Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae)
Abstract
:1. Introduction
2. Results
2.1. Strain Isolation and Identification
2.2. Genome Sequencing and Annotation
2.3. Insect Bioassays
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Strain Isolation and Characterization
5.2. Genome Sequencing and Annotation
5.3. Insect Bioassays
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melo, A.L.d.A.; Soccol, V.T.; Soccol, C.R. Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review. Crit. Rev. Biotechnol. 2016, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Chandra, A.; Pandey, K.C. Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar] [PubMed]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Flasinski, S.; Moar, W.; Bowen, D.; Chay, C.; Milligan, J.; Kouadio, J.L.; Pan, A.; Werner, B.; Buckman, K.; et al. A new Bacillus thuringiensis protein for Western corn rootworm control. PLoS ONE 2020, 15, e0242791. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef]
- Liu, X.; Ruan, L.; Peng, D.; Li, L.; Sun, M.; Yu, Z. Thuringiensin: A thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins 2014, 6, 2229–2238. [Google Scholar] [CrossRef]
- Sauka, D.H.; Pérez, M.P.; López, N.N.; Onco, M.I.; Berretta, M.F.; Benintende, G.B. PCR-based prediction of type I β-exotoxin production in Bacillus thuringiensis strains. J. Invertebr. Pathol. 2014, 122, 28–31. [Google Scholar] [CrossRef]
- Dominguez-Arrizabalaga, M.; Villanueva, M.; Fernandez, A.B.; Caballero, P. A Strain of Bacillus thuringiensis Containing a Novel cry7Aa2 Gene that Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Insects 2019, 10, 259. [Google Scholar] [CrossRef]
- Sánchez-Reyes, U.J.; Jones, R.W.; Raszick, T.J.; Ruiz-Arce, R.; Sword, G.A. Potential Distribution of Wild Host Plants of the Boll Weevil (Anthonomus grandis) in the United States and Mexico. Insects 2022, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Health, E.P.o.P.; Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Gregoire, J.C.; Jaques Miret, J.A. Pest categorisation of Anthonomus grandis. EFSA J. 2017, 15, e05074. [Google Scholar]
- Rolim, G.G.; Coelho, R.R.; Antonino, J.D.; Arruda, L.S.; Rodrigues, A.S.; Barros, E.M.; Torres, J.B. Field-evolved resistance to beta-cyfluthrin in the boll weevil: Detection and characterization. Pest. Manag. Sci. 2021, 77, 4400–4410. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.P.; Sauka, D.H.; Onco, M.I.; Berretta, M.F.; Benintende, G.B. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae. Rev. Argent. Microbiol. 2017, 49, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Ammons, D.; Rampersad, J.; Khan, A. Usefulness of staining parasporal bodies when screening for Bacillus thuringiensis. J. Invertebr. Pathol. 2002, 79, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Noguera, P.A.; Ibarra, J.E. Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Appl. Environ. Microbiol. 2010, 76, 6150–6155. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, Z.; Liu, J.; Shu, C.; Wang, X.; Zhang, X.; Yu, X.; Zhao, D.; Liu, G.; Hu, S.; et al. A pangenomic study of Bacillus thuringiensis. J. Genet. Genom. 2011, 38, 567–576. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis. Bioeng. Bugs. 2010, 1, 31–50. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Navas, L.E.; Amadio, A.F.; Ortiz, E.M.; Sauka, D.H.; Benintende, G.B.; Berretta, M.F.; Zandomeni, R.O. Complete Sequence and Organization of pFR260, the Bacillus thuringiensis INTA Fr7-4 Plasmid Harboring Insecticidal Genes. J. Mol. Microbiol. Biotechnol. 2017, 27, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Romeis, J.; Naranjo, S.E.; Meissle, M.; Shelton, A.M. Genetically engineered crops help support conservation biological control. Biol. Control 2019, 130, 136–154. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Zago, H.B.; Siqueira, H.; Pereira, E.J.; Picanço, M.C.; Barros, R. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest. Manag. Sci. 2014, 70, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fu, S.; Ma, X.; Baxter, S.W.; Vasseur, L.; Xiong, L.; Huang, Y.; Yang, G.; You, S.; You, M. Resistance to Bacillus thuringiensis Cry1Ac toxin requires mutations in two Plutella xylostella ATP-binding cassette transporter paralogs. PLoS Pathog. 2020, 16, e1008697. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.A.; Negri, B.F.; Hernández-Martínez, P.; Basso, M.F.; Escriche, B. Mpp23Aa/Xpp37Aa Insecticidal Proteins from Bacillus thuringiensis (Bacillales: Bacillaceae) Are Highly Toxic to Anthonomus grandis (Coleoptera: Curculionidae) Larvae. Toxins 2023, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Peralta, C.; Sauka, D.H.; Marozzi, A.; Del Valle, E.E.; Palma, L. Argentinean Bacillus thuringiensis strains exhibiting distinct morphology of their parasporal crystals. Rev. Argent. Microbiol. 2021, 53, 378–379. [Google Scholar] [CrossRef]
- Amadio, A.F.; Navas, L.E.; Sauka, D.H.; Berretta, M.F.; Benintende, G.B.; Zandomeni, R.O. Identification, cloning and expression of an insecticide cry8 gene from Bacillus thuringiensis INTA Fr7-4. J. Mol. Microbiol. Biotechnol. 2013, 23, 401–409. [Google Scholar] [CrossRef]
- Isaac, B.; Krieger, E.K.; Light, A.-M.; Farhad, M.; Sivasupramanian, S. Polypeptide Compositions Toxic to Anthonomus Insects, and Methods of Use. U.S. Patent 6,541,448 B2, 22 November 2001. [Google Scholar]
- Helgason, E.; Okstad, O.A.; Caugant, D.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A.B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One species on the basis of genetic evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef]
- Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020, 11, e00034-20. [Google Scholar] [CrossRef]
- Iriarte, J.; Bel, Y.; Ferrandis, M.D.; Andrew, R.; Murillo, J.; Ferré, J.; Caballero, P. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Syst. Appl. Microbiol. 1998, 21, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
CDSs a | % Pairwise Nucleotide Identity | Contig | % Ref-Seq Coverage | Gene Length (bp) |
---|---|---|---|---|
vpa2Ah1 | 98.8 | NCA | 93.9 | 1338 |
vpb1Ea1 | 99.0 | 52 | 99.7 | 2625 |
vpa2Ah2 | 98.9 | 61 | 100 | 1338 |
vpb1Ea2 | 98.7 | 61 | 100 | 2619 |
cry8Kb3 | 96.3 | 61 | 42.5 | 3510 |
cry8Pa3 | 97.7 | 39 | 52.8 | 3531 |
cry8Qa2 | 97.7 | 75 | 98.7 | 3555 |
Species | % Average Mortality ± SD | % Corrected Mortality ± SD |
---|---|---|
C. pomonella | 25.0 ± 5.9 a | 5.3 ± 7.5 |
A. diaperinus | 21.7 ± 12.3 b | 7.2 ± 14.6 |
A. grandis | 91.7 ± 5.9 b | 91.1 ± 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauka, D.H.; Peralta, C.; Pérez, M.P.; Molla, A.; Fernandez-Göbel, T.; Ocampo, F.; Palma, L. Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae). Toxins 2024, 16, 4. https://doi.org/10.3390/toxins16010004
Sauka DH, Peralta C, Pérez MP, Molla A, Fernandez-Göbel T, Ocampo F, Palma L. Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae). Toxins. 2024; 16(1):4. https://doi.org/10.3390/toxins16010004
Chicago/Turabian StyleSauka, Diego Herman, Cecilia Peralta, Melisa Paula Pérez, Antonella Molla, Tadeo Fernandez-Göbel, Federico Ocampo, and Leopoldo Palma. 2024. "Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae)" Toxins 16, no. 1: 4. https://doi.org/10.3390/toxins16010004
APA StyleSauka, D. H., Peralta, C., Pérez, M. P., Molla, A., Fernandez-Göbel, T., Ocampo, F., & Palma, L. (2024). Bacillus thuringiensis Bt_UNVM-84, a Novel Strain Showing Insecticidal Activity against Anthonomus grandis Boheman (Coleoptera: Curculionidae). Toxins, 16(1), 4. https://doi.org/10.3390/toxins16010004