Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,379)

Search Parameters:
Keywords = biosensor design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3319 KB  
Article
Next-Generation Airborne Pathogen Detection: Flashing Ratchet Potential in Action
by Yazan Al-Zain, Mohammad Bqoor, Maha Albqoor and Lujain Ismail
Chemosensors 2025, 13(10), 371; https://doi.org/10.3390/chemosensors13100371 - 16 Oct 2025
Abstract
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic [...] Read more.
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic emission and three-body electron attachment. As these ions interact with airborne particles in the detection zone, measurable perturbations in the ECS profile emerge, yielding distinct spectral signatures that indicate particle presence. Proof-of-concept experiments, using standardized talcum powder aerosols as surrogates for viral-scale particles, established optimal operating parameters of 6 V potential and 600 kHz modulation frequency, with reproducible detection signals showing a relative shift of 4.5–13.4% compared to filtered-air controls. The system’s design concept incorporates humidity-resilient features, intended to maintain stability under varying environmental conditions. Together with the proposed size selectivity (50–150 nm), this highlights its potential robustness for real-world applications. To the best of our knowledge, this is the first demonstration of an open-air electro-ratchet transport system coupled with electric current spectroscopy for bioaerosol monitoring, distinct from prior optical or electrochemical airborne biosensors, highlighting its promise as a tool for continuous environmental surveillance in high-risk settings such as hospitals, airports, and public transit systems. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Graphical abstract

15 pages, 3635 KB  
Article
Development and Comparative Evaluation of Two Enzyme-Based Amperometric Biosensor Designs for Alanine Aminotransferase Determination in Biological Fluids
by Daryna Mruga, Yevhen Vakhovskyi, Veronika Bakhmat, Viktoriya Pyeshkova, Sergii Dzyadevych and Oleksandr Soldatkin
Micromachines 2025, 16(10), 1168; https://doi.org/10.3390/mi16101168 - 15 Oct 2025
Viewed by 20
Abstract
Alanine aminotransferase (ALT) is a key biomarker of liver function. Compared with conventional assays for ALT detection—which are expensive, time-consuming, labor-intensive, and require experienced personnel—biosensors represent a promising alternative, but it remains unclear which biorecognitive enzymatic configuration offers the best analytical performance for [...] Read more.
Alanine aminotransferase (ALT) is a key biomarker of liver function. Compared with conventional assays for ALT detection—which are expensive, time-consuming, labor-intensive, and require experienced personnel—biosensors represent a promising alternative, but it remains unclear which biorecognitive enzymatic configuration offers the best analytical performance for ALT detection. This study presents the development and comparative evaluation of two amperometric biosensors based on oxidase biorecognition elements: pyruvate oxidase (POx) and glutamate oxidase (GlOx). Enzymes were immobilized onto platinum electrodes under optimized conditions using entrapment for POx (pH 7.4, enzyme loading 1.62 U/µL, PVA-SbQ concentration 13.2%) and covalent crosslinking for GlOx (pH 6.5, enzyme loading 2.67%, glutaraldehyde concentration 0.3%). Analytical parameters were systematically assessed, including linear range (1–500 U/L for POx vs. 5–500 U/L for GlOx), limit of detection (1 U/L for both), and sensitivity (0.75 vs. 0.49 nA/min at 100 U/L). The POx-based biosensor demonstrated higher sensitivity and lower detection limits, whereas the GlOx-based biosensor exhibited greater stability in complex solutions and reduced assay costs due to a simpler working solution. Moreover, while the POx-based system is uniquely suited for ALT determination, the GlOx-based sensor can be affected by AST activity in samples but may also be adapted for targeted AST detection. Overall, the study highlights a trade-off between sensitivity, robustness, and versatility in ALT biosensor design, providing guidance for the rational development of clinically relevant devices. Full article
Show Figures

Figure 1

41 pages, 25159 KB  
Review
Overview on the Sensing Materials and Methods Based on Reversible Addition–Fragmentation Chain-Transfer Polymerization
by Zhao-Jiang Yu, Lin Liu, Su-Ling Yang and Shuai-Bing Yu
Biosensors 2025, 15(10), 673; https://doi.org/10.3390/bios15100673 - 7 Oct 2025
Viewed by 454
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has become an efficient method in the field of polymer synthesis. Recently, the RAFT polymerization technique has been successfully used to prepare functional materials and develop various sensing methods used in different scenarios. The polymerization reaction can be [...] Read more.
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has become an efficient method in the field of polymer synthesis. Recently, the RAFT polymerization technique has been successfully used to prepare functional materials and develop various sensing methods used in different scenarios. The polymerization reaction can be initiated by thermal, electrochemical, photochemical, enzymatic, and mechanical stimulation. More interestingly, RAFT polymerization can be performed in situ by recruiting a large number of signal tags at the solid interface to amplify the signals. In this review, we addressed the latest achievements in the preparation of sensing materials and the design of different sensors based on the RAFT polymerization technique for sensing ions and small molecules and bioimaging of tumor cells and viruses. Then, electrochemical and optical biosensors through the signal amplification of the RAFT polymerization method were summarized. This work could provide inspiration for researchers to prepare fascinating sensing materials and develop novel detection technologies applied in various fields. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

25 pages, 2285 KB  
Article
Rationally Designed Molecularly Imprinted Polymer Electrochemical Biosensor with Graphene Oxide Interface for Selective Detection of Matrix Metalloproteinase-8 (MMP-8)
by Jae Won Lee, Rowoon Park, Sangheon Jeon, Sung Hyun Kim, Young Woo Kwon, Dong-Wook Han and Suck Won Hong
Biosensors 2025, 15(10), 671; https://doi.org/10.3390/bios15100671 - 4 Oct 2025
Viewed by 541
Abstract
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal [...] Read more.
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal disease. By integrating graphene oxide (GO) with electropolymerized poly(eriochrome black T, EBT) films on screen-printed carbon electrodes, the partially reduced GO interface enhanced electrical conductivity and facilitated the formation of well-defined poly(EBT) films with re-designed polymerization route, while template extraction generated artificial antibody-like sites capable of specific protein binding. The MIP-based electrodes were comprehensively validated through morphological, spectroscopic, and electrochemical analyses, demonstrating stable and selective recognition of MMP-8 against structurally similar interferents. Complementary density functional theory (DFT) modeling revealed energetically favorable interactions between the EBT monomer and catalytic residues of MMP-8, providing molecular-level insights into imprinting specificity. These experimental and computational findings highlight the importance of rational monomer selection and nanomaterial-assisted polymerization in achieving selective protein imprinting. This work presents a systematic approach that integrates electrochemical engineering, nanomaterial interfaces, and computational validation to address long-standing challenges in protein-based MIP biosensors. By bridging molecular design with practical sensing performance, this study advances the translational potential of MIP-based electrochemical biosensors for point-of-care applications. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers-Based Biosensors)
Show Figures

Graphical abstract

17 pages, 4089 KB  
Article
Affinity-Based Copolymer Coating for Oriented Protein Immobilization in Biosensor Development
by Lorenzo Zarini, Thomas Carzaniga, Morena Pirotta, Francesco Damin, Dario Brambilla, Marcella Chiari, Ivan Bassanini, Paola Gagni, Alessandro Mussida, Luca Casiraghi, Marco Buscaglia and Laura Sola
Biosensors 2025, 15(10), 670; https://doi.org/10.3390/bios15100670 - 4 Oct 2025
Viewed by 367
Abstract
Effective protein immobilization is a critical step in biosensor development, as it ensures the stability, functionality, and orientation of biomolecules on the sensor surface. Here, we present a novel affinity-based terpolymer coating designed to enhance protein immobilization for biosensor applications. The novelty lies [...] Read more.
Effective protein immobilization is a critical step in biosensor development, as it ensures the stability, functionality, and orientation of biomolecules on the sensor surface. Here, we present a novel affinity-based terpolymer coating designed to enhance protein immobilization for biosensor applications. The novelty lies in the incorporation of nitrilotriacetic acid (NTA) ligands directly into the polymeric chains, facilitating histidine-tagged protein oriented binding through a robust metal-chelating interaction. To validate the system, magnetic microbeads coated with the polymer were tested for their ability to bind native and His-tagged proteins. The results demonstrated the superior binding capacity, enhanced stability, and reversibility of the interactions compared to traditional coatings, which immobilize proteins through nucleophile reactions with amine residues. Moreover, enzyme immobilization tests confirmed that the polymer preserves enzymatic activity, highlighting its potential for biosensor applications requiring functional biomolecules. This innovative polymeric coating offers a fast, versatile, and scalable solution for next-generation biosensor platforms, paving the way for improved sensitivity, reliability, and accessibility in diagnostic and analytical technologies. Full article
Show Figures

Figure 1

19 pages, 1292 KB  
Review
Ricin and Abrin in Biosecurity: Detection Technologies and Strategic Responses
by Wojciech Zajaczkowski, Ewelina Bojarska, Elwira Furtak, Michal Bijak, Rafal Szelenberger, Marcin Niemcewicz, Marcin Podogrocki, Maksymilian Stela and Natalia Cichon
Toxins 2025, 17(10), 494; https://doi.org/10.3390/toxins17100494 - 3 Oct 2025
Viewed by 646
Abstract
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated [...] Read more.
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated in politically and criminally motivated events, underscoring their critical importance in the context of biodefense. Public safety agencies, including law enforcement, customs, and emergency response units, require rapid, sensitive, and portable detection methods to effectively counteract these threats. However, many existing screening technologies lack the capability to detect biotoxins unless specifically designed for this purpose, revealing a critical gap in current biodefense preparedness. Consequently, there is an urgent need for robust, field-deployable detection platforms that operate reliably under real-world conditions. End-users in the security and public health sectors demand analytical tools that combine high specificity and sensitivity with operational ease and adaptability. This review provides a comprehensive overview of the biochemical characteristics of ricin and abrin, their documented misuse, and the challenges associated with their detection. Furthermore, it critically assesses key detection platforms—including immunoassays, mass spectrometry, biosensors, and lateral flow assays—focusing on their applicability in operational environments. Advancing detection capabilities within frontline services is imperative for effective prevention, timely intervention, and the strengthening of biosecurity measures. Full article
Show Figures

Figure 1

20 pages, 4532 KB  
Article
Harnessing in Silico Design for Electrochemical Aptasensor Optimization: Detection of Okadaic Acid (OA)
by Margherita Vit, Sondes Ben-Aissa, Alfredo Rondinella, Lorenzo Fedrizzi and Sabina Susmel
Biosensors 2025, 15(10), 665; https://doi.org/10.3390/bios15100665 - 3 Oct 2025
Viewed by 421
Abstract
The urgent need for advanced analytical tools for environmental monitoring and food safety drives the development of novel biosensing approaches and solutions. A computationally driven workflow for the development of a rapid electrochemical aptasensor for okadaic acid (OA), a critical marine biotoxin, is [...] Read more.
The urgent need for advanced analytical tools for environmental monitoring and food safety drives the development of novel biosensing approaches and solutions. A computationally driven workflow for the development of a rapid electrochemical aptasensor for okadaic acid (OA), a critical marine biotoxin, is reported. The core of this strategy is a rational design process, where in silico modeling was employed to optimize the biological recognition element. A 63-nucleotide aptamer was successfully truncated to a highly efficient 31-nucleotide variant. Molecular docking simulations confirmed the high binding affinity of the minimized aptamer and guided the design of the surface immobilization chemistry to ensure robust performance. The fabricated sensor, which utilizes a ferrocene-labeled aptamer, delivered a sensitive response with a detection limit of 2.5 nM (n = 5) over a linear range of 5–200 nM. A significant advantage for practical applications is the remarkably short assay time of 5 min. The sensor’s applicability was successfully validated in complex food matrices, achieving excellent recovery rates of 82–103% in spiked mussel samples. This study establishes an integrated computational–experimental methodology that streamlines the development of high-performance biosensors for critical food safety and environmental monitoring challenges. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety—2nd Edition)
Show Figures

Figure 1

38 pages, 2063 KB  
Review
Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications
by Rajaram Rajamohan and Seho Sun
Biosensors 2025, 15(10), 658; https://doi.org/10.3390/bios15100658 - 2 Oct 2025
Viewed by 663
Abstract
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, [...] Read more.
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, two-dimensional materials, and metal–organic frameworks (MOFs). The integration of these nanoscale materials into electrochemical, optical, and wearable biosensors has addressed longstanding challenges associated with enzyme stability, detection limits, and invasiveness. Special emphasis is placed on non-enzymatic glucose sensors, flexible and wearable devices, and hybrid nanocomposite systems. The multifunctional properties of nanomaterials, such as large surface area, excellent conductivity, and biocompatibility, have enabled the development of next-generation sensors for clinical, point-of-care, and personal healthcare applications. The review also discusses emerging trends such as biodegradable nanosensors, AI-integrated platforms, and smart textiles, which are poised to drive the future of glucose monitoring toward more sustainable and personalized healthcare solutions. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

46 pages, 3900 KB  
Review
Beyond Packaging: A Perspective on the Emerging Applications of Biodegradable Polymers in Electronics, Sensors, Actuators, and Healthcare
by Reshma Kailas Kumar, Chaoying Wan and Paresh Kumar Samantaray
Materials 2025, 18(19), 4485; https://doi.org/10.3390/ma18194485 - 26 Sep 2025
Viewed by 657
Abstract
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, [...] Read more.
Biopolymers have emerged as a transformative class of materials that reconcile high-performance functionality with environmental stewardship. Their inherent capacity for controlled degradation and biocompatibility has driven rapid advancements across electronics, sensing, actuation, and healthcare. In flexible electronics, these polymers serve as substrates, dielectrics, and conductive composites that enable transient devices, reducing electronic waste without compromising electrical performance. Within sensing and actuation, biodegradable polymer matrices facilitate the development of fully resorbable biosensors and soft actuators. These systems harness tailored degradation kinetics to achieve temporal control over signal transduction and mechanical response, unlocking applications in in vivo monitoring and on-demand drug delivery. In healthcare, biodegradable polymers underpin novel approaches in tissue engineering, wound healing, and bioresorbable implants. Their tunable chemical architectures and processing versatility allow for precise regulation of mechanical properties, degradation rates, and therapeutic payloads, fostering seamless integration with biological environments. The convergence of these emerging applications underscores the pivotal role of biodegradable polymers in advancing sustainable technology and personalized medicine. Continued interdisciplinary research into polymer design, processing strategies, and integration techniques will accelerate commercialization and broaden the impact of these lower eCO2 value materials across diverse sectors. This perspective article comments on the innovation in these sectors that go beyond the applications of biodegradable materials in packaging applications. Full article
(This article belongs to the Special Issue Recent Developments in Bio-Based and Biodegradable Plastics)
Show Figures

Graphical abstract

17 pages, 2641 KB  
Article
Label-Free and Protein G-Enhanced Optical Fiber Biosensor for Detection of ALDH1A1 Cancer Biomarker
by Zhandos Yegizbay, Maham Fatima, Aliya Bekmurzayeva, Zhannat Ashikbayeva, Daniele Tosi and Wilfried Blanc
Fibers 2025, 13(10), 131; https://doi.org/10.3390/fib13100131 - 25 Sep 2025
Viewed by 350
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as a significant biomarker associated with tumor progression, chemoresistance, and poor prognosis in various cancers, including breast, lung, prostate, and lymphoma. Current diagnostic methods for ALDH1A1, such as flow cytometry and ELISA, are limited by long detection [...] Read more.
Aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as a significant biomarker associated with tumor progression, chemoresistance, and poor prognosis in various cancers, including breast, lung, prostate, and lymphoma. Current diagnostic methods for ALDH1A1, such as flow cytometry and ELISA, are limited by long detection times, the need for labeling, and a reduced sensitivity in complex biological matrices. This study presents a novel optical fiber biosensor based on magnesium silicate nanoparticle-doped fibers for the label-free detection of ALDH1A1. The biosensor design incorporated protein G for enhanced antibody orientation and binding efficiency and anti-ALDH1A1 antibodies for specific recognition. Several sensor configurations were fabricated using a semi-distributed interferometer (SDI) format, and their performances were evaluated across a wide concentration range (10 fM–100 nM) in both phosphate-buffered saline (PBS) and fetal bovine serum (FBS). Our findings demonstrated that the inclusion of protein G significantly improved sensor sensitivity and reproducibility, achieving a limit of detection (LoD) of 172 fM in PBS. The sensor also maintained a positive response trend in FBS, indicating its potential applicability in clinically relevant samples. This work introduces the first reported optical fiber biosensor for soluble ALDH1A1 detection, offering a rapid, label-free, and highly sensitive approach suitable for future use in cancer diagnostics. Full article
Show Figures

Figure 1

54 pages, 3531 KB  
Review
Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications
by Robert G. Jesky, Louisa H. Y. Lo, Ryan H. P. Siu and Julian A. Tanner
Biosensors 2025, 15(10), 637; https://doi.org/10.3390/bios15100637 - 24 Sep 2025
Viewed by 1037
Abstract
Recent advances in computational tools, particularly machine learning (ML), deep learning (DL), and structure-based modeling, are transforming aptamer research by accelerating discovery and enhancing biosensor development. This review synthesizes progress in predictive algorithms that model aptamer–target interactions, guide in silico sequence optimization, and [...] Read more.
Recent advances in computational tools, particularly machine learning (ML), deep learning (DL), and structure-based modeling, are transforming aptamer research by accelerating discovery and enhancing biosensor development. This review synthesizes progress in predictive algorithms that model aptamer–target interactions, guide in silico sequence optimization, and streamline design workflows for both laboratory and point-of-care diagnostic platforms. We examine how these approaches improve key aspects of aptasensor development, such as aptamer selection, sensing surface immobilization, signal transduction, and molecular architecture, which contribute to greater sensitivity, specificity, and real-time diagnostic capabilities. Particular attention is given to illuminating the technological and experimental advances in structure-switching aptamers, dual-aptamer systems, and applications in electrochemical, optical, and lateral flow platforms. We also discuss current challenges such as the standardization of datasets and interpretability of ML models and highlight future directions that will support the translation of aptamer-based biosensors into scalable, point-of-care and clinically deployable diagnostic solutions. Full article
(This article belongs to the Special Issue Nucleic Acid Aptamer-Based Bioassays)
Show Figures

Figure 1

21 pages, 2902 KB  
Review
Tailoring Carbon Quantum Dots via Precursor Engineering for Fluorescence-Based Biosensing of E. coli
by Maryam Nazari, Alireza Zinatizadeh, Parviz Mohammadi, Soheila Kashanian, Mandana Amiri, Nona Valipour, Yvonne Joseph and Parvaneh Rahimi
Biosensors 2025, 15(10), 635; https://doi.org/10.3390/bios15100635 - 24 Sep 2025
Viewed by 514
Abstract
Rapid and accurate bacteria identification, particularly Escherichia coli (E. coli), is essential in the monitoring of health, environment, and food safety. E. coli, a prevalent pathogenic bacterium, serves as a key indicator of food and water contamination. Carbon quantum dots [...] Read more.
Rapid and accurate bacteria identification, particularly Escherichia coli (E. coli), is essential in the monitoring of health, environment, and food safety. E. coli, a prevalent pathogenic bacterium, serves as a key indicator of food and water contamination. Carbon quantum dots (CQDs) have appeared as promising fluorescent probes because of their small size, ease of synthesis, low toxicity, and tunable fluorescence using different carbon-rich precursors. Advances in both bottom-up and top-down synthesis procedures have enabled precise control over CQD properties and surface functionalities, enhancing their capabilities in biosensing. Among the critical factors influencing CQD performance is the strategic selection of precursors, which determines the surface chemistry and recognition potential of the resulting nanodots. The integration with other nanomaterials and the surface modification of CQDs with specific functional groups or recognition elements further improves their sensitivity and selectivity toward E. coli. This review summarizes recent progress in the modification of CQDs for the fluorescent detection of E. coli, highlighting relevant sensing mechanisms and the influence of different precursors, such as antibiotics and sugars, as well as various functionalization and surface modification strategies. The aim is to provide insight into the rational design of efficient, selective, and cost-effective CQD-based biosensors for bacterial detection. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

17 pages, 3883 KB  
Article
Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors
by Eugen Chiriac, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu and Marioara Avram
Biosensors 2025, 15(9), 622; https://doi.org/10.3390/bios15090622 - 19 Sep 2025
Viewed by 531
Abstract
This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π–π stacking, charge transfer, and dipole–dipole interactions, were explored through [...] Read more.
This study investigates the interfacial interactions between two organic semiconductors (tetrathiafulvalene (TTF) and hexaazatriphenylene-hexacarbonitrile (HAT-CN)) and graphene-based materials (nanocrystalline graphite and vertically aligned graphene) used in Field-Effect Transistors (FETs). The interaction mechanisms, including π–π stacking, charge transfer, and dipole–dipole interactions, were explored through SEM imaging, Raman and FTIR spectroscopy, and FET transfer characteristics. Spectroscopic data confirmed strong π–π and charge-transfer interactions, with distinct modifications in graphene structural and electronic features. Electrical measurements revealed significant modulation of channel conductivity, confirming effective surface functionalization. These findings provide a framework for engineering high-performance organic/graphene hybrid interfaces in electronic devices and biosensors. Importantly, the results demonstrate that molecular design and interfacial control at the nanoscale can be strategically used to modulate charge transport in graphene-based FETs. This approach opens new pathways for developing tunable, molecule-specific biosensors and nanoelectronic platforms with enhanced sensitivity and selectivity. Full article
(This article belongs to the Special Issue Transistor-Based Biosensors and Their Applications)
Show Figures

Figure 1

46 pages, 4316 KB  
Review
3D Printing Assisted Wearable and Implantable Biosensors
by Somnath Maji, Myounggyu Kwak, Reetesh Kumar and Hyungseok Lee
Biosensors 2025, 15(9), 619; https://doi.org/10.3390/bios15090619 - 17 Sep 2025
Viewed by 1052
Abstract
Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges [...] Read more.
Biosensors have undergone transformative advancements, evolving into sophisticated wearable and implantable devices capable of real-time health monitoring. Traditional manufacturing methods, however, face limitations in scalability, cost, and design complexity, particularly for miniaturized, multifunctional biosensors. The integration of 3D printing technology addresses these challenges by enabling rapid prototyping, customization, and the production of intricate geometries with high precision. This review explores how additive manufacturing techniques facilitate the fabrication of flexible, stretchable, and biocompatible biosensors. By incorporating advanced materials like conductive polymers, nanocomposites, and hydrogels, 3D-printed biosensors achieve enhanced sensitivity, durability, and seamless integration with biological systems. Innovations such as biodegradable substrates and multi-material printing further expand applications in continuous glucose monitoring, neural interfaces, and point-of-care diagnostics. Despite challenges in material optimization and regulatory standardization, the convergence of 3D printing with nanotechnology and smart diagnostics heralds a new era of personalized, proactive healthcare, offering scalable solutions for both clinical and remote settings. This synthesis underscores the pivotal role of additive manufacturing in advancing wearable and implantable biosensor technology, paving the way for next-generation devices that prioritize patient-specific care and real-time health management. Full article
(This article belongs to the Special Issue Biological Sensors Based on 3D Printing Technologies)
Show Figures

Figure 1

28 pages, 2185 KB  
Review
Biosensor-Integrated Tibial Components in Total Knee Arthroplasty: A Narrative Review of Innovations, Challenges, and Translational Frontiers
by Ahmed Nadeem-Tariq, Christopher J. Fang, Jeffrey Lucas Hii and Karen Nelson
Bioengineering 2025, 12(9), 988; https://doi.org/10.3390/bioengineering12090988 - 17 Sep 2025
Viewed by 583
Abstract
Background: The incorporation of biosensors into orthopedic implants, particularly tibial components in total knee arthroplasty (TKA), marks a new era in personalized joint replacement. These smart systems aim to provide real-time physiological and mechanical data, enabling dynamic postoperative monitoring and enhanced surgical precision. [...] Read more.
Background: The incorporation of biosensors into orthopedic implants, particularly tibial components in total knee arthroplasty (TKA), marks a new era in personalized joint replacement. These smart systems aim to provide real-time physiological and mechanical data, enabling dynamic postoperative monitoring and enhanced surgical precision. Objective: This narrative review synthesizes the current landscape of electrochemical biosensor-embedded tibial implants in TKA, exploring technical mechanisms, clinical applications, challenges, and future directions for translation into clinical practice. Methods: A comprehensive literature review was conducted across PubMed and Google Scholar. Articles were thematically categorized into technology design, integration strategies, preclinical and clinical evidence, regulatory frameworks, ethical considerations, and strategic recommendations. Findings were synthesized narratively and organized to support forward-looking system design. Results: Smart tibial implants have demonstrated feasibility in both bench and early clinical settings. Key advances include pressure-sensing intraoperative tools, inertial measurement units for remote gait tracking, and chemical biosensors for infection surveillance. However, the field remains limited by biological encapsulation, signal degradation, regulatory uncertainty, and data privacy challenges. Interdisciplinary design, standardized testing, translational funding, and ethical oversight are essential to scaling these innovations. Conclusions: Biosensor-enabled tibial components represent a promising convergence of orthopedics, electronics, and data science. By addressing the technological, biological, regulatory, and ethical gaps outlined herein, this field can transition from prototype to widespread clinical reality—offering new precision in arthroplasty care. Full article
Show Figures

Figure 1

Back to TopTop