Newtonian Cosmology and Evolution of κ-Deformed Universe
Abstract
:1. Introduction
2. Kappa Deformed Space-Time
2.1. -realization
2.2. , , and -realization
3. Modified Friedmann Equations from Newtonian Dynamics
3.1. -realization
3.2. , and -realization
4. Non-Commutative Corrections to Scale Factor
4.1. For -realization
4.1.1. Radiation
4.1.2. Dust
4.1.3. Vacuum
4.2. For , and -realization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | Using , from Equation (2), we find and, hence, . |
2 |
References
- McCrea, W.H.; Milne, E.A. Newtonian Universe and the Curvature of Space. Quart. J. Math. Oxf. 1934, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Milne, E.A. A Newtonian Expanding Universe. Quart. J. Math. Oxf. 1934, 5, 64. [Google Scholar] [CrossRef]
- McCrea, W.H. On the significance of Newtonian cosmology. Astron. J. 1955, 60, 271. [Google Scholar] [CrossRef]
- McCrea, W.H. Newtonian Cosmology. Nature 1955, 175, 466. [Google Scholar] [CrossRef]
- Callan, C.; Dicke, R.H.; Peebles, P.J.E. Cosmology and Newtonian Mechanics. Am. J. Phys. 1965, 33, 105. [Google Scholar] [CrossRef]
- Thatcher, A.R. Newtonian cosmology and Friedmann’s equation. Eur. J. Phys. 1982, 3, 202. [Google Scholar] [CrossRef]
- Jordan, T.F. Cosmology calculations almost without general relativity. Am. J. Phys. 2005, 73, 653. [Google Scholar] [CrossRef] [Green Version]
- Tipler, F.J. Rigorous Newtonian cosmology. Am. J. Phys. 1996, 64, 1311. [Google Scholar] [CrossRef]
- Bargueño, P.; Medina, S.B.; Nowakowski, M.; Batic, D. Newtonian cosmology with a quantum bounce. Eur. Phys. J. 2016, 76, 543. [Google Scholar] [CrossRef] [Green Version]
- Mandal, R.; Gangopadhyay, S.; Lahiri, A. Newtonian cosmology from quantum corrected Newtonian potential. Phys. Lett. 2023, 839, 137807. [Google Scholar] [CrossRef]
- Connes, A. Non-Commutative Geometry; Academic Press: London, UK, 1994. [Google Scholar]
- Douglas, M.R.; Nekrasov, N.A. Noncommutative field theory. Rev. Mod. Phys. 2001, 73, 977. [Google Scholar] [CrossRef] [Green Version]
- Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep. 2003, 378, 207. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521. [Google Scholar] [CrossRef]
- Kowalski-Glikman, J. Introduction to Doubly Special Relativity. Lect. Notes. Phys. 2005, 669, 131. [Google Scholar]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. Spacetime quantization induced by classical gravity. Phys. Lett. 1994, 331, 29. [Google Scholar] [CrossRef] [Green Version]
- Doplicher, S.; Fredenhagen, K.; Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 1995, 172, 187. [Google Scholar] [CrossRef] [Green Version]
- Ambjorn, J.; Jurkiewicz, J.; Loll, R. Emergence of a 4D World from Causal Quantum Gravity. Phys. Rev. Lett. 2004, 93, 131301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madore, J. An Introduction to Non-Commutative Differential Geometry and Its Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 9909, 032. [Google Scholar] [CrossRef] [Green Version]
- Aschieri, P.; Blohmann, C.; Dimitrijevic, M.; Meyer, F.; Schupp, P.; Wess, J. A gravity theory on noncommutative spaces. Class. Quantum Grav. 2005, 22, 3511. [Google Scholar] [CrossRef]
- Aschieri, P.A.; Dimitrijevic, M.; Meyar, F.; Wess, J. Noncommutative geometry and gravity. Class. Quantum Grav. 2006, 23, 1883. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Kulish, P.; Nishijima, K.; Tureanu, A. On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT. Phys. Lett. 2004, 604, 98. [Google Scholar] [CrossRef] [Green Version]
- Chaichian, M.; Tureanu, A.; Zet, G. Corrections to Schwarzschild solution in noncommutative gauge theory of gravity. Phys. Lett. 2008, 660, 573. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, E.; Rivelles, V.O. Noncommutative gravity. Class. Quantum Grav. 2006, 23, 7551. [Google Scholar] [CrossRef]
- Balachandran, A.P.; Govindarajan, T.R.; Gupta, K.S.; Kurkcuoglu, S. Noncommutative two-dimensional gravities. Class. Quantum Grav. 2006, 23, 5799. [Google Scholar] [CrossRef]
- Guha, P.; Harikumar, E.; Zuhair, N.S. MICZ-Kepler systems in noncommutative space and duality of force laws. Int. J. Mod. Phys. 2014, 29, 1450187. [Google Scholar] [CrossRef]
- Harikumar, E.; Kapoor, A.K. Newton’s Equation on the κ-Spacetime and the Kepler Problem. Mod. Phys. Lett. 2010, 25, 2991. [Google Scholar] [CrossRef]
- Harikumar, E.; Panja, S.K.; Rajagopal, V. Maximal acceleration in a Lorentz invariant non-commutative space-time. Eur. Phys. J. Plus 2022, 137, 966. [Google Scholar] [CrossRef]
- Lukierski, J.; Nowicki, A.; Ruegg, H.; Tolstoy, V.N. q-deformation of Poincaré algebra. Phys. Lett. 1991, 264, 331. [Google Scholar] [CrossRef]
- Dimitrijevic, M.; Jonke, L.; Moller, L.; Tsouchnika, E.; Wess, J.; Wohlgenannt, M. Deformed field theory on κ-spacetime. Eur. Phys. J. 2003, 31, 129. [Google Scholar] [CrossRef]
- Daszkiewicz, M.; Lukierski, J.; Woronowicz, M. Towards quantum noncommutative κ -deformed field theory. Phys. Rev. 2008, 77, 105007. [Google Scholar]
- Meljanac, S.; Stojic, M. New realizations of Lie algebra kappa-deformed Euclidean space. Eur. Phys. J. 2006, 47, 531. [Google Scholar] [CrossRef]
- Carlson, C.E.; Carone, C.D.; Zobin, N. Noncommutative gauge theory without Lorentz violation. Phys. Rev. 2002, 66, 075001. [Google Scholar] [CrossRef] [Green Version]
- Amorim, R. Dynamical symmetries in noncommutative theories. Phys. Rev. 2008, 78, 105003. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.S.; Harikumar, E.; Jurić, T.; Meljanac, S.; Samsarov, A. Effects of Noncommutativity on the Black Hole Entropy. Adv. High Energy Phys. 2014, 2014, 139172. [Google Scholar] [CrossRef]
- Gupta, K.S.; Harikumar, E.; Jurić, T.; Meljanac, S.; Samsarov, A. Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole. J. High Energy Phys. 2015, 9, 025. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.S.; Jurić, T.; Samsarov, A. Noncommutative duality and fermionic quasinormal modes of the BTZ black hole. J. High Energy Phys. 2017, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Digal, S.; Govindarajan, T.R.; Gupta, K.S.; Martin, X. Phase structure of fuzzy black holes. J. High Energy Phys. 2012, 1, 027. [Google Scholar] [CrossRef] [Green Version]
- Gupta, K.S.; Jurić, T.; Samsarov, A.; Smolić, I. Noncommutativity and logarithmic correction to the black hole entropy. J. High Energy Phys. 2023, 2, 060. [Google Scholar] [CrossRef]
- Aschieri, P.; Borowiec, A.; Pacho, A. Dispersion relations in κ-noncommutative cosmology. J. Cosmol. Astropart. Phys. 2021, 4, 025. [Google Scholar] [CrossRef]
- Kothari, R.; Rath, P.K.; Jain, P. Cosmological power spectrum in a noncommutative spacetime. Phys. Rev. 2016, 94, 063531. [Google Scholar] [CrossRef] [Green Version]
- Kalita, S.; Govindarajan, T.R.; Mukhopadhyay, B. Super-Chandrasekhar limiting mass white dwarfs as emergent phenomena of noncommutative squashed fuzzy spheres. Int. J. Mod. Phys. 2021, 30, 2150101. [Google Scholar] [CrossRef]
- Ohl, T.; Schenkel, A. Cosmological and black hole spacetimes in twisted noncommutative gravity. J. High Energy Phys. 2009, 910, 052. [Google Scholar] [CrossRef]
- Meljanac, S.; Kresic-Juric, S.; Stojic, M. Covariant realizations of kappa-deformed space. Eur. Phys. J. 2007, 51, 229. [Google Scholar] [CrossRef] [Green Version]
- Meljanac, S.; Samsarov, A.; Stojic, M.; Gupta, K.S. κ-Minkowski spacetime and the star product realizations. Eur. Phys. J. 2008, 53, 295. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, E.; Juric, T.; Meljanac, S. Electrodynamics on κ-Minkowski space-time. Phys. Rev. 2011, 84, 085020. [Google Scholar]
- Harikumar, E.; Juric, T.; Meljanac, S. Geodesic equation in κ-Minkowski spacetime. Phys. Rev. 2012, 86, 045002. [Google Scholar]
- Harikumar, E.; Lakkaraju, L.G.C.; Rajagopal, V. Emergence of maximal acceleration from non-commutativity of spacetime. Mod. Phys. Lett. 2021, 36, 2150069. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Weinberg, D.H.; Mortonson, M.J.; Eienstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.P.; Wang, F.Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (Wmap) Observations: Final Maps And Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, S.; Leibundgut, S.W.J.A.B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. A&A 2018, 609, A72. [Google Scholar]
- De Jaeger, T.; Stahl, B.E.; Zheng, W.; Filippenko, A.V.; Riess, A.G.; Galbany, L. A measurement of the Hubble constant from Type II supernovae. Mon. Not. R. Astron. Soc. 2020, 496, 3. [Google Scholar] [CrossRef]
- Haghighat, M. Bounds on the parameter of noncommutativity from supernova SN1987A. Phys. Rev. 2009, 79, 025011. [Google Scholar] [CrossRef] [Green Version]
- Joby, P.K.; Chingangbam, P.; Das, S. Constraint on noncommutative spacetime from PLANCK data. Phys. Rev. 2015, 91, 083503. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harikumar, E.; Sreekumar, H.; Panja, S.K. Newtonian Cosmology and Evolution of κ-Deformed Universe. Universe 2023, 9, 343. https://doi.org/10.3390/universe9070343
Harikumar E, Sreekumar H, Panja SK. Newtonian Cosmology and Evolution of κ-Deformed Universe. Universe. 2023; 9(7):343. https://doi.org/10.3390/universe9070343
Chicago/Turabian StyleHarikumar, E., Harsha Sreekumar, and Suman Kumar Panja. 2023. "Newtonian Cosmology and Evolution of κ-Deformed Universe" Universe 9, no. 7: 343. https://doi.org/10.3390/universe9070343
APA StyleHarikumar, E., Sreekumar, H., & Panja, S. K. (2023). Newtonian Cosmology and Evolution of κ-Deformed Universe. Universe, 9(7), 343. https://doi.org/10.3390/universe9070343