present a quantitative theory of contraction and expansion cycles within the Quantum Memory Matrix (QMM) cosmology. In this framework, spacetime consists of finite-capacity Hilbert cells that store quantum information. Each non-singular bounce adds a fixed increment of imprint entropy, defined as the [...] Read more.
We present a quantitative theory of contraction and expansion cycles within the Quantum Memory Matrix (QMM) cosmology. In this framework, spacetime consists of finite-capacity Hilbert cells that store quantum information. Each non-singular bounce adds a fixed increment of imprint entropy, defined as the cumulative quantum information written irreversibly into the matrix and distinct from coarse-grained thermodynamic entropy, thereby providing an intrinsic, monotonic cycle counter. By calibrating the geometry–information duality, inferring today’s cumulative imprint from CMB, BAO, chronometer, and large-scale-structure constraints, and integrating the modified Friedmann equations with imprint back-reaction, we find that the Universe has already completed Npast=3.6±0.4 cycles. The finite Hilbert capacity enforces an absolute ceiling: propagating the holographic write rate and accounting for instability channels implies only Nfuture=7.8±1.6 additional cycles before saturation halts further bounces. Integrating Kodama-vector proper time across all completed cycles yields a total cumulative age tQMM=62.0±2.5Gyr, compared to the 13.8±0.2Gyr of the current expansion usually described by ΛCDM. The framework makes concrete, testable predictions: an enhanced faint-end UV luminosity function at z12 observable with JWST, a stochastic gravitational-wave background with f2/3 scaling in the LISA band from primordial black-hole mergers, and a nanohertz background with slope α2/3 accessible to pulsar-timing arrays. These signatures provide near-term opportunities to confirm, refine, or falsify the cyclical QMM chronology. Full article
Show Figures

Figure 1

11 pages, 317 KB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Viewed by 781
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

13 pages, 243 KB  
Article
Complex Riemannian Spacetime and Singularity-Free Black Holes and Cosmology
by John W. Moffat
Axioms 2025, 14(6), 459; https://doi.org/10.3390/axioms14060459 - 12 Jun 2025
Cited by 1 | Viewed by 1597
Abstract
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker [...] Read more.
An approach is presented to address singularities in general relativity using a complex Riemannian spacetime extension. We demonstrate how this method can be applied to both black hole and cosmological singularities, specifically focusing on the Schwarzschild and Kerr black holes and the Friedmann–Lemaître–Robertson–Walker (FLRW) Big Bang cosmology. By extending the relevant coordinates into the complex plane and carefully choosing integration contours, we show that it is possible to regularize these singularities, resulting in physically meaningful, singularity-free solutions when projected back onto real spacetime. The removal of the singularity at the Big Bang allows for a bounce cosmology. The approach offers a potential bridge between classical general relativity and quantum gravity effects, suggesting a way to resolve longstanding issues in gravitational physics without requiring a full theory of quantum gravity. Full article
(This article belongs to the Special Issue Complex Variables in Quantum Gravity)
Show Figures

Figure 1

12 pages, 330 KB  
Article
On the Stability of Non-Singular Solutions in Effective Theory from Kaluza–Klein Unimodular Gravity
by Júlio C. Fabris and Richard Kerner
Symmetry 2025, 17(3), 419; https://doi.org/10.3390/sym17030419 - 11 Mar 2025
Cited by 1 | Viewed by 885
Abstract
Unimodular theory incorporating the Kaluza–Klein construction in five dimensions leads, after reduction to four dimensions, to a new class of scalar–tensor theory. The vacuum cosmological solutions display a bounce with non-singular behavior the effective lower dimension model: from the four-dimensional point of view, [...] Read more.
Unimodular theory incorporating the Kaluza–Klein construction in five dimensions leads, after reduction to four dimensions, to a new class of scalar–tensor theory. The vacuum cosmological solutions display a bounce with non-singular behavior the effective lower dimension model: from the four-dimensional point of view, the solutions are completely regular. However, the propagation of gravitational waves in this geometry displays the presence of instabilities which reflect singular features of the original five-dimensional structure connected to a degenerate metric at the bounce. A four-dimensional quantum model with cosmological constant, which has a similar background behavior, is discussed and revealed to be stable. Full article
(This article belongs to the Special Issue Symmetry and Cosmology)
Show Figures

Figure 1

24 pages, 352 KB  
Article
Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry
by Meir Shimon
Universe 2025, 11(3), 93; https://doi.org/10.3390/universe11030093 - 9 Mar 2025
Cited by 2 | Viewed by 901
Abstract
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and [...] Read more.
An asymmetric non-singular bouncing cosmological model is proposed in the framework of a locally scale-invariant scalar-tensor version of the standard model of particle physics and gravitation. The scalar field ϕ is complex. In addition to local scale invariance, the theory is U(1)-symmetric and has a conserved global charge associated with time variations of the phase of ϕ. An interplay between the positive energy density contributions of relativistic and non-relativistic matter and that of the negative kinetic energy associated with the phase of ϕ results in a classical non-singular stable bouncing dynamics deep in the radiation-dominated era. This encompasses the observed redshifting era, which is preceded by a blueshifting era. The proposed model potentially avoids the flatness and horizon problems, as well as allowing for the generation of a scale-invariant spectrum of metric perturbations of the scalar type during a matter-dominated-like pre-bounce phase, with no recourse to an inflationary era. Full article
22 pages, 714 KB  
Article
Dark Energy and Cosmological Bounce Supported by an Unconventional Spinor Field
by Barna Fekecs and Zoltán Keresztes
Universe 2025, 11(2), 59; https://doi.org/10.3390/universe11020059 - 11 Feb 2025
Viewed by 1074
Abstract
Alternative scenarios where the Big Bang singularity of the standard cosmological model is replaced by a bounce, or by an early almost static phase (known as emergent universe) have been frequently studied. We investigate the role of the spinor degrees of freedom in [...] Read more.
Alternative scenarios where the Big Bang singularity of the standard cosmological model is replaced by a bounce, or by an early almost static phase (known as emergent universe) have been frequently studied. We investigate the role of the spinor degrees of freedom in overcoming the initial singularity. We introduce a model which generalizes the Einstein–Cartan–Dirac theory, including local phase invariance of the spinor field supported by a gauge scalar field and certain couplings to the torsion. A natural gauge choice reduces the field equations to that of the Einstein–Dirac theory with a Dirac field potential that has polar and axial spinor currents. We identify a new potential term proportional to the square of the ratio of Dirac scalar and axial scalar, which provides a dark energy contribution dominating in the late-time Universe. In addition, the presence of spinor currents in the potential may induce the bounce of a contracting universe. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

134 pages, 2234 KB  
Article
Cosmologies with Perfect Fluids and Scalar Fields in Einstein’s Gravity: Phantom Scalars and Nonsingular Universes
by Michela Cimaglia, Massimo Gengo and Livio Pizzocchero
Universe 2024, 10(12), 467; https://doi.org/10.3390/universe10120467 - 23 Dec 2024
Viewed by 1754
Abstract
In the initial part of this paper, we survey (in arbitrary spacetime dimension) the general FLRW cosmologies with non-interacting perfect fluids and with a canonical or phantom scalar field, minimally coupled to gravity and possibly self-interacting; after integrating the evolution equations for the [...] Read more.
In the initial part of this paper, we survey (in arbitrary spacetime dimension) the general FLRW cosmologies with non-interacting perfect fluids and with a canonical or phantom scalar field, minimally coupled to gravity and possibly self-interacting; after integrating the evolution equations for the fluids, any model of this kind can be described as a Lagrangian system with two degrees of freedom, where the Lagrange equations determine the evolution of the scale factor and the scalar field as functions of the cosmic time. We analyze specific solvable models, paying special attention to cases with a phantom scalar; the latter favors the emergence of nonsingular cosmologies in which the Big Bang is replaced, e.g., with a Big Bounce or a periodic behavior. As a first example, we consider the case with dust (i.e., pressureless matter), radiation, and a scalar field with a constant self-interaction potential (this is equivalent to a model with dust, radiation, a free scalar field and a cosmological constant in the Einstein equations). In the phantom subcase (say, with nonpositive spatial curvature), this yields a Big Bounce cosmology, which is a non-absurd alternative to the standard (ΛCDM) Big Bang cosmology; this Big Bounce model is analyzed in detail, even from a quantitative viewpoint. We subsequently consider a class of cosmological models with dust and a phantom scalar, whose self-potential has a special trigonometric form. The Lagrange equations for these models are decoupled passing to suitable coordinates (x,y), which can be interpreted geometrically as Cartesian coordinates in a Euclidean plane: in this description, the scale factor is a power of the radius r=x2+y2. Each one of the coordinates x,y evolves like a harmonic repulsor, a harmonic oscillator, or a free particle (depending on the signs of certain constants in the self-interaction potential of the phantom scalar). In particular, in the case of two harmonic oscillators, the curves in the plane described by the point (x,y) as a function of time are the Lissajous curves, well known in other settings but not so popular in cosmology. A general comparison is performed between the contents of the present work and the previous literature on FLRW cosmological models with scalar fields, to the best of our knowledge. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
Show Figures

Figure 1

28 pages, 2471 KB  
Article
Universal Properties of the Evolution of the Universe in Modified Loop Quantum Cosmology
by Jamal Saeed, Rui Pan, Christian Brown, Gerald Cleaver and Anzhong Wang
Universe 2024, 10(10), 397; https://doi.org/10.3390/universe10100397 - 15 Oct 2024
Cited by 9 | Viewed by 1658
Abstract
In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. [...] Read more.
In this paper, we systematically study the evolution of the Universe within the framework of a modified loop quantum cosmological model (mLQC-I) using various inflationary potentials, including chaotic, Starobinsky, generalized Starobinsky, polynomials of the first and second kinds, generalized T-models and natural inflation. In all these models, the big bang singularity is replaced by a quantum bounce, and the evolution of the Universe, both before and after the bounce, is universal and weakly dependent on the inflationary potentials, as long as the evolution is dominated by the kinetic energy of the inflaton at the bounce. In particular, the pre-bounce evolution can be universally divided into three different phases: pre-bouncing, pre-transition, and pre-de Sitter. The pre-bouncing phase occurs immediately before the quantum bounce, during which the evolution of the Universe is dominated by the kinetic energy of the inflaton. Thus, the equation of state of the inflaton is about one, w(ϕ)1. Soon, the inflation potential takes over, so w(ϕ) rapidly falls from one to negative one. This pre-transition phase is very short and quickly turns into the pre-de Sitter phase, whereby the effective cosmological constant of Planck size takes over and dominates the rest of the contracting phase. Throughout the entire pre-bounce regime, the evolution of both the expansion factor and the inflaton can be approximated by universal analytical solutions, independent of the specific inflation potentials. Full article
Show Figures

Figure 1

19 pages, 436 KB  
Review
Different Aspects of Entropic Cosmology
by Shin’ichi Nojiri, Sergei D. Odintsov and Tanmoy Paul
Universe 2024, 10(9), 352; https://doi.org/10.3390/universe10090352 - 3 Sep 2024
Cited by 22 | Viewed by 2296
Abstract
We provide a short review of the recent developments in entropic cosmology based on two thermodynamic laws of the apparent horizon, namely the first and the second laws of thermodynamics. The first law essentially provides the change in entropy of the apparent horizon [...] Read more.
We provide a short review of the recent developments in entropic cosmology based on two thermodynamic laws of the apparent horizon, namely the first and the second laws of thermodynamics. The first law essentially provides the change in entropy of the apparent horizon during the cosmic evolution of the universe; in particular, it is expressed by TdS=d(ρV)+WdV (where W is the work density and other quantities have their usual meanings). In this way, the first law actually links various theories of gravity with the entropy of the apparent horizon. This leads to a natural question—“What is the form of the horizon entropy corresponding to a general modified theory of gravity?”. The second law of horizon thermodynamics states that the change in total entropy (the sum of horizon entropy + matter fields’ entropy) with respect to cosmic time must be positive, where the matter fields behave like an open system characterised by a non-zero chemical potential. The second law of horizon thermodynamics importantly provides model-independent constraints on entropic parameters. Finally, we discuss the standpoint of entropic cosmology on inflation (or bounce), reheating and primordial gravitational waves from the perspective of a generalised entropy function. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024—'Cosmology')
Show Figures

Figure 1

15 pages, 1096 KB  
Article
Screened Scalar Fields in the Laboratory and the Solar System
by Hauke Fischer, Christian Käding and Mario Pitschmann
Universe 2024, 10(7), 297; https://doi.org/10.3390/universe10070297 - 15 Jul 2024
Cited by 30 | Viewed by 1999
Abstract
The last few decades have provided abundant evidence for physics beyond the two standard models of particle physics and cosmology. As is now known, the by far largest part of our universe’s matter/energy content lies in the ‘dark’, and consists of dark energy [...] Read more.
The last few decades have provided abundant evidence for physics beyond the two standard models of particle physics and cosmology. As is now known, the by far largest part of our universe’s matter/energy content lies in the ‘dark’, and consists of dark energy and dark matter. Despite intensive efforts on the experimental as well as the theoretical side, the origins of both are still completely unknown. Screened scalar fields have been hypothesized as potential candidates for dark energy or dark matter. Among these, some of the most prominent models are the chameleon, symmetron, and environment-dependent dilaton. In this article, we present a summary containing the most recent experimental constraints on the parameters of these three models. For this, experimental results have been employed from the qBounce collaboration, neutron interferometry, and Lunar Laser Ranging (LLR), among others. In addition, constraints are forecast for the Casimir and Non-Newtonian force Experiment (Cannex). Combining these results with previous ones, this article collects the most up-to-date constraints on the three considered screened scalar field models. Full article
Show Figures

Figure 1

13 pages, 285 KB  
Article
Regular Friedmann Universes and Matter Transformations
by Alexander Kamenshchik and Polina Petriakova
Universe 2024, 10(3), 137; https://doi.org/10.3390/universe10030137 - 13 Mar 2024
Cited by 5 | Viewed by 1978
Abstract
We apply a very simple procedure to construct non-singular cosmological models for flat Friedmann universes filled with minimally coupled scalar fields or by tachyon Born–Infeld-type fields. Remarkably, for the minimally coupled scalar field and the tachyon field, the regularity of the cosmological evolution, [...] Read more.
We apply a very simple procedure to construct non-singular cosmological models for flat Friedmann universes filled with minimally coupled scalar fields or by tachyon Born–Infeld-type fields. Remarkably, for the minimally coupled scalar field and the tachyon field, the regularity of the cosmological evolution, or in other words, the existence of bounce, implies the necessity of the transition between scalar fields with standard kinetic terms to those with phantom ones. In both cases, the potentials in the vicinity of the point of the transition have a non-analyticity of the cusp form that is characterized by the same exponent and is equal to 23. If, in the tachyon model’s evolution, the pressure changes its sign, then another transformation of the Born–Infeld-type field occurs: the tachyon transforms into a pseudotachyon, and vice versa. We also undertake an analysis of the stability of the cosmological evolution in our models; we rely on the study of the speed of sound squared. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

31 pages, 1248 KB  
Article
A Loop Quantum-Corrected Family of Chiral Cosmology Models
by Luis Rey Díaz-Barrón, Abraham Espinoza-García, Sinuhé Alejandro Pérez-Payán and J. Socorro
Universe 2024, 10(2), 88; https://doi.org/10.3390/universe10020088 - 12 Feb 2024
Viewed by 1919
Abstract
We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, mab) on a flat FLRW background and [...] Read more.
We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, mab) on a flat FLRW background and contrast the resulting model with the corresponding purely classical system. In particular, it is shown that the single LQC bouncing stage is ensured to be realized, provided the full chiral kinetic energy function does not change sign during evolution. (As preparation, a particularly simple k-essence field is examined within the effective LQC scheme; some exact solutions are obtained in the process.) Additionally, under the said assumption, it is established that the landmark bouncing mechanism of standard (effective) LQC is still guaranteed to be featured even when taking any finite number of fields ϕ1,ϕm and mab to be dependent on such fields (the particular zero-potential case corresponding to a family of simple purely kinetic k-essence multi-field cosmology models). Full article
(This article belongs to the Special Issue Recent Advances in Quantum Cosmology)
Show Figures

Figure 1

14 pages, 417 KB  
Article
Quantum Big Bounce of the Isotropic Universe Using Relational Time
by Eleonora Giovannetti, Fabio Maione and Giovanni Montani
Universe 2023, 9(8), 373; https://doi.org/10.3390/universe9080373 - 16 Aug 2023
Cited by 10 | Viewed by 1827
Abstract
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with [...] Read more.
We analyze the canonical quantum dynamics of the isotropic Universe with a metric approach by adopting a self-interacting scalar field as relational time. When the potential term is absent, we are able to associate the expanding and collapsing dynamics of the Universe with the positive- and negative-frequency modes that emerge in the Wheeler–DeWitt equation. On the other side, when the potential term is present, a non-zero transition amplitude from positive- to negative-frequency states arises, as in standard relativistic scattering theory below the particle creation threshold. In particular, we are able to compute the transition probability for an expanding Universe that emerges from a collapsing regime both in the standard quantization procedure and in the polymer formulation. The probability distribution results similar in the two cases, and its maximum takes place when the mean values of the momentum essentially coincide in the in-going and out-going wave packets, as it would take place in a semiclassical Big Bounce dynamics. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Cosmology)
Show Figures

Figure 1

18 pages, 409 KB  
Article
Newtonian Cosmology and Evolution of κ-Deformed Universe
by E. Harikumar, Harsha Sreekumar and Suman Kumar Panja
Universe 2023, 9(7), 343; https://doi.org/10.3390/universe9070343 - 24 Jul 2023
Cited by 4 | Viewed by 1655
Abstract
Considering space-time to be non-commutative, we study the evolution of the universe employing the approach of Newtonian cosmology. Generalizing the conservation of energy and the first law of thermodynamics to κ-deformed space-time, we derive the modified Friedmann equations, valid up to the [...] Read more.
Considering space-time to be non-commutative, we study the evolution of the universe employing the approach of Newtonian cosmology. Generalizing the conservation of energy and the first law of thermodynamics to κ-deformed space-time, we derive the modified Friedmann equations, valid up to the first order, in the deformation parameter. Analyzing these deformed equations, we derive the time evolution of the scale factor in cases of radiation-dominated, matter-dominated, and vacuum (energy)-dominated universes. We show that the rate of change of the scale factor in all three situations is modified by the non-commutativity of space-time, and this rate depends on the sign of the deformation parameter, indicating a possible explanation for the observed Hubble tension. We undertake this investigation for two different realizations of non-commutative space-time coordinates. In both cases, we also argue for the existence of bounce in the evolution of the universe. Full article
Show Figures

Figure 1

31 pages, 1225 KB  
Article
A Study on the Various Aspects of Bounce Realisation for Some Choices of Scale Factors
by Sanghati Saha, Ertan Güdekli and Surajit Chattopadhyay
Symmetry 2023, 15(7), 1332; https://doi.org/10.3390/sym15071332 - 29 Jun 2023
Cited by 7 | Viewed by 2864
Abstract
The current study examines the realisation of cosmic bounce in two situations involving two distinct scale factor selections, one of which is a scale factor already developed for bouncing and the other of which is a scale factor created by truncating a series [...] Read more.
The current study examines the realisation of cosmic bounce in two situations involving two distinct scale factor selections, one of which is a scale factor already developed for bouncing and the other of which is a scale factor created by truncating a series expansion of a de Sitter scale factor. Generalized Chaplygin gas (GCG) is assumed to be the background fluid in both situations. When the scale factor is set to the first kind, the pre-bounce scenario’s GCG energy density decreases due to contraction, reaches its lowest point at t=0 during the bounce, and then rises as a result of expansion following the bounce. However, it is noted that the truncation has an impact on the density evolution from pre-bounce in the other scale factor scenario. The influence of bulk viscosity is shown in all circumstances, in addition to the influence of non-viscosity, and the test for stability makes use of the squared speed of sound. At the turn-around places, the null energy criterion is also violated. The final stage of the study includes a cosmographic analysis and a demonstration of the Hubble flow dynamics. In conclusion, we find that inflationary cosmology can also be realized with GCG as the background fluid for two-scale factor options. When the equivalent cosmic parameter is examined for pre-bounce and post-bounce scenarios, a symmetry is frequently seen. The symmetry occurs near the point of bouncing or turning. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
Show Figures

Figure 1

Back to TopTop