Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = biotoxins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 176
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

2 pages, 1126 KiB  
Correction
Correction: Han et al. Lotus Bee Pollen Extract Inhibits Isoproterenol-Induced Hypertrophy via JAK2/STAT3 Signaling Pathway in Rat H9c2 Cells. Antioxidants 2023, 12, 88
by Shuo Han, Lifu Chen, Yi Zhang, Shihui Xie, Jiali Yang, Songkun Su, Hong Yao and Peiying Shi
Antioxidants 2025, 14(8), 934; https://doi.org/10.3390/antiox14080934 - 30 Jul 2025
Viewed by 145
Abstract
In the original publication [...] Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 2

18 pages, 278 KiB  
Review
Biomarkers over Time: From Visual Contrast Sensitivity to Transcriptomics in Differentiating Chronic Inflammatory Response Syndrome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
by Ming Dooley
Int. J. Mol. Sci. 2025, 26(15), 7284; https://doi.org/10.3390/ijms26157284 - 28 Jul 2025
Viewed by 363
Abstract
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its [...] Read more.
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its evolution from early functional tests such as visual contrast sensitivity (VCS) to advanced transcriptomic profiling. Drawing on peer-reviewed studies spanning two decades, we examine the layered integration of neuroendocrine, immunologic, metabolic, and genomic markers that collectively support a multisystem model of innate immune activation specific to environmentally acquired illness. Particular focus is given to the Gene Expression: Inflammation Explained (GENIE) platform’s use of transcriptomics to classify disease stages and distinguish CIRS from other fatiguing conditions. While ME/CFS research continues to explore overlapping pathophysiologic features, it has yet to establish a unified diagnostic model with validated biomarkers or exposure-linked mechanisms. As a result, many patients labeled with ME/CFS may, in fact, represent unrecognized CIRS cases. This review underscores the importance of structured biomarker timelines in improving differential diagnosis and guiding treatment in complex chronic illness and highlights the reproducibility of the CIRS framework in contrast to the diagnostic ambiguity surrounding ME/CFS. Full article
35 pages, 4002 KiB  
Review
Terahertz Spectroscopy for Food Quality Assessment: A Comprehensive Review
by Jie Yang, Xue Bai, Mingji Wei, Hui Jiang and Leijun Xu
Foods 2025, 14(13), 2199; https://doi.org/10.3390/foods14132199 - 23 Jun 2025
Viewed by 802
Abstract
Terahertz spectroscopy (0.1~10 THz), as a new type of non-destructive testing method with both microwave and infrared characteristics, has shown remarkable potential in the field of food quality testing in recent years. Its unique penetration, high sensitivity, and low photon energy characteristics, combined [...] Read more.
Terahertz spectroscopy (0.1~10 THz), as a new type of non-destructive testing method with both microwave and infrared characteristics, has shown remarkable potential in the field of food quality testing in recent years. Its unique penetration, high sensitivity, and low photon energy characteristics, combined with chemometrics and machine learning methods, provide an efficient solution for the qualitative and quantitative analysis of complex food ingredients. In this paper, we systematically review the principles of terahertz spectroscopy and its key applications in food testing, focusing on its research progress in pesticide residues, additives, biotoxins, and mold, adulteration identification, variety identification, and nutrient content detection. By integrating spectral data preprocessing, reconstruction algorithms, and machine learning model optimization strategies, this paper further analyzes the advantages and challenges of this technology in enhancing detection accuracy and efficiency. In addition, combined with the urgent demand for fast and nondestructive technology in the field of food detection, the future development direction of the deep integration of terahertz spectroscopy technology and artificial intelligence is envisioned, with a view to providing theoretical support and technical reference for food safety assurance and nutritional health research. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

21 pages, 2414 KiB  
Article
In Vitro Evaluation of the Healing Potential and Proteomic Study of Quercus robur L. Leaf Extracts in Human Keratinocytes
by Nelson Rojas-Velis, Casimiro Cárdenas-García, Erik Pérez, Jorge R. Toledo, Miguel Ángel Medina, Allisson Astuya-Villalón and Roberto T. Abdala-Díaz
Molecules 2025, 30(10), 2152; https://doi.org/10.3390/molecules30102152 - 14 May 2025
Viewed by 646
Abstract
(1) Background: This study evaluated the potential of an aqueous extract from Quercus robur L. leaves for chronic wound healing. Its composition, rich in bioactive compounds (tannins and flavonoids), confers antioxidant and antimicrobial properties. (2) Methods: The toxicity and ability of the extract [...] Read more.
(1) Background: This study evaluated the potential of an aqueous extract from Quercus robur L. leaves for chronic wound healing. Its composition, rich in bioactive compounds (tannins and flavonoids), confers antioxidant and antimicrobial properties. (2) Methods: The toxicity and ability of the extract to enhance cell migration were tested in human keratinocytes (HaCaT cell line). Additionally, a proteomic analysis was performed on treated cells. (3) Results: The extract exhibited low cytotoxicity (IC50 = 943 µg·mL−1) compared to other plant extracts. At 5 mg·mL−1, it significantly accelerated wound closure at 8 h, surpassing negative control and Reoxcare; however, results were comparable at 12 h. Proteomic analysis identified 117 differentially expressed proteins (21 upregulated, 96 downregulated) involved in essential processes such as cell migration, blood clotting, and cholesterol biosynthesis. Specifically, the extract increased the expression of CYP51A1, LSS, and SQLE, while inhibiting Delta (14)-sterol reductase, key enzymes in cholesterol metabolism, suggesting a potential mechanism for tissue regeneration. (4) Conclusions: The aqueous extract of Q. robur leaves shows promise as a natural therapeutic agent for chronic wound healing, potentially aiding tissue regeneration and modulation of cholesterol metabolism. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

20 pages, 5467 KiB  
Article
Bongkrekic Acid and Its Novel Isomers: Separation, Identification, and Determination in Food Matrices
by Suhe Dong, Danli Liu, Runfeng Lin, Yingjie Zhu, Peihong Zhu, Xin Jiang, Jie Mao, Yanqing Cao, Jing Peng, Tianyue Zhao, Danning Shen, Tao Li, Kun He and Na Wang
Toxins 2025, 17(5), 223; https://doi.org/10.3390/toxins17050223 - 2 May 2025
Cited by 1 | Viewed by 680
Abstract
The toxicity associated with bongkrekic acid (BKA) is severe due to its chemical structure, which also facilitates high mortality rates; however, its isomer, isobongkrekic acid (iBKA), with only minor structural variance, demonstrates marked differences in toxicity. This discrepancy in structural properties and toxicity [...] Read more.
The toxicity associated with bongkrekic acid (BKA) is severe due to its chemical structure, which also facilitates high mortality rates; however, its isomer, isobongkrekic acid (iBKA), with only minor structural variance, demonstrates marked differences in toxicity. This discrepancy in structural properties and toxicity highlights that risks have been potentially underestimated within current detection standards for BKAs. In this study, a novel BKA trans isomer at the C8 and C9 double carbon bonds (E-configuration), termed iBKA-neo, was successfully separated and identified. Subsequently, the multiple reaction monitoring parameters and chromatographic conditions for three BKA isomers were optimized, enabling effective separation within 15 min via UHPLC-MS/MS, among which the ammonium positive adduct ions yielded significantly higher response intensities for all BKA isomers than traditional deprotonated molecules. Additionally, distinct differences in the ion ratios between iBKA-neo and BKA were utilized for preliminary screening. On this basis, the extraction and enrichment strategies for BKAs were optimized in food matrices and validated comprehensively with good linearity (0.25–500 μg/kg), a superior limit of quantification (0.25 μg/kg), acceptable recoveries (82.32–114.84%), and stable intraday and interday precision (an RSD less than 12.67%). These findings significantly contribute to ecotoxicology and the formulation of safety standards concerning BKAs. Full article
Show Figures

Graphical abstract

27 pages, 6942 KiB  
Review
Advances in Multifunctional Nanoagents and SERS-Based Multimodal Sensing for Biotoxin in Foods
by Huan Jiang, Sihang Zhang, Bei Li and Long Wu
Foods 2025, 14(8), 1393; https://doi.org/10.3390/foods14081393 - 17 Apr 2025
Viewed by 638
Abstract
Biotoxins, toxic substances produced by living organisms, are widely present in food and pose a major threat to human health. Traditional detection methods, such as gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), often suffer from limitations including complex sample preparation, high [...] Read more.
Biotoxins, toxic substances produced by living organisms, are widely present in food and pose a major threat to human health. Traditional detection methods, such as gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), often suffer from limitations including complex sample preparation, high costs, and lengthy analysis times. In response, surface-enhanced Raman spectroscopy (SERS) has emerged as a highly sensitive and specific analytical tool for the detection of biotoxins. This review highlights the recent progress in multimodal detection technologies based on SERS, focusing on the design and classification of multimodal materials to optimize the construction of SERS substrates. The integration of SERS with other detection modalities, such as fluorescence, colorimetry, and electrochemistry, is discussed to enhance the accuracy and diversity of biotoxin detection. Finally, the review critically assesses the current challenges and future prospects of SERS multimodal detection technology, particularly in real-time food safety monitoring and on-site diagnostics, offering critical insights to guide future research directions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 2819 KiB  
Review
Research Progress on Nanotechnology-Driven Enzyme Biosensors for Electrochemical Detection of Biological Pollution and Food Contaminants
by Liang Qu, Xue Zhang, Yanhong Chu, Yuyang Zhang, Zhiyuan Lin, Fanzhuo Kong, Xing Ni, Yani Zhao, Qiongya Lu and Bin Zou
Foods 2025, 14(7), 1254; https://doi.org/10.3390/foods14071254 - 3 Apr 2025
Viewed by 854
Abstract
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and [...] Read more.
Electrochemical biosensors have attracted widespread attention from researchers due to their simple and rapid operation. Recent advancements in nanobiotechnology have further enhanced their performance, with nanomaterials like graphene, carbon nanotubes, and metal nanoparticles being widely used as carriers for immobilizing enzymes, cells, and DNA molecules. These materials improve stability, sensitivity, and selectivity, making biosensors more effective. This article reviews the introduction, principles, and classification of enzyme-based electrode sensors, as well as their research and application progress in the detection of food risk factors (including foodborne pathogens, biotoxins, drug residues, food additives, allergens, etc.). It also explores future prospects, including advancements in nanotechnology and enzyme immobilization techniques, highlighting their potential in food safety and beyond. Full article
(This article belongs to the Special Issue Food Grade Immobilisation Systems for Enzymes)
Show Figures

Figure 1

22 pages, 629 KiB  
Article
Investigation into Paralytic Shellfish Toxins and Microcystins in Seabirds from Portugal
by Lucía Soliño, Andrew D. Turner, Begoña Ben-Gigirey, Ryan P. Alexander, Karl J. Dean, Robert G. Hatfield, Benjamin H. Maskrey and María V. Mena Casero
Toxins 2025, 17(3), 135; https://doi.org/10.3390/toxins17030135 - 13 Mar 2025
Cited by 1 | Viewed by 892
Abstract
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates [...] Read more.
Microalgae form the basis of marine food webs, essential in sustaining top predators including seabirds. However, certain species of microalgae synthesize biotoxins, which can accumulate in shellfish and fish and may cause harm to marine animals feeding on them. Toxins produced by dinoflagellates have been previously observed to be poisonous to seabirds. Also, in freshwater and brackish habitats, cyanobacteria have caused bird mortality events. In this work, we analyze the prevalence of six families of biotoxins (paralytic shellfish toxins (PSTs), microcystins (MCs), anatoxins, amnesic shellfish toxins (ASTs), cylindrospermopsin, and tetrodotoxins (TTXs)) in 340 samples from 193 wild birds admitted to a wildlife rehabilitation centre in south Portugal. Furthermore, we consider the clinical picture and signs of 17 birds that presented quantifiable levels of biotoxins in their tissues. The relationship between toxin burdens and the symptomatology observed, as well as possible biotoxin sources, are discussed. Based on previously published research data, we conclude that, in these birds, the biotoxins are unlikely to be the only cause of death but might contribute to some extent to a reduction in birds’ fitness. Full article
Show Figures

Figure 1

15 pages, 3542 KiB  
Article
Excretion Routes of Okadaic Acid and Dinophysistoxin-2 from Mussels (Mytilus galloprovincialis) and Cockles (Cerastoderma edule)
by Juan Blanco, Noelia Estévez-Calvar and Helena Martín
Toxins 2025, 17(3), 128; https://doi.org/10.3390/toxins17030128 - 9 Mar 2025
Viewed by 893
Abstract
The knowledge of the routes of excretion of the toxins accumulated by molluscs is a key step in designing methods that accelerate depuration. In this work, the excretion route, in mussels and cockles, of the main diarrhetic shellfish poisoning (DSP) toxins in Europe [...] Read more.
The knowledge of the routes of excretion of the toxins accumulated by molluscs is a key step in designing methods that accelerate depuration. In this work, the excretion route, in mussels and cockles, of the main diarrhetic shellfish poisoning (DSP) toxins in Europe (okadaic acid and dinophysistoxin-2) after natural intoxication were studied. During depuration, the amounts of free toxins and their derivatives were quantified in bivalves, faeces, and water. Most toxins (>98%) were excreted through faeces as acyl derivatives (most likely 7-O-acyl esters), independent of the ratio between these derivatives and free toxins in soft tissues. The small proportion of toxins excreted into water mostly constituted the free forms of the toxins. Both species shared the same route even though they contained very different proportions of free toxins in their soft tissues. No substantial changes in this general pattern were observed during the experiment. The esters of fatty acids with 16 carbon atoms were the most abundant in both soft tissues and faeces, but they were not the same in mussels and cockles. Most of the variability in ester proportions can be attributed to the species more than to their differential excretion (water or faeces) suggesting that there are not large differences in the depuration of the different esters. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

11 pages, 1256 KiB  
Article
Structural Characterization of Pinnatoxin Isomers
by Andrew I. Selwood, Christopher O. Miles, Alistair L. Wilkins, Frode Rise, Sarah C. Finch and Roel van Ginkel
Mar. Drugs 2025, 23(3), 103; https://doi.org/10.3390/md23030103 - 26 Feb 2025
Viewed by 1023
Abstract
Pinnatoxins, a group of marine biotoxins primarily produced by the dinoflagellate Vulcanodinium rugosum, have garnered significant attention due to their potent toxic effects and widespread distribution in marine ecosystems. LC–MS analysis of shellfish and V. rugosum cultures revealed the presence of previously [...] Read more.
Pinnatoxins, a group of marine biotoxins primarily produced by the dinoflagellate Vulcanodinium rugosum, have garnered significant attention due to their potent toxic effects and widespread distribution in marine ecosystems. LC–MS analysis of shellfish and V. rugosum cultures revealed the presence of previously unidentified isomers of pinnatoxins D, E, F, and H, at levels approximately six times lower than those of known isomers. The chemical structures of these isopinnatoxins were determined using a combination of LC–MS/MS and NMR spectroscopy, which demonstrated that the isomerization of each pinnatoxin occurred through the opening and recyclization of the spiro-linked tetrahydropyranyl D-ring to form a smaller tetrahydrofuranyl ring. The acute toxicity of isopinnatoxin E was determined by intraperitoneal injection into mice and was found to be significantly lower than that of pinnatoxin E. Given their low toxicity and low abundance, it is unlikely that isopinnatoxins contribute significantly to the overall toxicity of pinnatoxins. Full article
Show Figures

Graphical abstract

38 pages, 2970 KiB  
Review
The Toxic Effects of Environmental Domoic Acid Exposure on Humans and Marine Wildlife
by Ami E. Krasner, Margaret E. Martinez, Cara L. Field and Spencer E. Fire
Mar. Drugs 2025, 23(2), 61; https://doi.org/10.3390/md23020061 - 29 Jan 2025
Cited by 1 | Viewed by 2542
Abstract
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review [...] Read more.
Biotoxins produced by harmful algal blooms (HABs) are a substantial global threat to ocean and human health. Domoic acid (DA) is one such biotoxin whose negative impacts are forecasted to increase with climate change and coastal development. This manuscript serves as a review of DA toxicosis after environmental exposure in humans and wildlife, including an introduction to HAB toxins, the history of DA toxicosis, DA production, toxicokinetic properties of DA, susceptibility, clinical signs, DA detection methods and other diagnostic tests, time course of toxicosis, treatment, prognostics, and recommendations for future research. Additionally, we highlight the utility of California sea lions (CSLs; Zalophus californianus) as a model and sentinel of environmental DA exposure. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

24 pages, 4362 KiB  
Article
Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay
by Thomas Yon, Philippe Cruchet, Jérôme Viallon, J. Sam Murray, Emillie Passfield, Mireille Chinain, Hélène Taiana Darius and Mélanie Roué
Mar. Drugs 2025, 23(1), 42; https://doi.org/10.3390/md23010042 - 16 Jan 2025
Viewed by 1425
Abstract
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. [...] Read more.
Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus Gambierdiscus. Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. However, little information on their effectiveness for nonpolar CTXs is available, yet these congeners, contributing to the risk of CP, are required for the establishment of effective food safety monitoring programs. An evaluation of six extraction/purification protocols, performed with CTX3C spiked on fish flesh and a neuroblastoma cell-based assay (CBA-N2a), revealed recoveries from 6 to 45%. This led to the development of an optimized 3-day protocol designed for a large number of samples, with CTX1B and CTX3C eluting in a single fraction and showing recoveries of 73% and 70%, respectively. In addition, a reduction in adverse matrix effects in the CBA-N2a analyses was demonstrated with naturally contaminated specimens, increasing the sensitivity of the method, which now meets the very low guidance level recommended by international agencies. However, efforts are still required to reduce the signal suppression observed in LC-MS/MS analysis. This optimized protocol contributes to the technological advancement of detection methods, promoting food safety and improving CP risk assessment in marine products. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Figure 1

20 pages, 4215 KiB  
Review
Pioneering Role of Nanopore Single-Molecule Sensing in Environmental and Food Surveillance
by Wenqiang Tian, Xu Wang, Yan Zhang, Ting Weng, Tlili Chaker, Xiaohan Chen, Qingke Kong and Deqiang Wang
Biosensors 2025, 15(1), 41; https://doi.org/10.3390/bios15010041 - 13 Jan 2025
Cited by 1 | Viewed by 1931
Abstract
In recent years, environmental and food safety have garnered substantial focus due to their intimate connection with human health. Numerous biosensors have been developed for identifying deleterious compounds; however, these biosensors reveal certain limitations. Nanopore sensors, featuring nano-scaled pore size, have demonstrated outstanding [...] Read more.
In recent years, environmental and food safety have garnered substantial focus due to their intimate connection with human health. Numerous biosensors have been developed for identifying deleterious compounds; however, these biosensors reveal certain limitations. Nanopore sensors, featuring nano-scaled pore size, have demonstrated outstanding performance in terms of rapidity, sensitivity, and selectivity as a single-molecule technique for environmental and food surveillance. In this review, we present a comprehensive overview of nanopore applications in these two fields. To elucidate the pioneering roles of nanopores, analytes are categorized into three distinct groups, including metal ions, synthetic contaminants, and biotoxins. Moreover, a variety of strategies are involved, such as the coalescence with ligand probes, the implementation of chemical reactions, the functionalization of nanopores, etc. These scientific studies showcase the versatility and diversity of the nanopore technique, paving the way for further developments of nanopore technology in environmental and food safety. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

16 pages, 2308 KiB  
Article
A Comparative Study of the In Vitro Intestinal Permeability of Pinnatoxins and Portimine
by Rachelle Lanceleur, Vincent Hort, Marion Peyrat, Denis Habauzit, Andrew I. Selwood and Valérie Fessard
Mar. Drugs 2025, 23(1), 26; https://doi.org/10.3390/md23010026 - 7 Jan 2025
Viewed by 1142
Abstract
The pinnatoxins (PnTXs) and portimines, produced by Vulcanodinium rugosum, have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body [...] Read more.
The pinnatoxins (PnTXs) and portimines, produced by Vulcanodinium rugosum, have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h. Our results demonstrated that all of the toxins could impair barrier integrity after 24 h, with differences observed for PnTX-A, -E, and -F, as well as portimine, the most potent of all. While PnTX-A and -E exhibited poor permeability, the other PnTXs were more penetrative, with a Papp > 1.5 × 10−6 cm·s−1. Portimine was the only toxin displaying both a time- and concentration-dependent passage, likely involving a passive diffusion process. The experimental results were compared to predictions obtained by QSAR tools. Although only qualitative, our results suggest that some of these compounds may be more likely to be distributed throughout the body. Further in vivo studies are required to estimate oral bioavailability and potential public health concerns. Full article
(This article belongs to the Special Issue Marine Biotoxins 3.0)
Show Figures

Figure 1

Back to TopTop