Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay
Abstract
1. Introduction
2. Results
2.1. Evaluation of Efficiencies of Six Different Protocols for the Extraction/Purification of CTX3C
2.2. Design of an Improved Protocol for CTX Extraction and Purification
2.3. Application of the OP Protocol to Naturally Contaminated Marine Product Samples
2.4. Evaluation of the Suitability of the OP Protocol for LC-MS/MS Sample Analyses
3. Discussion
3.1. CTX3C Extraction Efficiency
3.2. Finding the Best Compromise Between Extraction Efficiencies of Ciguatoxins and Matrix
3.3. Improved Extraction/Purification Protocol for CTXs
3.4. Applicability of the OP Protocol to Naturally Contaminated Fish Samples
3.5. Matrix Effect Evaluation of the OP Protocol for Subsequent CBA-N2a and LC-MS/MS Analyses
4. Materials and Methods
4.1. Chemicals
4.2. CTX Standards
4.3. Biological Materials
4.4. Spiking Procedure
4.5. Evaluation of Efficiencies of Six Different Protocols for Extraction/Purification of CTX3C
4.6. Development of a New, Improved Extraction/Purification Protocol
4.6.1. Extraction
4.6.2. Liquid–Liquid Partitioning
4.6.3. SPE Fractionation
4.7. Application of the OP Protocol to Naturally Contaminated Marine Product Samples
4.8. Neuroblastoma Cell-Based Assay (CBA-N2a)
4.8.1. CBA-N2a Procedure
4.8.2. Strategy of Analyses of Fractions
Measure of Matrix Effects
Screening of Fractions
Quantification
4.9. Evaluation of the OP Protocol for Subsequent LC-MS/MS Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, F.E.; Egen, N.B. Ciguateric fishes, ciguatoxin (CTX) and ciguatera poisoning. J. Toxicol. Toxin Rev. 1991, 10, 37–62. [Google Scholar] [CrossRef]
- Chinain, M.; Gatti, C.; Roué, M.; Darius, H.T. Ciguatera-causing dinoflagellates in the genera Gambierdiscus and Fukuyoa: Distribution, ecophysiology and toxicology. In Dinoflagellates; Subba Rao, D.V., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 405–457. [Google Scholar]
- Chinain, M.; Gatti, C.M.I.; Darius, H.T.; Quod, J.P.; Tester, P.A. Ciguatera poisonings: A global review of occurrences and trends. Harmful Algae 2021, 102, 101873. [Google Scholar]
- Soliño, L.; Costa, P.R. Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. Toxicon 2018, 150, 124–143. [Google Scholar] [CrossRef]
- Ikehara, T.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Biooxidation of ciguatoxins leads to species-specific toxin profiles. Toxins 2017, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Martin, V.; Vale, C.; Rubiolo, J.A.; Roel, M.; Hirama, M.; Yamashita, S.; Vieytes, M.R.; Botana, L.M. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons. Chem. Res. Toxicol. 2015, 28, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Château-Degat, M.L.; Chinain, M.; Cerf, N.; Gingras, S.; Hubert, B.; Dewailly, E. Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera poisoning in French Polynesia. Harmful Algae 2005, 4, 1053–1062. [Google Scholar] [CrossRef]
- Oshiro, N.; Nagasawa, H.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Asakura, H.; Yasumoto, T. Characteristic distribution of ciguatoxins in the edible parts of a grouper, Variola louti. Toxins 2021, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.A.; Fernandez, M.; Backer, L.C.; Dickey, R.W.; Bernstein, J.; Schrank, K.; Kibler, S.; Stephan, W.; Gribble, M.O.; Bienfang, P.; et al. An Updated review of ciguatera fish poisoning: Clinical, epidemiological, environmental, and public health management. Mar. Drugs 2017, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Dickey, R.W.; Plakas, S.M. Ciguatera: A public health perspective. Toxicon 2010, 56, 123–136. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Ciguatera Poisoning: Rome, 19–23 November 2018; Food safety and quality No. 9; World Health Organization: Rome, Italy, 2020. [Google Scholar]
- Hossen, V.; Soliño, L.; Leroy, P.; David, E.; Velge, P.; Dragacci, S.; Krys, S.; Flores Quintana, H.; Diogène, J. Contribution to the risk characterization of ciguatoxins: LOAEL estimated from eight ciguatera fish poisoning events in Guadeloupe (French West Indies). Environ. Res. 2015, 143 Pt B, 100–108. [Google Scholar] [CrossRef]
- Viallon, J.; Chinain, M.; Darius, H.T. Revisiting the neuroblastoma cell-based assay (CBA-N2a) for the improved detection of marine toxins active on voltage gated sodium channels (VGSCs). Toxins 2020, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Manger, R.; Vilariño, O.; Gago-Martínez, A. Evaluation of matrix issues in the applicability of the neuro-2a cell based assay on the detection of CTX in fish samples. Toxins 2020, 12, 308. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, C.R.; Robertson, A.; Quintana, H.A.F.; Silander, M.C.; Smith, T.B.; Olsen, D. Ciguatoxin prevalence in 4 commercial fish species along an oceanic exposure gradient in the US Virgin Islands. Environ. Toxicol. Chem. 2018, 37, 1852–1863. [Google Scholar] [CrossRef] [PubMed]
- Yokozeki, T.; Hama, Y.; Fujita, K.; Igarashi, T.; Hirama, M.; Tsumuraya, T. Evaluation of relative potency of calibrated ciguatoxin congeners by near-infrared fluorescent receptor binding and neuroblastoma cell-based assays. Toxicon 2023, 230, 107161. [Google Scholar] [CrossRef]
- Murata, K.; Yasumoto, T. Chemiluminescent receptor binding assay for ciguatoxins and brevetoxins using acridinium brevetoxin-B2. Toxins 2019, 11, 13. [Google Scholar] [CrossRef]
- Hardison, D.R.; Holland, W.C.; McCall, J.R.; Bourdelais, A.J.; Baden, D.G.; Darius, H.T.; Chinain, M.; Tester, P.A.; Shea, D.; Quintana, H.A.; et al. Fluorescent receptor binding assay for detecting ciguatoxins in fish. PLoS ONE 2016, 11, e0153348. [Google Scholar] [CrossRef]
- Darius, H.T.; Ponton, D.; Revel, T.; Cruchet, P.; Ung, A.; Tchou Fouc, M.; Chinain, M. Ciguatera risk assessment in two toxic sites of French Polynesia using the receptor-binding assay. Toxicon 2007, 50, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Tsumuraya, T.; Sato, T.; Hirama, M.; Fujii, I. Highly sensitive and practical fluorescent sandwich ELISA for ciguatoxins. Anal. Chem. 2018, 90, 7318–7324. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, A.; Li, X.; Zhang, Z.; Mei, Z.; Zhang, S. Capillary electrophoretic ELISA method for rapid detection of ciguatoxin in shellfish and fish sample. Patent CN101963614, 2 February 2011. [Google Scholar]
- Empey Campora, C.; Dierking, J.; Tamaru, C.S.; Hokama, Y.; Vincent, D. Detection of ciguatoxin in fish tissue using sandwich ELISA and neuroblastoma cell bioassay. J. Clin. Lab. Anal. 2008, 22, 246–253. [Google Scholar] [CrossRef]
- Nagae, M.; Igarashi, T.; Mizukoshi, K.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Development and validation of an LC-MS/MS method for the ultra-trace analysis of Pacific ciguatoxins in fish. J. AOAC Int. 2021, 104, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, A.; Loeffler, C.R.; Bodi, D. Extraction and LC-MS/MS analysis of ciguatoxins: A semi-targeted approach designed for fish of unknown origin. Toxins 2021, 13, 630. [Google Scholar] [CrossRef]
- Sibat, M.; Herrenknecht, C.; Darius, H.T.; Roué, M.; Chinain, M.; Hess, P. Detection of Pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J. Chromatogr. A 2018, 1571, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ha, D.V.; Uesugi, A.; Uchida, H. Analytical challenges to ciguatoxins. Curr. Opin. Food Sci. 2017, 18, 37–42. [Google Scholar] [CrossRef]
- Murray, J.S.; Boundy, M.J.; Selwood, A.I.; Harwood, D.T. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 2018, 80, 80–87. [Google Scholar] [CrossRef]
- Harwood, D.T.; Murray, J.S.; Michael, J.B. Sample preparation prior to marine toxin analysis. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Otero, P.; Silva, M. Emerging marine biotoxins in European waters: Potential risks and analytical challenges. Mar. Drugs 2022, 20, 199. [Google Scholar] [CrossRef] [PubMed]
- Estevez, P.; Castro, D.; Leao, J.M.; Yasumoto, T.; Dickey, R.; Gago-Martinez, A. Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts. Food Chem. 2019, 280, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Gatti, C.M.I.; Ung, A.; Cruchet, P.; Revel, T.; Viallon, J.; Sibat, M.; Varney, P.; Laurent, V.; Hess, P.; et al. Evidence for the range expansion of ciguatera in French Polynesia: A revisit of the 2009 mass-poisoning outbreak in Rapa Island (Australes Archipelago). Toxins 2020, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Mak, Y.L.; Wai, T.-C.; Murphy, M.B.; Chan, W.H.; Wu, J.J.; Lam, J.C.W.; Chan, L.L.; Lam, P.K.S. Pacific ciguatoxins in food web components of coral reef systems in the Republic of Kiribati. Environ. Sci. Technol. 2013, 47, 14070–14079. [Google Scholar] [CrossRef]
- Darius, H.T.; Roué, M.; Sibat, M.; Viallon, J.; Gatti, C.M.I.; Vandersea, M.W.; Tester, P.A.; Litaker, R.W.; Amzil, Z.; Hess, P.; et al. Tectus niloticus (Tegulidae, Gastropod) as a novel vector of ciguatera poisoning: Detection of Pacific ciguatoxins in toxic samples from Nuku Hiva Island (French Polynesia). Toxins 2018, 10, 2. [Google Scholar] [CrossRef]
- Gatti, C.M.I.; Lonati, D.; Darius, H.T.; Zancan, A.; Roué, M.; Schicchi, A.; Locatelli, C.A.; Chinain, M. Tectus niloticus (Tegulidae, Gastropod) as a novel vector of ciguatera poisoning: Clinical characterization and follow-up of a mass poisoning event in Nuku Hiva Island (French Polynesia). Toxins 2018, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Gatti Howell, C.; Roué, M.; Ung, A.; Henry, K.; Revel, T.; Cruchet, P.; Viallon, J.; Darius, H.T. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. Harmful Algae 2023, 129, 102525. [Google Scholar] [CrossRef] [PubMed]
- Darius, H.T.; Roué, M.; Sibat, M.; Viallon, J.; Gatti, C.M.I.; Vandersea, M.W.; Tester, P.A.; Litaker, R.W.; Amzil, Z.; Hess, P.; et al. Toxicological investigations on the sea urchin Tripneustes gratilla (Toxopneustidae, Echinoid) from Anaho Bay (Nuku Hiva, French Polynesia): Evidence for the presence of Pacific ciguatoxins. Mar. Drugs 2018, 16, 122. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, N.; Tomikawa, T.; Kuniyoshi, K.; Ishikawa, A.; Toyofuku, H.; Kojima, T.; Asakura, H. LC–MS/MS Analysis of ciguatoxins revealing the regional and species distinction of fish in the tropical Western Pacific. J. Mar. Sci. Eng. 2021, 9, 299. [Google Scholar] [CrossRef]
- Sanchez-Henao, J.A.; García-Álvarez, N.; Fernández, A.; Saavedra, P.; Silva Sergent, F.; Padilla, D.; Acosta-Hernández, B.; Martel Suárez, M.; Diogène, J.; Real, F. Predictive score and probability of CTX-like toxicity in fish samples from the official control of ciguatera in the Canary Islands. Sci. Total Environ. 2019, 673, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, N.; Nagasawa, H.; Watanabe, M.; Nishimura, M.; Kuniyoshi, K.; Kobayashi, N.; Sugita-Konishi, Y.; Asakura, H.; Tachihara, K.; Yasumoto, T. An extensive survey of ciguatoxins on grouper Variola louti from the Ryukyu Islands, Japan, using liquid chromatography–tandem mass spectrometry (LC-MS/MS). J. Mar. Sci. Eng. 2022, 10, 423. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Loeffler, C.R.; Kappenstein, O. Identical ciguatoxin-3C group profiles in Lutjanus bohar from the Pacific and Indian Oceans—Indicating the need to re-evaluate geographical CTX classifications. Front. Mar. Sci. 2022, 9, 937438. [Google Scholar] [CrossRef]
- Wong, C.K.; Hung, P.; Lee, K.L.; Kam, K.M. Solid-phase extraction clean-up of ciguatoxin-contaminated coral fish extracts for use in the mouse bioassay. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Yang, A.J.; Jones, A. Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh. Toxicon 2009, 54, 62–66. [Google Scholar] [CrossRef]
- Stewart, I.; Eaglesham, G.K.; Poole, S.; Graham, G.; Paulo, C.; Wickramasinghe, W.; Sadler, R.; Shaw, G.R. Establishing a public health analytical service based on chemical methods for detecting and quantifying Pacific ciguatoxin in fish samples. Toxicon 2010, 56, 804–812. [Google Scholar] [CrossRef]
- Wu, J.J.; Mak, Y.L.; Murphy, M.B.; Lam, J.C.W.; Chan, W.H.; Wang, M.F.; Chan, L.L.; Lam, P.K.S. Validation of an accelerated solvent extraction liquid chromatography-tandem mass spectrometry method for Pacific ciguatoxin-1 in fish flesh and comparison with the mouse neuroblastoma assay. Anal. Bioanal. Chem. 2011, 400, 3165–3175. [Google Scholar] [CrossRef]
- Mak, Y.L.; Wu, J.J.; Chan, W.H.; Murphy, M.B.; Lam, J.C.W.; Chan, L.L.; Lam, P.K.S. Simultaneous quantification of Pacific ciguatoxins in fish blood using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 3331–3340. [Google Scholar] [CrossRef]
- Kohli, G.S.; Haslauer, K.; Sarowar, C.; Kretzschmar, A.L.; Boulter, M.; Harwood, D.T.; Laczka, O.; Murray, S.A. Qualitative and quantitative assessment of the presence of ciguatoxin, P-CTX-1B, in Spanish Mackerel (Scomberomorus commerson) from waters in New South Wales (Australia). Toxicol. Rep. 2017, 4, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Tsumuraya, T.; Hirama, M. Rationally designed synthetic haptens to generate anti-ciguatoxin monoclonal antibodies, and development of a practical sandwich ELISA to detect ciguatoxins. Toxins 2019, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lee, W.H.; Wu, J.; Zhou, S.; Yip, K.C.; Liu, X.; Kirata, T.; Chan, L.L. The Occurrence, distribution, and toxicity of high-risk ciguatera fish species (grouper and snapper) in Kiritimati Island and Marakei Island of the Republic of Kiribati. Toxins 2022, 14, 208. [Google Scholar] [CrossRef]
- Campàs, M.; Leonardo, S.; Oshiro, N.; Kuniyoshi, K.; Tsumuraya, T.; Hirama, M.; Diogène, J. A smartphone-controlled amperometric immunosensor for the detection of Pacific ciguatoxins in fish. Food Chem. 2022, 374, 131687. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific opinion on marine biotoxins in shellfish—Emerging toxins: Ciguatoxin group. EFSA J. 2010, 8, 1627. [Google Scholar]
- FDA. Appendix 5: FDA and EPA safety levels in regulations and guidance (June 2021). In Fish and Fishery Products Hazards and Control Guidance; Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition: Silver Spring, MD, USA, 2022; A 5-1. [Google Scholar]
- IOC/IPHAB. Global ciguatera strategy 2015–2019. In Proceedings of the 12th Session of UNESCO-IOC’s Intergovernmental Panel on Harmful Algal Blooms, Paris, France, 28–30 April 2015. [Google Scholar]
- Gonçalves, R.M.; Petenuci, M.E.; Maistrovicz, F.C.; Galuch, M.B.; Montanher, P.F.; Pizzo, J.S.; Gualda, I.P.; Visentainer, J.V. Lipid profile and fatty acid composition of marine fish species from Northeast coast of Brazil. J. Food Sci. Technol. 2021, 58, 1177–1189. [Google Scholar] [CrossRef]
- Estevez, P.; Oses Prieto, J.; Burlingame, A.; Gago Martinez, A. Characterization of the ciguatoxin profile in fish samples from the Eastern Atlantic Ocean using capillary liquid chromatography-high resolution mass spectrometry. Food Chem. 2023, 418, 135960. [Google Scholar] [CrossRef] [PubMed]
- Darius, H.T.; Paillon, C.; Mou-Tham, G.; Ung, A.; Cruchet, P.; Revel, T.; Viallon, J.; Vigliola, L.; Ponton, D.; Chinain, M. Evaluating age and growth relationship to ciguatoxicity in five coral reef fish species from French Polynesia. Mar. Drugs 2022, 20, 251. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L.; Carter, S.; Capper, A. An updated ciguatoxin extraction method and silica cleanup for use with HPLC-MS/MS for the analysis of P-CTX-1, PCTX-2 and P-CTX-3. Toxicon 2015, 108, 249–256. [Google Scholar] [CrossRef]
- Chinain, M.; Darius, H.T.; Ung, A.; Cruchet, P.; Wang, Z.; Ponton, D.; Laurent, D.; Pauillac, S. Growth and toxin production in the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) in culture. Toxicon 2010, 56, 739–750. [Google Scholar] [CrossRef]
- Loeffler, C.R.; Spielmeyer, A. Faster ciguatoxin extraction methods for toxicity screening. Sci. Rep. 2024, 14, 21715. [Google Scholar] [CrossRef]
- Costa, P.R.; Estevez, P.; Solino, L.; Castro, D.; Rodrigues, S.M.; Timoteo, V.; Leao-Martins, J.M.; Santos, C.; Gouveia, N.; Diogene, J.; et al. An update on ciguatoxins and CTX-like toxicity in fish from different trophic levels of the Selvagens Islands (NE Atlantic, Madeira, Portugal). Toxins 2021, 13, 580. [Google Scholar] [CrossRef] [PubMed]
- Clausing, R.J.; Losen, B.; Oberhaensli, F.R.; Darius, H.T.; Sibat, M.; Hess, P.; Swarzenski, P.W.; Chinain, M.; Bottein, M.Y.D. Experimental evidence of dietary ciguatoxin accumulation in an herbivorous coral reef fish. Aquat. Toxicol. 2018, 200, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, A.; Eixarch, H.; de la Iglesia, P.; Rodriguez, M.; Dominguez, L.; Andree, K.B.; Diogene, J. Towards the standardisation of the neuroblastoma (neuro-2a) cell-based assay for ciguatoxin-like toxicity detection in fish: Application to fish caught in the Canary Islands. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Pawlowiez, R.; Darius, H.T.; Cruchet, P.; Rossi, F.; Caillaud, A.; Laurent, D.; Chinain, M. Evaluation of seafood toxicity in the Australes archipelago (French Polynesia) using the neuroblastoma cell-based assay. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 567–586. [Google Scholar] [CrossRef]
- Spielmeyer, A.; Blaschke, V.; Loeffler, C.R. Fish extract fractionation by solid phase extraction: Investigating co-occurring ciguatoxins by LC-MS/MS and N2a-bioassay. Separations 2024, 11, 238. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Rossi, R.; Soprano, V.; Capozzo, D.; Serpe, L. Palytoxin in seafood by liquid chromatography tandem mass spectrometry: Investigation of extraction efficiency and matrix effect. Anal. Bioanal. Chem. 2011, 401, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Legrand, A.M.; Litaudon, M.; Genthon, G.N.; Bagnis, R.; Yasumoto, T. Isolation and some properties of ciguatoxin. J. Appl. Phycol. 1989, 1, 183–188. [Google Scholar] [CrossRef]
- Murata, M.; Legrand, A.M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1990, 112, 4380–4386. [Google Scholar] [CrossRef]
- Yasumoto, T.; Igarashi, T.; Legrand, A.-M.; Cruchet, P.; Chinain, M.; Fujita, T.; Naoki, H. Structural elucidation of ciguatoxin congeners by fast-atom bombardment tandem mass spectroscopy. J. Am. Chem. Soc. 2000, 122, 4988–4989. [Google Scholar] [CrossRef]
- Darius, H.T.; Revel, T.; Viallon, J.; Sibat, M.; Cruchet, P.; Longo, S.; Hardison, D.R.; Holland, W.C.; Tester, P.A.; Litaker, R.W.; et al. Comparative study on the performance of three detection methods for the quantification of Pacific ciguatoxins in French Polynesian strains of Gambierdiscus polynesiensis. Mar. Drugs 2022, 20, 348. [Google Scholar] [CrossRef] [PubMed]
- Yogi, K.; Sakugawa, S.; Oshiro, N.; Ikehara, T.; Sugiyama, K.; Yasumoto, T. Determination of toxins involved in ciguatera fish poisoning in the Pacific by LC/MS. J. AOAC Int. 2014, 97, 398–403. [Google Scholar] [CrossRef] [PubMed]

and the OP protocol
. Data represent the mean ± SD (each concentration run in triplicate wells) of three independent experiments run on different days on at least two extraction replicates. The marine products analyzed were for the herbivores (a) steephead parrotfish, Chlorurus microrhinos, (b) yellowfin surgeonfish, Acanthurus xanthopterus, and (c) trochus, Tectus niloticus, and the carnivores (d) giant moray, Gymnothorax javanicus, (e) longface emperor, Lethrinus olivaceus, and (f) bluefin trevally, Caranx melampygus.
and the OP protocol
. Data represent the mean ± SD (each concentration run in triplicate wells) of three independent experiments run on different days on at least two extraction replicates. The marine products analyzed were for the herbivores (a) steephead parrotfish, Chlorurus microrhinos, (b) yellowfin surgeonfish, Acanthurus xanthopterus, and (c) trochus, Tectus niloticus, and the carnivores (d) giant moray, Gymnothorax javanicus, (e) longface emperor, Lethrinus olivaceus, and (f) bluefin trevally, Caranx melampygus.


, marbled grouper
and bluefin trevally
, obtained with the OP protocol, as well as of the (b) bluefin trevally, obtained with the OP protocol
, protocol #1
and the protocol published in Murray et al. [27]
.
, marbled grouper
and bluefin trevally
, obtained with the OP protocol, as well as of the (b) bluefin trevally, obtained with the OP protocol
, protocol #1
and the protocol published in Murray et al. [27]
.
| References | Detection Method | Tested Marine Products | Details of Spiking | Polar CTX Recovery (%) | Nonpolar CTX Recovery (%) |
|---|---|---|---|---|---|
| [41] | MBA | 3 carnivorous fish species | 500 ng CTX1B in 100 g of flesh | CTX1B = 33–85 | NT c |
| [42] | LC-MS/MS | 1 carnivorous fish species | 0.2 ng CTX1B in 2 g of flesh | CTX1B = 85 | NT |
| [43] | LC-MS/MS | 10 carnivorous fish species | 3 ng CTX1B in 2 g of flesh | CTX1B = 27–75 | NT |
| [44] | LC-MS/MS | 17 carnivorous fish species | 20 ng CTX1B in 5 g of flesh | CTX1B = 49–85 | NT |
| [45] | LC-MS/MS | 4 carnivorous and 2 herbivorous fish species, 2 invertebrate species | 100 pg CTX1B, 500 pg CTX2 a, 500 pg CTX3 b in 2.5–5 g of flesh | CTX1B = 73–87 CTX2 = 68–83 CTX3 = 61–78 | NT |
| [46] | LC-MS/MS | 1 carnivorous fish species | Not specified | CTX1B = 26 | NT |
| [27] | LC-MS/MS | 1 carnivorous fish species | 0.068, 0.341 and 0.682 µg/kg CTX1B in 5 g of flesh | CTX1B = 44 | CTX3C = 13 |
| [47] | ELISA | 1 carnivorous fish species | 100 pg CTX1B in 10 g of flesh | CTX1B = 32 | NT |
| [23] | LC-MS/MS | 2 carnivorous fish species | 0.1 µg of CTX1B or CTX3C per kg of fish flesh | CTX1B = 87–96 | CTX3C = 105–107 |
| [24] | LC-MS/MS | 2 carnivorous and 1 herbivorous fish species | Not specified | CTX1B = 39–62 CTX2 = 35–66 CTX3 = 35–69 | CTX3C = 25–35 |
| [48] | LC-MS/MS | Carnivorous fish species | 0.1 ng of CTX1B, CTX2 or CTX3 in 5 g of fish flesh | CTX1B = 80–89 CTX2 = 79,80 CTX3 = 71–84 | NT |
| [49] | CBA-N2a | 2 carnivorous fish species | Not specified | CTX1B = 32–42 | NT |
| Protocol ID# | Fractions Analyzed | Dry Extract (mg) | MCE (mg Equivalent Wet Weight of Fish Flesh mL−1) | Recovered CTX3C (ng) c | CTX3C Recovery (%) | Coefficient of Variation (%) |
|---|---|---|---|---|---|---|
| #1 | F2 a | 2.9 | 34 | 1.08 ± 0.16 | 21.5 ± 3.1 | 14.5 |
| F3 | 10.3 | 39 | 0.53 ± 0.10 | 10.7 ± 1.9 | 17.8 | |
| Total | 1.61 ± 0.18 | 32.2 ± 3.5 | 11.0 | |||
| #2 | F1 | 3.9 | NR [>244] b | ND d | - | - |
| F2 a | 1.2 | 83 | 0.32 ± 0.04 | 6.4 ± 0.9 | 13.8 | |
| F3 | 1.4 | NR [>343] | ND | - | - | |
| Total | 0.32 ± 0.04 | 6.4 ± 0.9 | 13.8 | |||
| #3 | F2 | 12.9 | NR [>184] | ND | - | - |
| F1.1 | 1.4 | NR [>343] | ND | - | - | |
| F1.2 a | 1.2 | NR [>400] | 0.38 ± 0.06 | 7.6 ± 1.2 | 16.2 | |
| F1.3 | 3.7 | NR [>270] | 0.77 ± 0.16 | 15.4 ± 3.2 | 20.7 | |
| Total | 1.15 ± 0.21 | 23.0 ± 4.3 | 18.7 | |||
| #4 | F4 | 13.5 | NR [>370] | 2.11 ± 0.18 | 42.3 ± 3.5 | 8.3 |
| F3.1 | 0.2 | NR [>50] | 0.15 ± 0.09 | 3.0 ± 1.7 | 55.9 | |
| F3.2 a | 0.5 | NR [>400] | ND | - | - | |
| F3.3 | 0.9 | NR [>444] | ND | - | - | |
| Total | 2.27 ± 0.18 | 45.3 ± 3.7 | 8.1 | |||
| #5 | F4 | 26.2 | 38 | 0.85 ± 0.20 | 17.0 ± 4.0 | 23.3 |
| F3.2 a | 3.3 | NR [>145] | ND | - | - | |
| F3.3 | 5.2 | NR [>92] | ND | - | - | |
| Total | 0.85 ± 0.20 | 17.0 ± 4.0 | 23.3 | |||
| #6 | F1.2.1 a | 0.4 | 500 | 2.04 ± 0.32 | 40.8 ± 6.3 | 15.5 |
| F1.2.2 | 1.7 | NR [>500] | 0.13 ± 0.01 | 2.6 ± 0.2 | 7.5 | |
| Total | 2.17 ± 0.32 | 43.4 ± 6.4 | 14.7 |
| Protocol | #1 | #2 | #3 | #4 | #5 | #6 |
|---|---|---|---|---|---|---|
| Reference | Darius et al. [68] | Inspired by Murray et al. [27] | Inspired by Sibat et al. [25] | Inspired by Meyer et al. [56] a | Inspired by Mak et al. [45] | Inspired by Nagae et al. [23] b |
| Fish flesh amount | 10 g wet | 10 g wet | 10 g wet and then freeze-dried | 10 g wet and then freeze-dried | 10 g wet and then freeze-dried | 10 g wet |
| Extraction |
|
|
|
|
|
|
| Purification 1 | LLP c aq MeOH 60%/CH2Cl2 ×2 | LLP aq MeOH 60%/CH2Cl2 ×2 | LLP aq MeOH 90%/hexane ×2 | LLP aq MeOH 57%/Hexane |
| LLP aq MeOH 90% + saturated Na2CO3/hexane |
| Purification 2 | LLP aq MeOH 80%/cyclohexane |
|
|
| LLP aq ACN 65% + 1M NaCl/CH2Cl2 | LLP aq MeOH 90% + saturated Na2CO3 + 5% citric acid/hexane |
| Purification 3 |
| / |
|
|
|
85:15 |
| Purification 4 | / | / | / | / | / |
|
| Purification 5 | / | / | / | / | / |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yon, T.; Cruchet, P.; Viallon, J.; Murray, J.S.; Passfield, E.; Chinain, M.; Darius, H.T.; Roué, M. Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay. Mar. Drugs 2025, 23, 42. https://doi.org/10.3390/md23010042
Yon T, Cruchet P, Viallon J, Murray JS, Passfield E, Chinain M, Darius HT, Roué M. Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay. Marine Drugs. 2025; 23(1):42. https://doi.org/10.3390/md23010042
Chicago/Turabian StyleYon, Thomas, Philippe Cruchet, Jérôme Viallon, J. Sam Murray, Emillie Passfield, Mireille Chinain, Hélène Taiana Darius, and Mélanie Roué. 2025. "Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay" Marine Drugs 23, no. 1: 42. https://doi.org/10.3390/md23010042
APA StyleYon, T., Cruchet, P., Viallon, J., Murray, J. S., Passfield, E., Chinain, M., Darius, H. T., & Roué, M. (2025). Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay. Marine Drugs, 23(1), 42. https://doi.org/10.3390/md23010042

