Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = bit-error ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1401 KB  
Article
Deep Learning-Enhanced Hybrid Beamforming Design with Regularized SVD Under Imperfect Channel Information
by S. Pourmohammad Azizi, Amirhossein Nafei, Shu-Chuan Chen and Rong-Ho Lin
Mathematics 2026, 14(3), 509; https://doi.org/10.3390/math14030509 (registering DOI) - 31 Jan 2026
Abstract
We propose a low-complexity hybrid beamforming method for massive Multiple-Input Multiple-Output (MIMO) systems that is robust to Channel State Information (CSI) estimation errors. These errors stem from hardware impairments, pilot contamination, limited training, and fast fading, causing spectral-efficiency loss. However, existing hybrid beamforming [...] Read more.
We propose a low-complexity hybrid beamforming method for massive Multiple-Input Multiple-Output (MIMO) systems that is robust to Channel State Information (CSI) estimation errors. These errors stem from hardware impairments, pilot contamination, limited training, and fast fading, causing spectral-efficiency loss. However, existing hybrid beamforming solutions typically either assume near-perfect CSI or rely on greedy/black-box designs without an explicit mechanism to regularize the error-distorted singular modes, leaving a gap in unified, low-complexity, and theoretically grounded robustness. We unfold the Alternating Direction Method of Multipliers (ADMM) into a trainable Deep Learning (DL) network, termed DL-ADMM, to jointly optimize Radio-Frequency (RF) and baseband precoders and combiners. In DL-ADMM, the ADMM update mappings are learned (layer-wise parameters and projections) to amortize the joint RF/baseband optimization, whereas Regularized Singular Value Decomposition (RSVD) acts as an analytical regularizer that reshapes the observed channel’s singular values to suppress noise amplification under imperfect CSI. RSVD is integrated to stabilize singular modes and curb noise amplification, yielding a unified and scalable design. For σe2=0.1, the proposed DL-ADMM-Reg achieves approximately 8–11 bits/s/Hz higher spectral efficiency than Orthogonal Matching Pursuit (OMP) at Signal-to-Noise Ratio (SNR) =20–40 dB, while remaining within <1 bit/s/Hz of the digital-optimal benchmark across both (Nt,Nr)=(32,32) and (64,64) settings. Simulations confirm higher spectral efficiency and robustness than OMP and Adaptive Phase Shifters (APSs). Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communications with Applications)
24 pages, 3021 KB  
Article
Real-Time Adaptive Optimization for Underwater Optical Wireless Communications Using LSTM–NSGA-II
by Oliger Veronica Mendoza Betancourt and Jianping Wang
Electronics 2026, 15(3), 611; https://doi.org/10.3390/electronics15030611 - 30 Jan 2026
Viewed by 20
Abstract
Underwater optical wireless communication (UOWC) systems are significantly challenged by turbulence-induced signal degradation in dynamic channel conditions. This paper presents a novel framework that integrates Long Short-Term Memory (LSTM) networks with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to enable real-time turbulence prediction [...] Read more.
Underwater optical wireless communication (UOWC) systems are significantly challenged by turbulence-induced signal degradation in dynamic channel conditions. This paper presents a novel framework that integrates Long Short-Term Memory (LSTM) networks with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to enable real-time turbulence prediction and multi-objective adaptive optimization of transmission parameters, including power, modulation scheme, and beam divergence. Experimental results demonstrate that the proposed LSTM–NSGA-II framework achieves a 45% reduction in bit error rate (BER) and a 36% improvement in energy efficiency compared to conventional static systems, while maintaining a signal-to-noise ratio (SNR) prediction accuracy of 94.7% and an adaptive response latency of 28.6 ms. Validation using field data from the Marine Institute in the Baltic Sea confirms the framework’s practical applicability and robustness, highlighting its potential to enhance autonomous and military underwater operations in turbulent environments. This work represents a significant step toward more reliable and efficient UOWC systems. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Electrical and Energy Systems)
Show Figures

Graphical abstract

16 pages, 1206 KB  
Article
HASwinNet: A Swin Transformer-Based Denoising Framework with Hybrid Attention for mmWave MIMO Systems
by Xi Han, Houya Tu, Jiaxi Ying, Junqiao Chen and Zhiqiang Xing
Entropy 2026, 28(1), 124; https://doi.org/10.3390/e28010124 - 20 Jan 2026
Viewed by 207
Abstract
Millimeter-wave (mmWave) massive multiple-input, multiple-output (MIMO) systems are a cornerstone technology for integrated sensing and communication (ISAC) in sixth-generation (6G) mobile networks. These systems provide high-capacity backhaul while simultaneously enabling high-resolution environmental sensing. However, accurate channel estimation remains highly challenging due to intrinsic [...] Read more.
Millimeter-wave (mmWave) massive multiple-input, multiple-output (MIMO) systems are a cornerstone technology for integrated sensing and communication (ISAC) in sixth-generation (6G) mobile networks. These systems provide high-capacity backhaul while simultaneously enabling high-resolution environmental sensing. However, accurate channel estimation remains highly challenging due to intrinsic noise sensitivity and clustered sparse multipath structures. These challenges are particularly severe under limited pilot resources and low signal-to-noise ratio (SNR) conditions. To address these difficulties, this paper proposes HASwinNet, a deep learning (DL) framework designed for mmWave channel denoising. The framework integrates a hierarchical Swin Transformer encoder for structured representation learning. It further incorporates two complementary branches. The first branch performs sparse token extraction guided by angular-domain significance. The second branch focuses on angular-domain refinement by applying discrete Fourier transform (DFT), squeeze-and-excitation (SE), and inverse DFT (IDFT) operations. This generates a mask that highlights angularly coherent features. A decoder combines the outputs of both branches with a residual projection from the input to yield refined channel estimates. Additionally, we introduce an angular-domain perceptual loss during training. This enforces spectral consistency and preserves clustered multipath structures. Simulation results based on the Saleh–Valenzuela (S–V) channel model demonstrate that HASwinNet achieves significant improvements in normalized mean squared error (NMSE) and bit error rate (BER). It consistently outperforms convolutional neural network (CNN), long short-term memory (LSTM), and U-Net baselines. Furthermore, experiments with reduced pilot symbols confirm that HASwinNet effectively exploits angular sparsity. The model retains a consistent advantage over baselines even under pilot-limited conditions. These findings validate the scalability of HASwinNet for practical 6G mmWave backhaul applications. They also highlight its potential in ISAC scenarios where accurate channel recovery supports both communication and sensing. Full article
Show Figures

Figure 1

23 pages, 2449 KB  
Article
Analysis of Noise Propagation Mechanisms in Wireless Optical Coherent Communication Systems
by Fan Ji and Xizheng Ke
Appl. Sci. 2026, 16(2), 916; https://doi.org/10.3390/app16020916 - 15 Jan 2026
Viewed by 139
Abstract
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It [...] Read more.
This paper systematically analyzes the propagation, transformation, and accumulation mechanisms of multi-source noise and device non-idealities within the complete signal chain from the transmitter through the channel to the receiver, focusing on wireless optical coherent communication systems from a signal propagation perspective. It establishes the stepwise propagation process of signals and noise from the transmitter through the atmospheric turbulence channel to the coherent receiver, clarifying the coupling mechanisms and accumulation patterns of various noise sources within the propagation chain. From a signal propagation viewpoint, the study focuses on analyzing the impact mechanisms of factors, such as Mach–Zehnder modulator nonlinear distortion, atmospheric turbulence effects, 90° mixer optical splitting ratio imbalance, and dual-balanced detector responsivity mismatch, on system bit error rate performance and constellation diagrams under conditions of coexisting multiple noises. Simultaneously, by introducing differential and common-mode processes, the propagation and suppression characteristics of additive noise at the receiver end within the balanced detection structure were analyzed, revealing the dominant properties of different noise components under varying optical power conditions. Simulation results indicate that within the range of weak turbulence and engineering parameters, the impact of modulator nonlinearity on system bit error rate is relatively minor compared to channel noise. Atmospheric turbulence dominates system performance degradation through the combined effects of amplitude fading and phase perturbation, causing significant constellation spreading. Imbalanced optical splitting ratios and mismatched responsivity at the receiver weaken common-mode noise suppression, leading to variations in effective signal gain and constellation stretching/distortion. Under different signal light power and local oscillator light power conditions, the system noise exhibits distinct dominant characteristics. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 4563 KB  
Article
Performance Enhancement of Secure Image Transmission over ACO-OFDM VLC Systems Through Chaos Encryption and PAPR Reduction
by Elhadi Mehallel, Abdelhalim Rabehi, Ghadjati Mohamed, Abdelaziz Rabehi, Imad Eddine Tibermacine and Mustapha Habib
Electronics 2026, 15(1), 43; https://doi.org/10.3390/electronics15010043 - 22 Dec 2025
Viewed by 313
Abstract
Visible Light Communication (VLC) systems commonly employ optical orthogonal frequency division multiplexing (O-OFDM) to achieve high data rates, benefiting from its robustness against multipath effects and intersymbol interference (ISI). However, a key limitation of asymmetrically clipped direct current biased optical–OFDM (ACO-OFDM) systems lies [...] Read more.
Visible Light Communication (VLC) systems commonly employ optical orthogonal frequency division multiplexing (O-OFDM) to achieve high data rates, benefiting from its robustness against multipath effects and intersymbol interference (ISI). However, a key limitation of asymmetrically clipped direct current biased optical–OFDM (ACO-OFDM) systems lies in their inherently high peak-to-average power ratio (PAPR), which significantly affects signal quality and system performance. This paper proposes a joint chaotic encryption and modified μ-non-linear logarithmic companding (μ-MLCT) scheme for ACO-OFDM–based VLC systems to simultaneously enhance security and reduce PAPR. First, image data is encrypted at the upper layer using a hybrid chaotic system (HCS) combined with Arnold’s cat map (ACM), mapped to quadrature amplitude modulation (QAM) symbols and further encrypted through chaos-based symbol scrambling to strengthen security. A μ-MLCT transformation is then applied to mitigate PAPR and enhance both peak signal-to-noise ratio (PSNR) and bit-error-ratio (BER) performance. A mathematical model of the proposed secured ACO-OFDM system is developed, and the corresponding BER expression is derived and validated through simulation. Simulation results and security analyses confirm the effectiveness of the proposed solution, showing gains of approximately 13 dB improvement in PSNR, 2 dB in BER performance, and a PAPR reduction of about 9.2 dB. The secured μ-MLCT-ACO-OFDM not only enhances transmission security but also effectively reduces PAPR without degrading PSNR and BER. As a result, it offers a robust and efficient solution for secure image transmission with low PAPR, making it well-suitable for emerging wireless networks such as cognitive and 5G/6G systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 845 KB  
Article
Rate-Adaptive Information Reconciliation for CV-QKD Systems at Low Signal-to-Noise Ratios
by Huiting Fu, Jisheng Dai, Yan Feng, Han Hai, Huayong Ge, Peng Huang and Xue-Qin Jiang
Entropy 2026, 28(1), 10; https://doi.org/10.3390/e28010010 - 20 Dec 2025
Viewed by 340
Abstract
In continuous-variable quantum key distribution (CV-QKD) systems, information reconciliation (IR) is a crucial step that significantly affects the secret key rate (SKR). The fixed-rate error-correcting codes used in IR are highly sensitive to changes in the signal-to-noise ratio (SNR) and cannot maintain a [...] Read more.
In continuous-variable quantum key distribution (CV-QKD) systems, information reconciliation (IR) is a crucial step that significantly affects the secret key rate (SKR). The fixed-rate error-correcting codes used in IR are highly sensitive to changes in the signal-to-noise ratio (SNR) and cannot maintain a high reconciliation efficiency in practical CV-QKD systems. To address this issue, we first propose a rate-adaptive IR protocol, namely Threshold-based IR (TIR), which changes the code rate of low-density parity-check (LDPC) codes by selectively revealing bits with lower reliability and adjusting their log-likelihood ratios (LLRs). Then, we propose a rate-adaptive IR protocol, namely Sorting-based IR (SIR), which not only adjusts the code rate according to variations in SNR, but also enables the CV-QKD systems to achieve high reconciliation efficiency over a wide range of SNRs. Furthermore, we perform an analysis of the protocols in terms of code rate, reconciliation efficiency, and complexity. The simulation results demonstrate that the proposed protocols outperform other rate-adaptive IR protocols, achieving a reconciliation efficiency higher than 98.5% in the SNR range below −20 dB and maintaining a certain SKR in long-distance transmission. Full article
(This article belongs to the Special Issue Recent Advances in Continuous-Variable Quantum Key Distribution)
Show Figures

Figure 1

16 pages, 672 KB  
Article
Message Passing Algorithm Receiver Design for RIS-Assisted Downlink MIMO-SCMA System
by Dun Feng, Xuan Zhang, Xiaofan Yu, Xin Wang, Xiaoye Shi and Hao Cheng
Appl. Sci. 2025, 15(24), 13197; https://doi.org/10.3390/app152413197 - 16 Dec 2025
Viewed by 221
Abstract
Sparse code multiple access (SCMA) and reconfigurable intelligent surfaces (RISs) are two promising techniques in the forthcoming 6G communication networks to provide massive connectivity and enhance the spectral efficiency. To our best knowledge, the phase optimization for the reflecting elements and multi-user detection [...] Read more.
Sparse code multiple access (SCMA) and reconfigurable intelligent surfaces (RISs) are two promising techniques in the forthcoming 6G communication networks to provide massive connectivity and enhance the spectral efficiency. To our best knowledge, the phase optimization for the reflecting elements and multi-user detection for the RIS-assisted downlink MIMO-SCMA system is still an open issue. In this way, we first formulate the RIS-assisted downlink MIMO-SCMA model with respect to the phases of the reflecting elements for the RIS. Next, a closed-form solution to these phases is found by solving the geometric median optimization. The iterative symbol detection steps are also provided for the RIS-assisted downlink MIMO-SCMA system. Simulation results illustrate that the proposed RIS-assisted downlink MIMO-SCMA system can significantly enhance the bit error ratio performance; e.g., the RIS-SCMA system with the proposed Gmedian-optimized phases can achieve a 1.5dB SNR gain as compared to the random phases with 10 reflecting elements. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 2795 KB  
Communication
Transmission Characteristics of 80 Gbit/s Nyquist-DWDM System in Atmospheric Turbulence
by Silun Du, Qiaochu Yang, Tuo Chen and Tianshu Wang
Sensors 2025, 25(24), 7598; https://doi.org/10.3390/s25247598 - 15 Dec 2025
Viewed by 290
Abstract
We experimentally demonstrate an 80 Gbit/s Nyquist-dense wavelength division multiplexed (Nyquist-DWDM) transmission system operating in a simulated atmospheric turbulence channel. The system utilizes eight wavelength-tunable lasers with 100 GHz spacing, modulated by cascaded Mach–Zehnder modulators, to generate phase-locked Nyquist pulse sequences with a [...] Read more.
We experimentally demonstrate an 80 Gbit/s Nyquist-dense wavelength division multiplexed (Nyquist-DWDM) transmission system operating in a simulated atmospheric turbulence channel. The system utilizes eight wavelength-tunable lasers with 100 GHz spacing, modulated by cascaded Mach–Zehnder modulators, to generate phase-locked Nyquist pulse sequences with a 10 GHz repetition rate and a temporal width of 66.7 ps. Each channel is synchronously modulated with a 10 Gbit/s pseudo-random bit sequence (PRBS) and transmitted through controlled weak turbulence conditions generated by a temperature-gradient convection chamber. Experimental measurements reveal that, as the turbulence intensity increases from Cn2=1.01×1016 to 5.71×1016 m2/3, the signal-to-noise ratio (SNR) of the edge channel (C29) and central channel (C33) decreases by approximately 6.5 dB while maintaining stable Nyquist waveform profiles and inter-channel orthogonality. At a forward-error-correction (FEC) threshold of 3.8×103, the minimum receiver sensitivity is −17.66 dBm, corresponding to power penalties below 5 dB relative to the back-to-back condition. The consistent SNR difference (<2 dB) between adjacent channels confirms uniform power distribution and low inter-channel crosstalk under turbulence. These findings verify that Nyquist pulse shaping substantially mitigates phase distortion and scintillation effects, demonstrating the feasibility of high-capacity DWDM free-space optical (FSO) systems with enhanced spectral efficiency and turbulence resilience. The proposed configuration provides a scalable foundation for future multi-wavelength FSO links and hybrid fiber-wireless optical networks. Full article
(This article belongs to the Special Issue Sensing Technologies and Optical Communication)
Show Figures

Figure 1

26 pages, 8395 KB  
Article
Design and Performance Insights in Backbone Node Upgrades: From Single-Band WSS to UWB-Based Flex-WBSS Solutions
by Charalampos Papapavlou, Konstantinos Paximadis, Dan M. Marom and Ioannis Tomkos
Telecom 2025, 6(4), 93; https://doi.org/10.3390/telecom6040093 - 4 Dec 2025
Viewed by 441
Abstract
Emerging services such as artificial intelligence (AI), 5G, the Internet of Things (IoT), cloud data services and teleworking are growing exponentially, pushing bandwidth needs to the limit. Space Division Multiplexing (SDM) in the spatial domain, along with Ultra-Wide Band (UWB) transmission in the [...] Read more.
Emerging services such as artificial intelligence (AI), 5G, the Internet of Things (IoT), cloud data services and teleworking are growing exponentially, pushing bandwidth needs to the limit. Space Division Multiplexing (SDM) in the spatial domain, along with Ultra-Wide Band (UWB) transmission in the spectrum domain, represent two degrees of freedom that will play a crucial role in the evolution of backbone optical networks. SDM and UWB technologies necessitate the replacement of conventional Wavelength-Selective-Switch (WSS)-based architectures with innovative optical switching elements capable of handling both higher port counts and flexible switching across various granularities. In this work, we introduce a novel Photonic Integrated Circuit (PIC)-based switching element called flex-Waveband Selective Switch (WBSS), designed to provide flexible band switching across the UWB spectrum (~21 THz). The proposed flex-WBSS supports a hierarchical three-layered Multi-Granular Optical Node (MG-ON) architecture incorporating optical switching across various granularities ranging from entire fibers and flexibly defined bands down to individual wavelengths. To evaluate its performance, we develop a custom network simulator, enabling a thorough performance analysis on the critical performance metrics of the node. Simulations are conducted over an existing network topology evaluating three traffic-oriented switching policies: Full Fiber Switching (FFS), Waveband Switching (WBS) and Wavelength Switching (WS). Simulation results reveal high Optical-to-Signal Ratio (OSNR) and low Bit Error Rate (BER) values, particularly under the FFS policy. In contrast, the integration of the WBS policy bridges the gap between existing WSS- and future FFS-based architectures and manages to mitigate capacity bottlenecks, enabling rapid scalable network upgrades in existing infrastructures. Additionally, we propose a probabilistic framework to evaluate the node’s bandwidth utilization and scaling behavior, exploring trade-offs among scalability, component numbers and complexity. The proposed framework can be easily adapted for the design of future transport optical networks. Finally, we perform a SWaP-C (Size, Weight, Power and Cost) analysis. Results show that our novel MG-ON achieves strong performance, reaching a throughput exceeding 10 Pb/s with high OSNR values ≈14–20 dB and BER ≈10−9 especially under the FFS policy. Moreover, it delivers up to 7.5× cost reduction compared to alternative architectures, significantly reducing deployment/upgrade costs while maintaining low power consumption. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

25 pages, 1283 KB  
Article
Achieving Enhanced Spectral Efficiency for Constant Envelope Transmission in CP-OFDMA Framework
by Zhuhong Zhu, Yiming Zhu, Xiaodong Xu, Wenjin Wang, Li Chai and Yi Zheng
Sensors 2025, 25(23), 7257; https://doi.org/10.3390/s25237257 - 28 Nov 2025
Viewed by 658
Abstract
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and [...] Read more.
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and cost-constrained 6G scenarios. To address these challenges, we propose a constant-envelope cyclic-prefix OFDM (CE-CP-OFDM) transceiver under the CP-OFDMA framework, which achieves high spectral efficiency while maintaining low PAPR. Specifically, we introduce a spectrally efficient subcarrier mapping scheme with partial frequency overlap and establish a multiuser received signal model under frequency-selective fading channels. Subsequently, to minimize channel estimation error, we develop an optimal multiuser CE pilot design by exploiting frequency-domain phase shifts and generalized discrete Fourier transform-based time-domain sequences. For large-scale multiuser scenarios, a joint delay–frequency-domain channel estimation method is proposed, complemented by a low-complexity linear minimum mean square error (LMMSE) estimator in the delay domain. To mitigate inter-symbol and multiple-access interference, we further design an iterative frequency-domain LMMSE (FD-LMMSE) equalizer based on the multiuser joint received-signal model. Numerical results demonstrate that the proposed CE-CP-OFDM transceiver achieves superior bit-error-rate performance compared with conventional waveforms while maintaining high spectral efficiency. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1038 KB  
Article
Unified Performance Analysis of Free-Space Optical Systems over Dust-Induced Fading Channels
by Maged Abdullah Esmail
Electronics 2025, 14(23), 4637; https://doi.org/10.3390/electronics14234637 - 25 Nov 2025
Viewed by 480
Abstract
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO [...] Read more.
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO links under a dust-induced fading channel modeled as a Beta distribution channel. We derive an expression for the instantaneous signal-to-noise ratio (SNR) distribution. Using the SNR expression, we construct a general framework that yields closed-form formulas for fundamental performance measures such as outage probability, average bit-error rate (BER), and ergodic capacity. The analysis considers both intensity modulation/direct detection (IM/DD) and coherent detection techniques, encompassing typical modulation schemes including modulation formats such as on–off keying (OOK), M-ary phase-shift keying (M-PSK), and M-ary quadrature amplitude modulation (M-QAM). The results show that dust-induced fading penalizes all modulations, though coherent detection achieves better error performance than IM/DD at equivalent SNR. For example, a coherent receiver requires approximately 4.4 dB lower average SNR than an IM/DD system to achieve the same outage probability. Overall, the proposed unified framework shows that dust-induced fading can severely degrade the performance of FSO links, while also quantifying how network operators can trade off complexity and performance when choosing between coherent and IM/DD detection under realistic dust-storm conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

10 pages, 1409 KB  
Article
Pre-Emphasis for 1.2 Tb/s DP-64QAM Transmission Simulated in OptiSystem
by Abdullah S. Karar, Ahmad Atieh and Xin Chen
Photonics 2025, 12(12), 1152; https://doi.org/10.3390/photonics12121152 - 24 Nov 2025
Cited by 1 | Viewed by 452
Abstract
We investigate analog and digital pre-emphasis for ultra-high-bit-rate coherent dual-polarization 64-QAM (DP-64QAM) transmission using OptiSystem. Two representative single-wavelength configurations are studied: 64 Gbaud (600 Gb/s payload, 768 Gb/s line rate) and 100 Gbaud (1000 Gb/s payload, 1.2 Tb/s line rate). The transmitter employs [...] Read more.
We investigate analog and digital pre-emphasis for ultra-high-bit-rate coherent dual-polarization 64-QAM (DP-64QAM) transmission using OptiSystem. Two representative single-wavelength configurations are studied: 64 Gbaud (600 Gb/s payload, 768 Gb/s line rate) and 100 Gbaud (1000 Gb/s payload, 1.2 Tb/s line rate). The transmitter employs raised-cosine pulse shaping (roll-off 0.1) and a 9-bit DAC, while the receiver uses a 9-bit ADC; bandwidth-limiting Bessel/Gaussian filters emulate practical transmitter (Tx) and receiver (Rx) front-end constraints. Analog pre-emphasis (APE) is realized by uploading a measured analog filter response immediately after the DAC to compensate high-frequency roll-off. Digital pre-emphasis (DPE) is implemented before the DAC as a finite-impulse-response (FIR) pre-distortion stage, with taps obtained from the measured frequency response via spectrum mirroring, inverse FFT, Hamming-window smoothing, and normalization. We compare four cases: (i) ideal reference without bandwidth limits; (ii) bandwidth-limited without pre-emphasis; (iii) APE; and (iv) DPE. Bit-error-rate–versus–optical signal-to-noise ratio (OSNR) results show that both APE and DPE substantially mitigate bandwidth-induced penalties and approach the theoretical bound, reducing the OSNR gap to 5.8 dB at 64 Gbaud and 6.6 dB at 100 Gbaud, with operation near the forward error correction (FEC) threshold (BER=102). While DPE offers full programmability, it increases peak-to-average power ratio (PAPR) and may require additional gain headroom. Overall, APE provides an effective rapid-prototyping step prior to DPE deployment, confirming the feasibility of 768 Gb/s and 1.2 Tb/s DP-64QAM links with commercially realistic components, including a 150 GSa/s DAC operating at 1.5 samples/symbol for 100 Gbaud. Full article
Show Figures

Figure 1

19 pages, 1931 KB  
Article
Complex EMI Effect Assessment for UAV Data Links
by Xiaolu Zhang, Yazhou Chen, Min Zhao, Yan Shen and Yaobei Wang
Electronics 2025, 14(23), 4565; https://doi.org/10.3390/electronics14234565 - 21 Nov 2025
Viewed by 461
Abstract
To enhance the survivability of unmanned aerial vehicles (UAVs) in complex electromagnetic environments, a model is presented to assess the complex electromagnetic interference (EMI) effects on UAV data links. Based on the mechanism of electromagnetic interference, three key parameters are introduced: the loss-of-lock [...] Read more.
To enhance the survivability of unmanned aerial vehicles (UAVs) in complex electromagnetic environments, a model is presented to assess the complex electromagnetic interference (EMI) effects on UAV data links. Based on the mechanism of electromagnetic interference, three key parameters are introduced: the loss-of-lock threshold At, the effect–time ratio D, and the effect index τ. An assessment model is then developed using these parameters. By classifying interference into sinusoidal-type and noise-type, the model is capable of predicting the interference effects of complex interference scenarios comprising in-band single-tone, partial-band noise, and out-of-band interferences that generate in-band third-order intermodulation components. Measurements of At and D from single-source EMI effect tests, along with validation from three-source and four-source EMI effect tests, confirm the model’s efficacy. Results indicate that the At is inversely proportional to the D and correlates with the bit error rate. The maximum error between the experimental and theoretical values of τ is 0.709 dB, demonstrating the validity and applicability of the model. Finally, a four-level EMI effect assessment method was proposed. The assessment method could provide theoretical support for anti-interference decision-making systems and enhance the UAVs’ anti-interference capability in complex electromagnetic environments. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

26 pages, 4630 KB  
Article
Range Extension for Underwater Communication via Magnetic Induction Using Parametric Analysis of MI Coils in IoUT Networks
by Osama Mahfooz, Miguel-Angel Luque-Nieto, Muhammad Imran Majid and Pablo Otero
Electronics 2025, 14(22), 4543; https://doi.org/10.3390/electronics14224543 - 20 Nov 2025
Viewed by 736
Abstract
This paper discusses the method for extending the range of Magnetic Induction (MI) and its application in underwater networks for the Internet of Underwater Things (IoUT). In underwater communication, this technology would provide a wider frequency band than acoustic systems, shorter propagation delay, [...] Read more.
This paper discusses the method for extending the range of Magnetic Induction (MI) and its application in underwater networks for the Internet of Underwater Things (IoUT). In underwater communication, this technology would provide a wider frequency band than acoustic systems, shorter propagation delay, and increased conductivity, with the added benefit of underwater wireless power transfer. As a use case, we consider a system that allows energy to be transferred from one circuit to another without cables, as in an aerial environment. In this work, transmit and receive coils for underwater environments are designed and analyzed using ANSYS Maxwell v16.0 software. The results show an improvement in terms of underwater magnetic field propagation. We have conducted underwater experiments by applying a frequency range up to 100 kHz and 12 Volts with varied current, achieving a distance up to 80% greater than in air, as determined by parametric analysis. With an improved bit error rate, a delay of less than 2 microseconds, a packet delivery ratio near 100%, and a packet loss ratio less than 10%, the results show an improvement in magnetic field propagation underwater. This demonstrates that it is possible to conduct future research into other underwater applications by implementing MI for underwater communication. Full article
Show Figures

Figure 1

20 pages, 487 KB  
Article
Blind Equalization Based on Modified Third-Order Moment Algorithm for PAM-PPM Optical Signals in FSO Communication
by Shutian Luo and Xiaofeng Li
Sensors 2025, 25(22), 7063; https://doi.org/10.3390/s25227063 - 19 Nov 2025
Viewed by 348
Abstract
In order to mitigate the influence of turbulence on pulse amplitude modulation–pulse position modulation (PAM-PPM) optical signals, which represents a promising avenue for future high-speed free-space optical (FSO) communication, this paper proposes a novel blind equalization scheme based on a modified third-order moment [...] Read more.
In order to mitigate the influence of turbulence on pulse amplitude modulation–pulse position modulation (PAM-PPM) optical signals, which represents a promising avenue for future high-speed free-space optical (FSO) communication, this paper proposes a novel blind equalization scheme based on a modified third-order moment algorithm (MTOMA). The MTOMA is more robust to noise compared with the current fourth-order moment algorithms, such as the constant modulus algorithm (CMA) and the modified constant modulus algorithm (MCMA). Moreover, it will not increase the implementation complexity compared with the CMA and MCMA. The simulation results show that the MTOMA effectively reduces the distortion of PAM-PPM optical signals in atmospheric turbulence channels with a pointing error. Under different turbulence conditions, the MTOMA has a faster convergence rate than the CMA and MCMA. For example, when the signal-to-noise ratio (SNR) is 15 dB, the MTOMA requires about 530 iterations to reach convergence in moderate turbulence, which is about 230 and 170 fewer iterations than required by the CMA and MCMA, respectively; in addition, the differences in the number of iterations required by the MTOMA and those required by the CMA and MCMA, respectively, are 140 and 100 in weak turbulence and 150 and 90 in strong turbulence. Moreover, when the algorithms converge, the bit error rate (BER) performance of the PAM-PPM signals with MTOMA is also superior to that with CMA and MCMA. For example, when SNR = 20 dB, the BER performance of the PAM-PPM signals with MTOMA improves by 6.5 dB and 1.7 dB, respectively, compared to that with CMA and MCMA in moderate turbulence; this value improves by 4.3 dB and 1.4 dB in weak turbulence and 4.8 dB and 1.5 dB in strong turbulence. In addition, when the MTOMA reaches convergence, the decision-directed least mean square (DDLMS) algorithm can continue to be utilized to further improve the BER performance of PAM-PPM optical signals. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop