Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = boll weevil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 20392 KiB  
Article
AI-Driven Computer Vision Detection of Cotton in Corn Fields Using UAS Remote Sensing Data and Spot-Spray Application
by Pappu Kumar Yadav, J. Alex Thomasson, Robert Hardin, Stephen W. Searcy, Ulisses Braga-Neto, Sorin C. Popescu, Roberto Rodriguez, Daniel E. Martin and Juan Enciso
Remote Sens. 2024, 16(15), 2754; https://doi.org/10.3390/rs16152754 - 27 Jul 2024
Cited by 2 | Viewed by 1924
Abstract
To effectively combat the re-infestation of boll weevils (Anthonomus grandis L.) in cotton fields, it is necessary to address the detection of volunteer cotton (VC) plants (Gossypium hirsutum L.) in rotation crops such as corn (Zea mays L.) and sorghum ( [...] Read more.
To effectively combat the re-infestation of boll weevils (Anthonomus grandis L.) in cotton fields, it is necessary to address the detection of volunteer cotton (VC) plants (Gossypium hirsutum L.) in rotation crops such as corn (Zea mays L.) and sorghum (Sorghum bicolor L.). The current practice involves manual field scouting at the field edges, which often leads to the oversight of VC plants growing in the middle of fields alongside corn and sorghum. As these VC plants reach the pinhead squaring stage (5–6 leaves), they can become hosts for boll weevil pests. Consequently, it becomes crucial to detect, locate, and accurately spot-spray these plants with appropriate chemicals. This paper focuses on the application of YOLOv5m to detect and locate VC plants during the tasseling (VT) growth stage of cornfields. Our results demonstrate that VC plants can be detected with a mean average precision (mAP) of 79% at an Intersection over Union (IoU) of 50% and a classification accuracy of 78% on images sized 1207 × 923 pixels. The average detection inference speed is 47 frames per second (FPS) on the NVIDIA Tesla P100 GPU-16 GB and 0.4 FPS on the NVIDIA Jetson TX2 GPU, which underscores the relevance and impact of detection speed on the feasibility of real-time applications. Additionally, we show the application of a customized unmanned aircraft system (UAS) for spot-spray applications through simulation based on the developed computer vision (CV) algorithm. This UAS-based approach enables the near-real-time detection and mitigation of VC plants in corn fields, with near-real-time defined as approximately 0.02 s per frame on the NVIDIA Tesla P100 GPU and 2.5 s per frame on the NVIDIA Jetson TX2 GPU, thereby offering an efficient management solution for controlling boll weevil pests. Full article
Show Figures

Figure 1

9 pages, 2077 KiB  
Communication
Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae)
by Diego Herman Sauka, Cecilia Peralta, Melisa Paula Pérez, Antonella Molla, Tadeo Fernandez-Göbel, Federico Ocampo and Leopoldo Palma
Toxins 2024, 16(1), 4; https://doi.org/10.3390/toxins16010004 - 20 Dec 2023
Cited by 5 | Viewed by 2907
Abstract
Bacillus thuringiensis is a Gram-positive bacterium known for its insecticidal proteins effective against various insect pests. However, limited strains and proteins target coleopteran pests like Anthonomous grandis Boheman, causing substantial economic losses in the cotton industry. This study focuses on characterizing a Bacillus [...] Read more.
Bacillus thuringiensis is a Gram-positive bacterium known for its insecticidal proteins effective against various insect pests. However, limited strains and proteins target coleopteran pests like Anthonomous grandis Boheman, causing substantial economic losses in the cotton industry. This study focuses on characterizing a Bacillus sp. strain, isolated from Oncativo (Argentina), which exhibits ovoid to amorphous parasporal crystals and was designated Bt_UNVM-84. Its genome encodes genes for the production of two pairs of binary Vpb1/Vpa2 proteins and three Cry-like proteins showing similarity with different Cry8 proteins. Interestingly, this gene content was found to be conserved in a previously characterized Argentine isolate of B. thuringiensis designated INTA Fr7-4. SDS-PAGE analysis revealed a major band of 130 kDa that is proteolytically processed to an approximately 66-kDa protein fragment by trypsin. Bioassays performed with spore-crystal mixtures demonstrated an interesting insecticidal activity against the cotton boll weevil A. grandis neonate larvae, resulting in 91% mortality. Strain Bt_UNVM-84 is, therefore, an interesting candidate for the efficient biological control of this species, causing significant economic losses in the cotton industry in the Americas. Full article
(This article belongs to the Special Issue Bacillus thuringiensis: A Broader View of Its Biocidal Activity)
Show Figures

Figure 1

16 pages, 891 KiB  
Article
A New qPCR Assay for the Rapid Diagnosis of Anthonomus grandis Subspecies
by Tyler Jay Raszick, Lindsey C. Perkin, Alejandra Godoy, Xanthe A. Shirley, Karen Wright, Paxton T. Martin, Charles P. -C. Suh, Raul Ruiz-Arce and Gregory A. Sword
Insects 2023, 14(11), 845; https://doi.org/10.3390/insects14110845 - 31 Oct 2023
Cited by 1 | Viewed by 1738
Abstract
Rapid and accurate identification of Anthonomus grandis subspecies is crucial for effective management and eradication. Current diagnostic methods have limitations in terms of time to diagnosis (up to seven days) and can yield ambiguous results. Here, we present the validation of a custom [...] Read more.
Rapid and accurate identification of Anthonomus grandis subspecies is crucial for effective management and eradication. Current diagnostic methods have limitations in terms of time to diagnosis (up to seven days) and can yield ambiguous results. Here, we present the validation of a custom TaqMan SNP Genotyping Assay for the rapid and accurate identification of A. grandis grandis (boll weevil) and A. g. thurberiae (thurberia weevil) subspecies. To validate the assay, we conducted three main experiments: (1) a sensitivity test to determine the DNA concentration range at which the assay performs, (2) a non-target specificity test to ensure no amplification in non-target weevils (false positives), and (3) an accuracy test comparing the results of the new assay to previously established methods. These experiments were carried out in parallel at three independent facilities to confirm the robustness of the assay to variations in equipment and personnel. We used DNA samples from various sources, including field-collected specimens, museum specimens, and previously isolated DNA. The assay demonstrated high sensitivity (PCR success with ≥0.05 ng/µL DNA template), specificity (0.02 false positive rate), and accuracy (97.7%) in diagnosing boll weevil and thurberia weevil subspecies. The entire workflow, including DNA extraction, assay preparation, PCR run time, and data analysis, can be completed within a single workday (7–9 h) by a single technician. The deployment of this assay as a diagnostic tool could benefit boll weevil management and eradication programs by enabling same-day diagnosis of trap-captured or intercepted weevil specimens. Furthermore, it offers a more reliable method for identifying unknown specimens, contributing to the overall effectiveness of boll weevil research and control efforts. Full article
Show Figures

Figure 1

16 pages, 2643 KiB  
Article
Planting Date of Cotton in the Brazilian Cerrado Drives Boll Weevil (Coleoptera: Curculionidae) Infestation
by Patrícia J. Santos, Antônio M. Dias, Karolayne L. Campos, Ana C. A. Araújo, Andréa A. S. Oliveira, Fábio A. Suinaga, Jorge B. Torres and Cristina S. Bastos
Insects 2023, 14(7), 599; https://doi.org/10.3390/insects14070599 - 2 Jul 2023
Viewed by 2205
Abstract
Although the boll weevil (BW), Anthonomus grandis grandis (Coleoptera: Curculionidae) has been attributed to the significant losses caused to cotton yield in the Americas, the categorization as a quarentenary pest in places where it is still not occurring has increased its relevance worldwide. [...] Read more.
Although the boll weevil (BW), Anthonomus grandis grandis (Coleoptera: Curculionidae) has been attributed to the significant losses caused to cotton yield in the Americas, the categorization as a quarentenary pest in places where it is still not occurring has increased its relevance worldwide. In areas where it is widespread, pest suppression relies on many broad-spectrum insecticide applications. However, other control tactics are sought. Considering that early-flowering cultivars escape from boll weevil infestation, we investigated if three different planting dates (November, December, and January) could alter the plant life cycle, allowing the plants to escape from boll weevil infestation. Field trials were run in two seasons (2014/2015 and 2017/2018), and variables (days required to reach each flowering stage, fruiting plant structures—undamaged and damaged by the BW, and totals—number of boll weevils on plants and that had emerged from fallen structures on the ground) were assessed over 29 and 33 weeks, respectively. Based on the number of days required to initiate and terminate the flowering stage, the time to reach the economic threshold (ET), the number of undamaged, damaged, and the total reproductive structures, we concluded that planting dates in December for the Central Cerrado of Brazil should be preferred over the other two tested dates. Cultivations run at this planting date, anticipating the flowering period initiation and termination, reduced infested flowering structures, and delayed the decision making to control the pest, when compared to the other two planting dates. Full article
Show Figures

Figure 1

12 pages, 2059 KiB  
Article
Fertility Life Table, Thermal Requirements, and Ecological Zoning of Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae) in Brazil
by Fernanda Polastre Pereira, Alexandre José Ferreira Diniz and José Roberto Postali Parra
Insects 2023, 14(7), 582; https://doi.org/10.3390/insects14070582 - 26 Jun 2023
Cited by 2 | Viewed by 2030
Abstract
The boll weevil, Anthonomus grandis grandis Boh., is the most important cotton pest in Central and South America. The biological characteristics and thermal requirements of boll weevils reared on an artificial diet were assessed at seven constant temperatures (18, 20, 22, 25, 28, 30, [...] Read more.
The boll weevil, Anthonomus grandis grandis Boh., is the most important cotton pest in Central and South America. The biological characteristics and thermal requirements of boll weevils reared on an artificial diet were assessed at seven constant temperatures (18, 20, 22, 25, 28, 30, and 32 ± 1 °C) under laboratory conditions. These data were used to determine the ecological zoning for the pest in Brazil. The development time; oviposition period; the number of eggs produced; survival of eggs, larvae, and pupae; adult longevity; and sex ratio were recorded, and additional life table parameters were calculated. The total development duration ranged from 16.1 (32 °C) to 46.2 (18 °C) days. Temperature significantly affected the number of eggs laid per female (fecundity), with the highest number of eggs observed at 25 °C (251 ± 15.8). The parameters from the fertility life table indicated the greatest population growth at 25 °C and 28 °C. The net reproductive rate (R0) at these temperatures was 22.25 times higher than at 18 °C. Based on R0 and temperature, an ecological zoning of the pest was developed for Brazil. Brazilian regions with mean temperatures above 20 °C and below 30 °C are most favorable for the population growth of the boll weevil. The most suitable crop areas were found to be the north, midwest, and part of the northeast region, although the weevil can occur throughout Brazil if the host plants are available. Full article
Show Figures

Figure 1

12 pages, 2157 KiB  
Article
Morphology and Morphometry of the Reproductive Tract of the Cotton Boll Weevil after Prolonged Feeding on Alternative Diets
by Thiele da Silva Carvalho, Carlos Alberto Domingues da Silva, Celso Feitosa Martins, Laryssa Lemos da Silva, José Cola Zanuncio and José Eduardo Serrão
Insects 2023, 14(6), 571; https://doi.org/10.3390/insects14060571 - 20 Jun 2023
Cited by 1 | Viewed by 1693
Abstract
Anthonomus grandis Boheman (Coleoptera: Curculionidae) survives on alternative diets; however, this induces reproductive diapause. The objective was to evaluate the morphology and morphometry of the reproductive tract of this weevil after feeding on alternative diets. The experimental design was completely randomized with 160 [...] Read more.
Anthonomus grandis Boheman (Coleoptera: Curculionidae) survives on alternative diets; however, this induces reproductive diapause. The objective was to evaluate the morphology and morphometry of the reproductive tract of this weevil after feeding on alternative diets. The experimental design was completely randomized with 160 replications and treatments arranged in a factorial design 3 × 3, represented by A. grandis adults fed on 3 food types (fragments of banana (T1) or orange (T2) endocarp, or with cotton squares of cultivar BRS 286 (T3, control)) and three evaluation periods (30, 60, and 90 days) and after each of these periods they were fed with cotton squares for 10 days. The reproductive tract of 100% of A. grandis females fed banana endocarp, orange endocarp, and cotton squares for 30 and 60 days and then cotton squares were morphologically adequate for reproduction, and after 90 days, only 50% of those fed cotton squares were in this condition. The length of the ovarioles and the width of the mature oocyte were greater for A. grandis fed on cotton squares and smaller in those with banana and orange endocarps. Histological sections reveal that male testes even with strong degenerative signals are already producing spermatozoa. On the other hand, females displayed ovaries with nurse cells in the tropharium and some maturing oocytes in the vitellarium. The body length was longer and the testis area and diameter smaller in males fed on cotton squares than in those with banana and orange endocarp. Anthonomus grandis females fed for ≥90 days with alternative food sources do not recover the functionality of their reproductive tract, even after consuming, for 10 days, a diet that favors reproduction. On the other hand, the males remain with their reproductive organs functional with this condition. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 2047 KiB  
Article
The Transcriptomic Response of the Boll Weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), following Exposure to the Organophosphate Insecticide Malathion
by Lindsey C. Perkin, Zachary P. Cohen, Jason W. Carlson and Charles P.-C. Suh
Insects 2023, 14(2), 197; https://doi.org/10.3390/insects14020197 - 16 Feb 2023
Cited by 4 | Viewed by 2908
Abstract
Insecticide tolerance and resistance have evolved countless times in insect systems. Molecular drivers of resistance include mutations in the insecticide target site and/or gene duplication, and increased gene expression of detoxification enzymes. The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a [...] Read more.
Insecticide tolerance and resistance have evolved countless times in insect systems. Molecular drivers of resistance include mutations in the insecticide target site and/or gene duplication, and increased gene expression of detoxification enzymes. The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a pest of commercial cotton and has developed resistance in the field to several insecticides; however, the current organophosphate insecticide, malathion, used by USA eradication programs remains effective despite its long-term use. Here, we present findings from an RNA-seq experiment documenting gene expression post-exposure to field-relevant concentrations of malathion, which was used to provide insight on the boll weevil’s continued susceptibility to this insecticide. Additionally, we incorporated a large collection of boll weevil whole-genome resequencing data from nearly 200 individuals collected from three geographically distinct areas to determine SNP allele frequency of the malathion target site, as a proxy for directional selection in response to malathion exposure. No evidence was found in the gene expression data or SNP data consistent with a mechanism of enhanced tolerance or resistance adaptation to malathion in the boll weevil. Although this suggests continued effectiveness of malathion in the field, we identified important temporal and qualitative differences in gene expression between weevils exposed to two different concentrations of malathion. We also identified several tandem isoforms of the detoxifying esterase B1 and glutathione S-transferases, which are putatively associated with organophosphate resistance. Full article
Show Figures

Figure 1

8 pages, 720 KiB  
Communication
Mpp23Aa/Xpp37Aa Insecticidal Proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) Are Highly Toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae
by Jéssica A. de Oliveira, Bárbara F. Negri, Patricia Hernández-Martínez, Marcos F. Basso and Baltasar Escriche
Toxins 2023, 15(1), 55; https://doi.org/10.3390/toxins15010055 - 8 Jan 2023
Cited by 10 | Viewed by 2906
Abstract
The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this [...] Read more.
The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this insect remains a challenge. The susceptibility of A. grandis larvae to proteins (Cry1Ba, Cry7Ab, and Mpp23Aa/Xpp37Aa) from Bacillus thuringiensis Berliner, 1915, with toxicity reported against Coleopteran, has been evaluated. The ingestion of different protein concentrations (which were incorporated into an artificial diet) by the larvae was tested in the laboratory, and mortality was evaluated after one week. All Cry proteins tested exhibited higher toxicity than that the untreated artificial diet. These Cry proteins showed similar results to the control Cry1Ac, with low toxicity to A. grandis, since it killed less than 50% of larvae, even at the highest concentration applied (100 μg·g−1). Mpp/Xpp proteins provided the highest toxicity with a 0.18 μg·g−1 value for the 50% lethal concentration. Importantly, this parameter is the lowest ever reported for this insect species tested with B. thuringiensis proteins. This result highlights the potential of Mpp23Aa/Xpp37Aa for the development of a biotechnological tool aiming at the field control of A. grandis. Full article
(This article belongs to the Special Issue Bacillus thuringiensis: A Broader View of Its Biocidal Activity)
Show Figures

Graphical abstract

19 pages, 3165 KiB  
Article
Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis)
by Thuanne P. Ribeiro, Daniel D. N. Vasquez, Leonardo L. P. Macedo, Isabela T. Lourenço-Tessutti, David C. Valença, Osmundo B. Oliveira-Neto, Bruno Paes-de-Melo, Paolo L. Rodrigues-Silva, Alexandre A. P. Firmino, Marcos F. Basso, Camila B. J. Lins, Maysa R. Neves, Stefanie M. Moura, Bruna M. D. Tripode, José E. Miranda, Maria C. M. Silva and Maria F. Grossi-de-Sa
Int. J. Mol. Sci. 2022, 23(22), 13713; https://doi.org/10.3390/ijms232213713 - 8 Nov 2022
Cited by 7 | Viewed by 3435
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines [...] Read more.
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Plant Sciences in Brazil)
Show Figures

Figure 1

14 pages, 4039 KiB  
Article
Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model
by Zhenan Jin, Wentao Yu, Haoxiang Zhao, Xiaoqing Xian, Kaiting Jing, Nianwan Yang, Xinmin Lu and Wanxue Liu
Agriculture 2022, 12(11), 1759; https://doi.org/10.3390/agriculture12111759 - 25 Oct 2022
Cited by 23 | Viewed by 3441
Abstract
The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is an invasive alien species that can damage cotton plants and cause huge economic losses in the cotton industry. Currently, A. grandis is mainly distributed in the American continent. However, few studies have indicated the [...] Read more.
The boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), is an invasive alien species that can damage cotton plants and cause huge economic losses in the cotton industry. Currently, A. grandis is mainly distributed in the American continent. However, few studies have indicated the distribution and modification of its suitable global habitats after undergoing climate change. Based on the 339 distribution records of A. grandis and eight bioclimatic variables, we used the optimal MaxEnt model to predict the potential global distribution of A. grandis under the current (1970–2000) and future climatic scenarios (SSP5-8.5). The annual mean temperature (bio1) and isothermality (bio3) were the two most important bioclimatic variables, which indicates that the survival of A. grandis is extremely sensitive to temperature fluctuations. Under the current scenario, the highly suitable habitats were mainly distributed in America (the USA, Mexico, Brazil, Argentina, Paraguay, and Uruguay), Africa (South Africa, Ethiopia, and Mozambique), Asia (Pakistan, India, Thailand, Burma, and China), and Oceania (Australia). In future scenarios (SSP5-8.5), the potential suitable global habitats reached the highest level in America, Africa, Asia, and Oceania in the 2090s. Our study provides a meaningful reference for researchers, quarantine officers, and governments to devise suitable management control strategies for A. grandis. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

16 pages, 6698 KiB  
Article
Potential Distribution of Wild Host Plants of the Boll Weevil (Anthonomus grandis) in the United States and Mexico
by Uriel Jeshua Sánchez-Reyes, Robert W. Jones, Tyler J. Raszick, Raul Ruiz-Arce and Gregory A. Sword
Insects 2022, 13(4), 337; https://doi.org/10.3390/insects13040337 - 30 Mar 2022
Cited by 10 | Viewed by 3258
Abstract
The boll weevil (Anthonomus grandis Boheman) reproduces on a reported 13 species of wild host plants in North America, two in the United States and 12 in Mexico. The distributions of these plants are of economic importance to pest management and [...] Read more.
The boll weevil (Anthonomus grandis Boheman) reproduces on a reported 13 species of wild host plants in North America, two in the United States and 12 in Mexico. The distributions of these plants are of economic importance to pest management and provide insight into the evolutionary history and origin of the BW. However, detailed information regarding the distributions of many of these species is lacking. In this article, we present distribution models for all of the reported significant BW host plants from Mexico and the United States using spatial distribution modelling software. Host plant distributions were divided into two groups: “eastern” and “western.” In Mexico, Hampea nutricia along the Gulf Coast was the most important of the eastern group, and the wild cottons, Gossypium aridum and Gossypium thurberi were most important in the western group. Other species of Hampea, Gossypium, and Cienfuegosia rosei have relatively restricted distributions and are of apparent minimal economic importance. Cienfuegosia drummondii is the only truly wild host in the southern United States, east of New Mexico. Factors determining potential distributions were variable and indicated that species were present in five vegetation types. Ecological and economic considerations of host plant distributions are discussed, as well as threats to host plant conservation. Full article
(This article belongs to the Special Issue Management of True Weevils (Curculionidae))
Show Figures

Figure 1

14 pages, 730 KiB  
Article
Biology of Anthonomus testaceosquamosus Linell, 1897 (Coleoptera: Curculionidae): A New Pest of Tropical Hibiscus
by Alexandra M. Revynthi, Yisell Velazquez Hernandez, Maria A. Canon, A. Daniel Greene, German Vargas, Paul E. Kendra and Catharine M. Mannion
Insects 2022, 13(1), 13; https://doi.org/10.3390/insects13010013 - 22 Dec 2021
Cited by 6 | Viewed by 3952
Abstract
Originating in northeastern Mexico and southern Texas, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell 1897, was discovered infesting China rose hibiscus (Hibiscus rosa-sinensis L.) in south Florida in May 2017. Although the biologies of the congeneric boll weevil, A. grandis Boheman [...] Read more.
Originating in northeastern Mexico and southern Texas, the hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell 1897, was discovered infesting China rose hibiscus (Hibiscus rosa-sinensis L.) in south Florida in May 2017. Although the biologies of the congeneric boll weevil, A. grandis Boheman 1843, and pepper weevil, A. eugenii Cano 1894 are well documented, no data are available regarding the biology of HBW. Here, we present a comprehensive study on the biology of this pest when reared at 10, 15, 27 and 34 °C and on different food sources. This weevil has three larval instars and its life cycle was completed only at 27 ± 1 °C. Weevil development was similar on an artificial diet when compared with a diet of hibiscus buds. Adult HBW could survive solely on pollen, but reproduction did not occur. Without water, HBW survived for ≈15 days; survival times reached nearly 30 days when water was accessible. Our results suggest that if left unmanaged, HBW has the potential to cause significant economic damage to the hibiscus industry. Given that a comprehensive understanding of a pest’s biology is critical for development of effective integrated pest management, our results provide a foundation for future research endeavors to mitigate the impact of this weevil in south Florida. Full article
(This article belongs to the Special Issue Management of True Weevils (Curculionidae))
Show Figures

Graphical abstract

13 pages, 2595 KiB  
Article
The Identification of Boll Weevil, Anthonomus grandis grandis (Coleoptera: Curculionidae), Genes Involved in Pheromone Production and Pheromone Biosynthesis
by Lindsey C. Perkin, Jose L. Perez and Charles P.-C. Suh
Insects 2021, 12(10), 893; https://doi.org/10.3390/insects12100893 - 1 Oct 2021
Cited by 6 | Viewed by 3284
Abstract
Eradication programs for the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), rely almost exclusively on pheromone traps to indicate the need for insecticide applications. However, the effectiveness of traps in detecting weevil populations is reduced during certain times of the year, particularly [...] Read more.
Eradication programs for the boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), rely almost exclusively on pheromone traps to indicate the need for insecticide applications. However, the effectiveness of traps in detecting weevil populations is reduced during certain times of the year, particularly when cotton is actively fruiting. Consequently, this could result in fields becoming heavily infested with weevils. It is widely speculated that the lack of weevil captures in traps during this period is largely due to the overwhelming amount of pheromone released by weevils in the field, which outcompete the pheromone released from traps. Thus, this work sought to identify genes involved in pheromone production so that new control methods that target these genes can be explored. We conducted an RNA-seq experiment that revealed 2479 differentially expressed genes between pheromone-producing and non-pheromone-producing boll weevils. Of those genes, 1234 were up-regulated, and 1515 were down-regulated, and most had gene annotations associated with pheromone production, development, or immunity. This work advances our understanding of boll weevil pheromone production and brings us one step closer to developing gene-level control strategies for this cotton pest. Full article
(This article belongs to the Special Issue Insect Genomics)
Show Figures

Figure 1

30 pages, 1266 KiB  
Review
Biology, Ecology, and Pest Management of the Tarnished Plant Bug, Lygus lineolaris (Palisot de Beauvois) in Southern Row Crops
by Justin George, James P. Glover, Jeffrey Gore, Whitney D. Crow and Gadi V. P. Reddy
Insects 2021, 12(9), 807; https://doi.org/10.3390/insects12090807 - 9 Sep 2021
Cited by 19 | Viewed by 11253
Abstract
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States, although it is established throughout the United States, southern Canada, and northern Mexico. The introduction [...] Read more.
The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States, although it is established throughout the United States, southern Canada, and northern Mexico. The introduction of transgenic crops for the control of moths in the Heliothine complex and eradication of the boll weevil, Anthonomus grandis, from much of the United States led to greatly reduced pesticide use in cotton fields, which allowed L. lineolaris to emerge as a new primary pest of cotton in the mid-southern United States. Since the publication of a review by Layton (2000) on damage caused by Lygus lineolaris, many new studies have been published on the changes in host range, population dynamics, sampling methods and thresholds, cultural practices, sex pheromones and attractant blends, novel pesticides and insecticide resistance mechanisms, olfactory and feeding behaviors, introduction of biological control agents, host-plant resistance mechanisms, and new molecular and genetic tools for integrated pest management of Lygus species in cotton and other important crops. Here, we review and discuss the latest developments in L. lineolaris research in the last two decades. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

16 pages, 1767 KiB  
Article
Genotyping by Sequencing Revealed QTL Hotspots for Trichome-Based Plant Defense in Gossypium hirsutum
by Haris Ahmed, Mian Faisal Nazir, Zhoe Pan, Wenfang Gong, Muhammad Shahid Iqbal, Shoupu He and Xiongming Du
Genes 2020, 11(4), 368; https://doi.org/10.3390/genes11040368 - 28 Mar 2020
Cited by 13 | Viewed by 5497
Abstract
Cotton possesses certain physical features, including leaf and stem trichomes that help plants deter damage caused by insect pests, and to some extent, from abiotic factors as well. Among those features, trichomes (pubescence) hold a special place as a first line of defense [...] Read more.
Cotton possesses certain physical features, including leaf and stem trichomes that help plants deter damage caused by insect pests, and to some extent, from abiotic factors as well. Among those features, trichomes (pubescence) hold a special place as a first line of defense and a managemental tool against sucking insect pests of cotton. Different insect pests of cotton (whiteflies, aphids, jassids, and boll weevil) severely damage the yield and quality of the crop. Likewise, whiteflies, aphids, jassids, and other insect pests are considered as potential carriers for cotton leaf curl viruses and other diseases. Genotyping by sequencing (GBS) study was conducted to understand and explore the genomic regions governing hairy (Pubescence) leaves and stem phenotypes. A total of 224 individuals developed from an intraspecific cross (densely haired cotton (Liaoyang duomao mian) × hairless cotton (Zong 128)) and characterized phenotypically for leaf and stem pubescence in different environments. Here we identify and report significant QTLs (quantitative trait loci) associated with leaf and stem pubescence, and the response of plant under pest (aphid) infestation. Further, we identified putative genes colocalized on chromosome A06 governing mechanism for trichome development and host–pest interaction. Our study provides a comprehensive insight into genetic architecture that can be employed to improve molecular marker-assisted breeding programs aimed at developing biotic (insect pests) resilient cotton cultivars. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Biotic Stress Response in Plants)
Show Figures

Figure 1

Back to TopTop