Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = bit shift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8380 KB  
Article
A 3-Bit Low-Profile High-Gain Transmissive Intelligent Surface for Beam Focusing and Steering Applications
by Zaed S. A. Abdulwali and Majeed A. S. Alkanhal
Micromachines 2025, 16(12), 1399; https://doi.org/10.3390/mi16121399 - 12 Dec 2025
Viewed by 138
Abstract
This paper presents a 3-bit transmissive intelligent surface (TIS) using a novel technique that employs a unit cell comprising loaded semi-loop dipole resonators. The two resonators are anti-symmetrically oriented along the H-plane, functioning as transmitter and receiver on opposite sides of the TIS. [...] Read more.
This paper presents a 3-bit transmissive intelligent surface (TIS) using a novel technique that employs a unit cell comprising loaded semi-loop dipole resonators. The two resonators are anti-symmetrically oriented along the H-plane, functioning as transmitter and receiver on opposite sides of the TIS. The unit cell, with 13.2 mm periodicity, achieves 360° phase variation in 45° steps while maintaining insertion loss below 2 dB at 10 GHz. A 17 × 17 array TIS is designed using ray tracing and phase shift compensation techniques, with phase profiles distributed across eight discrete varactor states. The implemented TIS demonstrates a 10.8 dB gain enhancement for a horn antenna source at 10 GHz while preserving antenna matching, polarization, and radiation efficiency. The design achieves beam steering capabilities up to 60° with ±2° precision across elevation, azimuth, and inclined angles, maintaining an average steering gain loss of 3 dB over a 400 MHz bandwidth. These characteristics make the proposed design particularly effective for modern wireless coverage extension and tracking applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

25 pages, 1283 KB  
Article
Achieving Enhanced Spectral Efficiency for Constant Envelope Transmission in CP-OFDMA Framework
by Zhuhong Zhu, Yiming Zhu, Xiaodong Xu, Wenjin Wang, Li Chai and Yi Zheng
Sensors 2025, 25(23), 7257; https://doi.org/10.3390/s25237257 - 28 Nov 2025
Viewed by 435
Abstract
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and [...] Read more.
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and cost-constrained 6G scenarios. To address these challenges, we propose a constant-envelope cyclic-prefix OFDM (CE-CP-OFDM) transceiver under the CP-OFDMA framework, which achieves high spectral efficiency while maintaining low PAPR. Specifically, we introduce a spectrally efficient subcarrier mapping scheme with partial frequency overlap and establish a multiuser received signal model under frequency-selective fading channels. Subsequently, to minimize channel estimation error, we develop an optimal multiuser CE pilot design by exploiting frequency-domain phase shifts and generalized discrete Fourier transform-based time-domain sequences. For large-scale multiuser scenarios, a joint delay–frequency-domain channel estimation method is proposed, complemented by a low-complexity linear minimum mean square error (LMMSE) estimator in the delay domain. To mitigate inter-symbol and multiple-access interference, we further design an iterative frequency-domain LMMSE (FD-LMMSE) equalizer based on the multiuser joint received-signal model. Numerical results demonstrate that the proposed CE-CP-OFDM transceiver achieves superior bit-error-rate performance compared with conventional waveforms while maintaining high spectral efficiency. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1038 KB  
Article
Unified Performance Analysis of Free-Space Optical Systems over Dust-Induced Fading Channels
by Maged Abdullah Esmail
Electronics 2025, 14(23), 4637; https://doi.org/10.3390/electronics14234637 - 25 Nov 2025
Viewed by 284
Abstract
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO [...] Read more.
Free-space optical (FSO) communication systems offer fiber-like bandwidth, high security, and rapid deployment; however, their performance is highly susceptible to atmospheric impairments, such as dust storms, which can cause fading that degrades link reliability. In this study, we analyze the performance of FSO links under a dust-induced fading channel modeled as a Beta distribution channel. We derive an expression for the instantaneous signal-to-noise ratio (SNR) distribution. Using the SNR expression, we construct a general framework that yields closed-form formulas for fundamental performance measures such as outage probability, average bit-error rate (BER), and ergodic capacity. The analysis considers both intensity modulation/direct detection (IM/DD) and coherent detection techniques, encompassing typical modulation schemes including modulation formats such as on–off keying (OOK), M-ary phase-shift keying (M-PSK), and M-ary quadrature amplitude modulation (M-QAM). The results show that dust-induced fading penalizes all modulations, though coherent detection achieves better error performance than IM/DD at equivalent SNR. For example, a coherent receiver requires approximately 4.4 dB lower average SNR than an IM/DD system to achieve the same outage probability. Overall, the proposed unified framework shows that dust-induced fading can severely degrade the performance of FSO links, while also quantifying how network operators can trade off complexity and performance when choosing between coherent and IM/DD detection under realistic dust-storm conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 8755 KB  
Article
Symmetrical Pulse Shape Optimization for Low-Complexity RedCap Devices in Industrial Multipath Channels
by Anna Orlova, Sergey Zavjalov, Aleksandra Chekireva, Alexandra Kuznetsova, Ilya Lavrenyuk, Sergey Makarov and Ge Dong
Symmetry 2025, 17(11), 2000; https://doi.org/10.3390/sym17112000 - 19 Nov 2025
Viewed by 342
Abstract
Wireless communications in industrial environments are challenged by severe multipath propagation, which causes significant signal distortion. Conventional mitigation techniques, such as complex equalizers, are unsuitable as they contradict the stringent low-power and low-complexity requirements of Reduced Capability (RedCap) devices. This paper introduces a [...] Read more.
Wireless communications in industrial environments are challenged by severe multipath propagation, which causes significant signal distortion. Conventional mitigation techniques, such as complex equalizers, are unsuitable as they contradict the stringent low-power and low-complexity requirements of Reduced Capability (RedCap) devices. This paper introduces a novel method for optimizing single-carrier pulse shapes under a distortion constraint to combat multipath propagation. The performance was evaluated through simulations in MATLAB 2023b using a ray-traced warehouse model. The results show that the proposed optimal pulses achieve a significant reduction in Error Vector Magnitude (EVM) (up to 40% in non-line-of-sight scenarios) compared to conventional root-raised cosine (RRC) pulses, while adhering to the 20 MHz RedCap bandwidth requirement. Furthermore, this performance is attainable with a low-complexity scaling equalizer. EVM degradation under Doppler shift is estimated and the pilot period required to maintain the target distortion level is specified. The resulting bit rate of approximately 2.9 Mbps supports industrial sensor networks and low-definition video streaming, confirming the approach’s suitability for resource-constrained industrial applications. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 3753 KB  
Article
A High-Precision Hybrid Floating-Point Compute-in-Memory Architecture for Complex Deep Learning
by Zizhao Ma, Chunshan Wang, Qi Chen, Yifan Wang and Yufeng Xie
Electronics 2025, 14(22), 4414; https://doi.org/10.3390/electronics14224414 - 13 Nov 2025
Viewed by 766
Abstract
As artificial intelligence (AI) advances, deep learning models are shifting from convolutional architectures to transformer-based structures, highlighting the importance of accurate floating-point (FP) calculations. Compute-in-memory (CIM) enhances matrix multiplication performance by breaking down the von Neumann architecture. However, many FPCIMs struggle to maintain [...] Read more.
As artificial intelligence (AI) advances, deep learning models are shifting from convolutional architectures to transformer-based structures, highlighting the importance of accurate floating-point (FP) calculations. Compute-in-memory (CIM) enhances matrix multiplication performance by breaking down the von Neumann architecture. However, many FPCIMs struggle to maintain high precision while achieving efficiency. This work proposes a high-precision hybrid floating-point compute-in-memory (Hy-FPCIM) architecture for Vision Transformer (ViT) through post-alignment with two different CIM macros: Bit-wise Exponent Macro (BEM) and Booth Mantissa Macro (BMM). The high-parallelism BEM efficiently implements exponent calculations in-memory with the Bit-Separated Exponent Summation Unit (BSESU) and the routing-efficient Bit-wise Max Finder (BMF). The high-precision BMM achieves nearly lossless mantissa computation in-memory with efficient Booth 4 encoding and the sensitivity-amplifier-free Flying Mantissa Lookup Table based on 12T Triple Port SRAM. The proposed Hy-FPCIM architecture achieves 23.7 TFLOPS/W energy efficiency and 0.754 TFLOPS/mm2 area efficiency, with 617 Kb/mm2 memory density in 28 nm technology. With almost lossless architectures, the proposed Hy-FPCIM achieves an accuracy of 81.04% in recognition tasks on the ImageNet dataset using ViT, representing a 0.03% decrease compared to the software baseline. This research presents significant advantages in both accuracy and energy efficiency, providing critical technology for complex deep learning applications. Full article
(This article belongs to the Special Issue Emerging Computing Paradigms for Efficient Edge AI Acceleration)
Show Figures

Figure 1

18 pages, 23402 KB  
Article
Reliable Backscatter Communication for Distributed PV Systems: Practical Model and Experimental Validation
by Xu Liu, Wu Dong, Xiaomeng He, Wei Tang, Kang Liu, Binyang Yan, Zhongye Cao, Da Chen and Wei Wang
Electronics 2025, 14(21), 4329; https://doi.org/10.3390/electronics14214329 - 5 Nov 2025
Viewed by 409
Abstract
Backscatter technologies promise to enable large-scale, battery-free sensor networks by modulating and reflecting ambient radio frequency (RF) carriers rather than generating new signals. Translating this potential into practical deployments—such as distributed photovoltaic (PV) power systems—necessitates realistic modeling that accounts for deployment variabilities commonly [...] Read more.
Backscatter technologies promise to enable large-scale, battery-free sensor networks by modulating and reflecting ambient radio frequency (RF) carriers rather than generating new signals. Translating this potential into practical deployments—such as distributed photovoltaic (PV) power systems—necessitates realistic modeling that accounts for deployment variabilities commonly neglected in idealized analyses, including uncertain hardware insertion loss, non-ideal antenna gain, spatially varying path loss exponents, and fluctuating noise floors. In this work, we develop a practical model for reliable backscatter communications that explicitly incorporates these impairing factors, and we complement the theoretical development with empirical characterization of each contributing term. To validate the model, we implement a frequency-shift keying (FSK)-based backscatter system employing a non-coherent demodulation scheme with adaptive bit-rate matching, and we conduct comprehensive experiments to evaluate communication range and sensitivity to system parameters. Experimental results demonstrate strong agreement with theoretical predictions: the prototype tag consumes 825 µW in measured operation, and an integrated circuit (IC) implementation reduces consumption to 97.8 µW, while measured communication performance corroborates the model’s accuracy under realistic deployment conditions. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

38 pages, 23830 KB  
Article
Improving Audio Steganography Transmission over Various Wireless Channels
by Azhar A. Hamdi, Asmaa A. Eyssa, Mahmoud I. Abdalla, Mohammed ElAffendi, Ali Abdullah S. AlQahtani, Abdelhamied A. Ateya and Rania A. Elsayed
J. Sens. Actuator Netw. 2025, 14(6), 106; https://doi.org/10.3390/jsan14060106 - 30 Oct 2025
Viewed by 983
Abstract
Ensuring the security and privacy of confidential data during transmission is a critical challenge, necessitating advanced techniques to protect against unwarranted disclosures. Steganography, a concealment technique, enables secret information to be embedded in seemingly harmless carriers such as images, audio, and video. This [...] Read more.
Ensuring the security and privacy of confidential data during transmission is a critical challenge, necessitating advanced techniques to protect against unwarranted disclosures. Steganography, a concealment technique, enables secret information to be embedded in seemingly harmless carriers such as images, audio, and video. This work proposes two secure audio steganography models based on the least significant bit (LSB) and discrete wavelet transform (DWT) techniques for concealing different types of multimedia data (i.e., text, image, and audio) in audio files, representing an enhancement of current research that tends to focus on embedding a single type of multimedia data. The first model (secured model (1)) focuses on high embedding capacity, while the second model (secured model (2)) focuses on improved security. The performance of the two proposed secure models was tested under various conditions. The models’ robustness was greatly enhanced using convolutional encoding with binary phase shift keying (BPSK). Experimental results indicated that the correlation coefficient (Cr) of the extracted secret audio in secured model (1) increased by 18.88% and by 16.18% in secured model (2) compared to existing methods. In addition, the Cr of the extracted secret image in secured model (1) was improved by 0.1% compared to existing methods. The peak signal-to-noise ratio (PSNR) of the steganography audio of secured model (1) was improved by 49.95% and 14.44% compared to secured model (2) and previous work, respectively. Furthermore, both models were evaluated in an orthogonal frequency division multiplexing (OFDM) system over various wireless channels, i.e., Additive White Gaussian Noise (AWGN), fading, and SUI-6 channels. In order to enhance the system performance, OFDM was combined with differential phase shift keying (DPSK) modulation and convolutional coding. The results demonstrate that secured model (1) is highly immune to noise generated by wireless channels and is the optimum technique for secure audio steganography on noisy communication channels. Full article
Show Figures

Figure 1

35 pages, 1285 KB  
Article
Uncensored AI in the Wild: Tracking Publicly Available and Locally Deployable LLMs
by Bahrad A. Sokhansanj
Future Internet 2025, 17(10), 477; https://doi.org/10.3390/fi17100477 - 18 Oct 2025
Viewed by 4903
Abstract
Open-weight generative large language models (LLMs) can be freely downloaded and modified. Yet, little empirical evidence exists on how these models are systematically altered and redistributed. This study provides a large-scale empirical analysis of safety-modified open-weight LLMs, drawing on 8608 model repositories and [...] Read more.
Open-weight generative large language models (LLMs) can be freely downloaded and modified. Yet, little empirical evidence exists on how these models are systematically altered and redistributed. This study provides a large-scale empirical analysis of safety-modified open-weight LLMs, drawing on 8608 model repositories and evaluating 20 representative modified models on unsafe prompts designed to elicit, for example, election disinformation, criminal instruction, and regulatory evasion. This study demonstrates that modified models exhibit substantially higher compliance: while an average of unmodified models complied with only 19.2% of unsafe requests, modified variants complied at an average rate of 80.0%. Modification effectiveness was independent of model size, with smaller, 14-billion-parameter variants sometimes matching or exceeding the compliance levels of 70B parameter versions. The ecosystem is highly concentrated yet structurally decentralized; for example, the top 5% of providers account for over 60% of downloads and the top 20 for nearly 86%. Moreover, more than half of the identified models use GGUF packaging, optimized for consumer hardware, and 4-bit quantization methods proliferate widely, though full-precision and lossless 16-bit models remain the most downloaded. These findings demonstrate how locally deployable, modified LLMs represent a paradigm shift for Internet safety governance, calling for new regulatory approaches suited to decentralized AI. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) and Natural Language Processing (NLP))
Show Figures

Graphical abstract

19 pages, 1661 KB  
Article
Joint Wavelet and Sine Transforms for Performance Enhancement of OFDM Communication Systems
by Khaled Ramadan, Ibrahim Aqeel and Emad S. Hassan
Mathematics 2025, 13(20), 3258; https://doi.org/10.3390/math13203258 - 11 Oct 2025
Viewed by 400
Abstract
This paper presents a modified Orthogonal Frequency Division Multiplexing (OFDM) system that combines Discrete Wavelet Transform (DWT) with Discrete Sine Transform (DST) to enhance data rate capacity over traditional Discrete Fourier Transform (DFT)-based OFDM systems. By applying Inverse Discrete Wavelet Transform (IDWT) to [...] Read more.
This paper presents a modified Orthogonal Frequency Division Multiplexing (OFDM) system that combines Discrete Wavelet Transform (DWT) with Discrete Sine Transform (DST) to enhance data rate capacity over traditional Discrete Fourier Transform (DFT)-based OFDM systems. By applying Inverse Discrete Wavelet Transform (IDWT) to the modulated Binary Phase Shift Keying (BPSK) bits, the constellation diagram reveals that half of the time-domain samples after single-level Haar IDWT are zeros, while the other half are real. The proposed system utilizes these 0.5N zero values, modulating them with the DST (IDST) and assigning them as the imaginary part of the signal. Performance comparisons demonstrate that the Bit-Error-Rate (BER) of this hybrid DWT-DST configuration lies between that of BPSK and Quadrature Phase Shift Keying (QPSK) in a DWT-based system, while also achieving data rate improvement of 0.5N. Additionally, simulation results indicate that the proposed approach demonstrates stable performance even in the presence of estimation errors, with less than 3.4% BER degradation for moderate errors, and consistently better robustness than QPSK-based systems while offering improved data rate efficiency over BPSK. This novel configuration highlights the potential for more efficient and reliable data transmission in OFDM systems, making it a promising alternative to conventional DWT or DFT-based methods. Full article
(This article belongs to the Special Issue Computational Intelligence in Communication Networks)
Show Figures

Figure 1

23 pages, 3756 KB  
Article
DAF-Aided ISAC Spatial Scattering Modulation for Multi-Hop V2V Networks
by Yajun Fan, Jiaqi Wu, Yabo Guo, Jing Yang, Le Zhao, Wencai Yan, Shangjun Yang, Haihua Ma and Chunhua Zhu
Sensors 2025, 25(19), 6189; https://doi.org/10.3390/s25196189 - 6 Oct 2025
Viewed by 550
Abstract
Integrated sensing and communication (ISAC) has emerged as a transformative technology for intelligent transportation systems. Index modulation (IM), recognized for its high robustness and energy efficiency (EE), has been successfully incorporated into ISAC systems. However, most existing IM-based ISAC schemes overlook the spatial [...] Read more.
Integrated sensing and communication (ISAC) has emerged as a transformative technology for intelligent transportation systems. Index modulation (IM), recognized for its high robustness and energy efficiency (EE), has been successfully incorporated into ISAC systems. However, most existing IM-based ISAC schemes overlook the spatial multiplexing potential of millimeter-wave channels and remain confined to single-hop vehicle-to-vehicle (V2V) setups, failing to address the challenges of energy consumption and noise accumulation in real-world multi-hop V2V networks with complex road topologies. To bridge this gap, we propose a spatial scattering modulation-based ISAC (ISAC-SSM) scheme and introduce it to multi-hop V2V networks. The proposed scheme leverages the sensed positioning information to select maximum signal-to-noise ratio relay vehicles and employs a detect-amplify-and-forward (DAF) protocol to mitigate noise propagation, while utilizing sensed angle data for Doppler compensation to enhance communication reliability. At each hop, the transmitter modulates index bits on the angular-domain spatial directions of scattering clusters, achieving higher EE. We initially derive a closed-form bit error rate expression and Chernoff upper bound for the proposed DAF ISAC-SSM under multi-hop V2V networks. Both theoretical analyses and Monte Carlo simulations have been made and demonstrate the superiority of DAF ISAC-SSM over existing alternatives in terms of EE and error performance. Specifically, in a two-hop network with 12 scattering clusters, compared with DAF ISAC-conventional spatial multiplexing, DAF ISAC-maximum beamforming, and DAF ISAC-random beamforming, the proposed DAF ISAC-SSM scheme can achieve a coding gain of 1.5 dB, 2 dB, and 4 dB, respectively. Moreover, it shows robust performance with less than a 1.5 dB error degradation under 0.018 Doppler shifts, thereby verifying its superiority in practical vehicular environments. Full article
Show Figures

Figure 1

21 pages, 3479 KB  
Article
A Comprehensive Methodology for Soft Error Rate (SER) Reduction in Clock Distribution Network
by Jorge Johanny Saenz-Noval, Umberto Gatti and Cristiano Calligaro
Chips 2025, 4(4), 39; https://doi.org/10.3390/chips4040039 - 24 Sep 2025
Viewed by 808
Abstract
Single Event Transients (SETs) in clock-distribution networks are a major source of soft errors in synchronous systems. We present a practical framework that assesses SET risk early in the design cycle, before layout and parasitics, using a Vulnerability Function (VF) derived from Verilog [...] Read more.
Single Event Transients (SETs) in clock-distribution networks are a major source of soft errors in synchronous systems. We present a practical framework that assesses SET risk early in the design cycle, before layout and parasitics, using a Vulnerability Function (VF) derived from Verilog fault injection. This framework guides targeted Engineering Change Orders (ECOs), such as clock-net remapping, re-routing, and the selective insertion of SET filters, within a reproducible open-source flow (Yosys, OpenROAD, OpenSTA). A new analytical Soft Error Rate (SER) model for clock trees is also proposed, which decomposes contributions from the root, intermediate levels, and leaves, and is calibrated by SPICE-measured propagation probabilities, area, and particle flux. When coupled with throughput, this model yields a frequency-aware system-level Bit Error Rate (BERsys). The methodology was validated on a First-In First-Out (FIFO) memory, demonstrating a significant vulnerability reduction of approximately 3.35× in READ mode and 2.67× in WRITE mode. Frequency sweeps show monotonic decreases in both clock-tree vulnerability and BERsys at higher clock frequencies, a trend attributed to temporal masking and throughput effects. Cross-node SPICE characterization between 65 nm and 28 nm reveals a technology-dependent effect: for the same injected charge, the 28 nm process produces a shorter root-level pulse, which lowers the propagation probability relative to 65 nm and shifts the optimal clock-tree partition. These findings underscore the framework’s key innovations: a technology-independent, early-stage VF for ranking critical clock nets; a clock-tree SER model calibrated by measured propagation probabilities; an ECO loop that converts VF insights into concrete hardening actions; and a fully reproducible open-source implementation. The paper’s scope is architectural and pre-layout, with extensions to broader circuit classes and a full electrical analysis outlined for future work. Full article
Show Figures

Figure 1

15 pages, 4604 KB  
Article
A JPEG Reversible Data Hiding Algorithm Based on Block Smoothness Estimation and Optimal Zero Coefficient Selection
by Ya Yue, Minqing Zhang, Peizheng Lai and Fuqiang Di
Appl. Sci. 2025, 15(18), 10282; https://doi.org/10.3390/app151810282 - 22 Sep 2025
Viewed by 533
Abstract
To address the issues of image quality degradation and file size expansion encountered during reversible data hiding (RDH) of JPEG images, a JPEG reversible data hiding algorithm based on block smoothness estimation and optimal zero coefficient selection is proposed. Firstly, a block smoothness [...] Read more.
To address the issues of image quality degradation and file size expansion encountered during reversible data hiding (RDH) of JPEG images, a JPEG reversible data hiding algorithm based on block smoothness estimation and optimal zero coefficient selection is proposed. Firstly, a block smoothness estimation strategy is designed based on the number of zero coefficients and non-zero quantisation table values within DCT blocks, prioritising DCT blocks with higher smoothness for information embedding. Subsequently, under a given embedding payload, an optimal zero coefficient selection strategy is introduced. Blocks are partitioned into embedding regions and non-embedding regions based on a preset position threshold T. Within embedding regions, the frequency of zero coefficients at different positions across all blocks is statistically analysed, with embedding prioritised at positions exhibiting the highest zero coefficient frequency to enhance embedding efficiency. Concurrently, by setting positive and negative displacement gaps to constrain the modification range of non-zero coefficients, invalid shifts are minimised. This further enhances visual quality while controlling file expansion. Experimental results demonstrate that, compared to existing algorithms, the proposed method achieves a peak signal-to-noise ratio improvement of 0.75 to 3.62 dB under fixed embedding capacity. File expansion is reduced by 1038 to 2243 bits, whilst enabling fully reversible image restoration. Full article
Show Figures

Figure 1

43 pages, 3056 KB  
Article
A Review of Personalized Semantic Secure Communications Based on the DIKWP Model
by Yingtian Mei and Yucong Duan
Electronics 2025, 14(18), 3671; https://doi.org/10.3390/electronics14183671 - 17 Sep 2025
Viewed by 1223
Abstract
Semantic communication (SemCom), as a revolutionary paradigm for next-generation networks, shifts the focus from traditional bit-level transmission to the delivery of meaning and purpose. Grounded in the Data, Information, Knowledge, Wisdom, Purpose (DIKWP) model and its mapping framework, together with the relativity of [...] Read more.
Semantic communication (SemCom), as a revolutionary paradigm for next-generation networks, shifts the focus from traditional bit-level transmission to the delivery of meaning and purpose. Grounded in the Data, Information, Knowledge, Wisdom, Purpose (DIKWP) model and its mapping framework, together with the relativity of understanding theory, the discussion systematically reviews advances in semantic-aware communication and personalized semantic security. By innovatively introducing the “Purpose” dimension atop the classical DIKW hierarchy and establishing interlayer feedback mechanisms, the DIKWP model enables purpose-driven, dynamic semantic processing, providing a theoretical foundation for both SemCom and personalized semantic security based on cognitive differences. A comparative analysis of existing SemCom architectures, personalized artificial intelligence (AI) systems, and secure communication mechanisms highlights the unique value of the DIKWP model. An integrated cognitive–conceptual–semantic network, combined with the principle of semantic relativity, supports the development of explainable, cognitively adaptive, and trustworthy communication systems. Practical implementation paths are explored, including DIKWP-based semantic chip design, white-box AI evaluation standards, and dynamic semantic protection frameworks, establishing theoretical links with emerging trends such as task-oriented communication and personalized foundation models. Embedding knowledge representation and cognitive context into communication protocols is shown to enhance efficiency, reliability, and security significantly. In addition, key research challenges in semantic alignment, cross-domain knowledge sharing, and formal semantic metrics are identified, while future research directions are outlined to guide the evolution of intelligent communication networks and provide a systematic reference for the advancement of the field. Full article
(This article belongs to the Special Issue Recent Advances in Semantic Communications and Networks)
Show Figures

Figure 1

15 pages, 37613 KB  
Article
Wideband Reconfigurable Reflective Metasurface with 1-Bit Phase Control Based on Polarization Rotation
by Zahid Iqbal, Xiuping Li, Zihang Qi, Wenyu Zhao, Zaid Akram and Muhammad Ishfaq
Telecom 2025, 6(3), 65; https://doi.org/10.3390/telecom6030065 - 3 Sep 2025
Viewed by 1756
Abstract
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often [...] Read more.
The rapid expansion of broadband wireless communication systems, including 5G, satellite networks, and next-generation IoT platforms, has created a strong demand for antenna architectures capable of real-time beam control, compact integration, and broad frequency coverage. Traditional reflectarrays, while effective for narrowband applications, often face inherent limitations such as fixed beam direction, high insertion loss, and complex phase-shifting networks, making them less viable for modern adaptive and reconfigurable systems. Addressing these challenges, this work presents a novel wideband planar metasurface that operates as a polarization rotation reflective metasurface (PRRM), combining 90° polarization conversion with 1-bit reconfigurable phase modulation. The metasurface employs a mirror-symmetric unit cell structure, incorporating a cross-shaped patch with fan-shaped stub loading and integrated PIN diodes, connected through vertical interconnect accesses (VIAs). This design enables stable binary phase control with minimal loss across a significantly wide frequency range. Full-wave electromagnetic simulations confirm that the proposed unit cell maintains consistent cross-polarized reflection performance and phase switching from 3.83 GHz to 15.06 GHz, achieving a remarkable fractional bandwidth of 118.89%. To verify its applicability, the full-wave simulation analysis of a 16 × 16 array was conducted, demonstrating dynamic two-dimensional beam steering up to ±60° and maintaining a 3 dB gain bandwidth of 55.3%. These results establish the metasurface’s suitability for advanced beamforming, making it a strong candidate for compact, electronically reconfigurable antennas in high-speed wireless communication, radar imaging, and sensing systems. Full article
Show Figures

Figure 1

19 pages, 641 KB  
Article
Lightweight Hash Function Design for the Internet of Things: Structure and SAT-Based Cryptanalysis
by Kairat Sakan, Kunbolat Algazy, Nursulu Kapalova and Andrey Varennikov
Algorithms 2025, 18(9), 550; https://doi.org/10.3390/a18090550 - 1 Sep 2025
Viewed by 1151
Abstract
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on [...] Read more.
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on simple logical operations (XOR, cyclic shifts, and S-boxes) and incorporates a preliminary diffusion transformation function G, along with the Davis–Meyer compression scheme, to enhance irreversibility and improve cryptographic robustness. A comparative analysis of hardware implementation demonstrates that LWH-128 exhibits balanced characteristics in terms of circuit complexity, memory usage, and processing speed, making it competitive with existing lightweight hash algorithms. As part of the cryptanalytic evaluation, a Boolean SATisfiability (SAT) Problem-based model of the compression function is constructed in the form of a conjunctive normal form of Boolean variables. Experimental results using the Parkissat SAT solver show an exponential increase in computational time as the number of unknown input bits increased. These findings support the conclusion that the LWH-128 algorithm exhibits strong resistance to preimage attacks based on SAT-solving techniques. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

Back to TopTop