Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications
Abstract
1. Introduction
2. Advances in Aptamer Selection and Computational Approaches
2.1. Overview of Aptamer Selection Strategies
2.1.1. Magnetic Bead-Based SELEX
2.1.2. Capture SELEX
2.1.3. Capillary Electrophoresis SELEX (CE-SELEX)
2.1.4. Microfluidic SELEX
2.1.5. Alternative Aptamer Selection Strategies
2.2. Challenges in Conventional SELEX
2.3. AI-Driven Strategies for Aptamer Discovery and Design
2.3.1. Pattern Recognition
2.3.2. Deep Learning
AI Model Type | Specific Method/Tool | Input Features | Objective/Application | Validation/Outcome | References |
---|---|---|---|---|---|
Classical ML | SVM + structural descriptors | Molecular descriptors (e.g., topology, sequence motifs) | Classify aptamer binding affinity (e.g., streptavidin, cancer cells) | Nanomolar binders validated | [56,57] |
CountVectorizer + SVM | 6-mer frequency vectors | Discriminate functional aptamers from background | AUROC = 0.998 | [58] | |
Random Forest + mRMR | Aptamer + protein sequence descriptors | Predict aptamer–target interactions | Accuracy: 77.41%, MCC: 0.3717 | [59] | |
Deep Learning | DeepSELEX (CNN-based) | SELEX sequences across rounds | Predict enrichment cycle, binding potential | Outperformed DeepBind, BEESEM | [60] |
Smart-SELEX (CNN-based) | Aptamer + small molecule fingerprints | Predict small molecule binding (e.g., ammonium) | Validated by docking, MD, sensing | [61] | |
AptaTrans (Transformer) | Aptamer–protein sequences | Predict/generate aptamers | Docking scores superior to SELEX aptamers | [62] | |
Generative DL | RBM (Restricted Boltzmann Machine) | SELEX-enriched sequences | Score enrichment and design aptamers | Experimental validation | [63] |
RaptGen (VAE-based) | Motif embeddings from SELEX | De novo generation, truncation, optimization | Latent space-guided design | [64] | |
AptaDiff (Diffusion model) | VAE + motif-conditioned embeddings | Generate optimized aptamers | SPR: improved binding vs. SELEX | [65] | |
Sequence-aware DL | GRNN (RNN-like) | Amino acid-translated descriptors | Predict affinity (influenza aptamers) | R2 = 0.987 (train), 0.951 (test) | [66] |
Hybrid DL | DeepAptamer (CNN + BiLSTM + VAE) | Sequence, DNA shape, loops | Predict enrichment, design aptamers | Validated high-affinity candidates | [67] |
2.4. Structure-Based Modeling and Simulation
2.4.1. Secondary and Tertiary Structure Prediction
2.4.2. Docking and Binding Simulations
2.4.3. Binding Visualization
3. Aptasensors: Design, Functionalization and Computational Enhancements
3.1. Biosensor Architecture: Electrochemical and Beyond
3.1.1. Electrochemical Aptasensors
3.1.2. Optical Aptasensors: Innovations in Light-Mediated Detection
3.1.3. Acoustic Aptasensors: Real-Time, Label-Free Monitoring
3.1.4. Thermal Aptasensors: Harnessing Calorimetric Detection
Aptasensor Type | Key Method | Materials | Application | Performance Metrics | References |
---|---|---|---|---|---|
Electrochemical (E-AB) | Electrode modification; nanostructured interfaces | CNTs, graphene, Au/Pt nanoparticles, MOFs; SAMs; conductive polymers | Enhance electron transfer; real-time biomarker monitoring | Fast response; wearable and complex sample compatibility; high sensitivity via nanomaterials | [93,94,95,96,97,98,99,100,101] |
Optical | Light–matter interactions (FRET, SPR, LSPR, colorimetry) | Plasmonic nanostructures (Au, Ag NPs); QDs; upconversion NPs | Ultrasensitive, label-free biomarker detection; multiplex cancer diagnostics | High sensitivity; improved photostability and S/N; versatile for low-abundance biomarkers | [102,103,104,105,106,107,108,109,110] |
Acoustic | QCM and SAW with nano/micro surface modification; microfluidics integration | Nanostructured Au coatings; hybrid organic–inorganic surfaces; PDMS/glass chips; Ag10NP biosensors | Label-free, real-time binding analysis; lab-on-a-chip diagnostics | Real-time monitoring; Enhanced acoustic wave propagation and signal transduction | [111,112,113,114,115,116,117,118,119,120,121] |
Thermal | Calorimetric detection; melting aptasensors; dual-mode sensing | Microcalorimetric sensors; dual-labeled aptamers; CS/PtNPs; advanced thermal insulation | Detect thermodynamic binding; dual-mode colorimetric and photothermal detection | High sensitivity; reusability (TFA cycles); versatile for clinical applications | [122,123,124,125,126] |
3.2. Key Steps in Aptamer Immobilization
3.2.1. Covalent Immobilization Strategies
3.2.2. Physical and Electrostatic Immobilization
3.2.3. Affinity-Based Immobilization Techniques
3.2.4. Computational Optimization of Immobilization Strategies
3.3. Computational Optimization and Design of Biosensors
3.3.1. Machine Learning-Driven Aptamer Optimization
3.3.2. Molecular Dynamics Simulations for Structural Insights
3.3.3. Predictive Models for Binding Efficiency
3.3.4. Advanced Computational Frameworks for Multi-Target Biosensor Optimization
3.4. Strategies for Improving Sensor Selectivity, Sensitivity and Signal Transduction
3.4.1. Signal Amplification Techniques
3.4.2. Nanomaterial-Assisted Signal Enhancement
3.4.3. Enzyme-Mediated Amplification
3.4.4. Dual-Aptamer Systems
3.4.5. Structure-Switching Aptamers
4. Aptasensor as Point-of-Care Diagnostic Solution and Commercialization
4.1. Lateral Flow Assay
4.1.1. Principle of LFA
4.1.2. Point-of-Care Applications of Aptamer Sandwich LFA
4.1.3. Recent Advancement in Developing Ultrasensitive Aptamer-Based LFA
Secondary AuNPs Clustering
Quantum Dots (QDs)
Nanozyme
4.2. Electrochemical Aptamer Biosensor (E-AB)
4.2.1. Amperometric E-ABs
4.2.2. Voltametric E-ABs
Challenges and Potential Solutions for Structural Switching Voltametric E-AB Commercialization
4.2.3. Impedance E-ABs
Faradaic EIS
Non-Faradaic EIS
4.2.4. Transistor E-ABs
5. Discussion and Perspectives
6. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
AC | Alternating Current |
aDNA | Alzheimer’s disease specific sequences |
AI | Artificial Intelligence |
ALP | alkaline phosphatase |
AMBER | Assisted Model Building with Energy Refinement |
ATP | Adenosine triphosphate |
AuNPs | Gold Nanoparticles |
AβO | Amyloid-β oligomers |
BB | Bandrowski’s base |
BiLSTM | Bidirectional Long Short-Term Memory |
BLI | Biolayer Interferometry |
BNP | B-type Natriuretic Peptide |
BoNT/C | Botulinum neurotoxin type C |
bp-SNA | bipolar silica nanochannel array |
CA15-3 | Carbohydrate antigen 15-3 |
Cdl | Double Layer Capacitance |
CG | Coarse-grained |
CGM | Continuous Glucose Monitoring |
CHA | Catalytic hairpin assembly |
CNN | Convolutional Neural Network |
CNTs | carbon nanotubes |
CS/PtNPs | Chitosan-stabilized platinum nanoparticles |
ctDNA | circulating tumor DNA |
DAB | 3,3′-diaminobenzidine |
DL | Deep Learning |
DPV | Differential Pulse Voltammetry |
E-AB | Electrochemical Aptamer Biosensor |
ECL | Electrochemiluminescence |
EDC | 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide |
EIS | Electrochemical Impedance Spectroscopy |
ELISAs | Enzyme-linked immunosorbent assays |
EVs | Extracellular vesicles |
EXPAR | Exponential isothermal amplification reaction |
FBS | Fetal Bovine Serum |
Fc | Ferrocene |
FET | Field Effect Transistor |
FRET | Fluorescence resonance energy transfer |
GOx | Glucose oxidase |
GRNN | General Regression Neural Network |
HCR | Hybridization chain reaction |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HRP | Horseradish peroxidase |
IL-6 | Interlukin-6 |
ITO | Indium Tin Oxide |
KDM | Kinetic Differential Measurement |
KPC-2 | Klebsiella pneumoniae carbapenemase 2 |
LAMP | Loop-mediated isothermal amplification |
LbL | layer-by-layer |
LFA | Lateral Flow Assay |
LoD | Limit of Detection |
LSTM | Long Short-Term Memory |
LSPR | Localized surface plasmon resonance |
MA-MN | Multivalent Aptamer Magnetic Nanozyme |
MARQ-LFIA | Multiple Aptamer Recognition-based Quantum dot Lateral Flow Immunoassay |
MB | Methylene blue |
MCC | Matthews correlation coefficient |
MCF-7 | Michigan Cancer Foundation-7 |
MCTS | Monte Carlo Tree Search |
MD | Molecular Dynamics |
MEA | Multielectrode array |
MFE | Minimum Free Energy |
ML | Machine Learning |
MM/PBSA | molecular mechanics Poisson–Boltzmann surface area |
MOFs | Metal–organic frameworks |
mRMR | Maximum Relevance Minimum Redundancy |
MSS$A | Multiple secondary structure string alignment |
MUC1 | Mucin 1 |
NHS | N-hydroxysuccinimide |
Ni-NTA | Ni-nitrilotriacetic acid |
NLP | Natural Language Processing |
NMR | Nuclear Magnetic Resonance |
OECT | Organic Electrochemical Transistor |
P(ANi-Lu)/GO/CS | Poly(aniline-luminol)/graphene oxide/chitosan |
PD | Particle display |
PD-L1 | Programmed death-ligand 1 |
PfLDH | Plasmodium falciparum lactate dehydrogenase |
PLIP | Protein–Ligand Interaction Profiler |
POCT | Point-of-Care Testing |
PPD | Paraphenylenediamine |
PSA3 | Prostate Cancer Antigen 3 |
QCM | quartz crystal microbalance |
QDs | Quantum dots |
RBMs | Restricted Boltzmann Machines |
RCA | Rolling circle amplification |
Rct | Charge Transfer Resistance |
RF | Random forests |
RMSD | Root-Mean-Square Distance |
RNNs | Recurrent Neural Networks |
RPA70A | Replication protein A 70 kDa subunit domain |
SAMs | Self-assembled monolayers |
SAW | surface acoustic wave |
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
SERS | Surface-enhanced Raman Spectroscopy |
SPAAC | Strain-promoted azide-alkyne cycloaddition |
SSAs | Structure-switching aptamers |
SVM | Support Vector Machine |
SWV | Square Wave Voltammetry |
TFA | Thermal fluorescence analysis |
TGF-β1 | Transforming growth factor beta 1 |
Tₘ | Melting temperature |
TMB | Tetramethylbenzidine |
TNF-α | Tumor necrosis factor alpha |
VAE | Variational Autoencoder |
VEGF | Vascular Endothelial Growth Factor |
VTM | Viral Transport Medium |
References
- Bao, W.; Aodeng, G.; Ga, L.; Ai, J. Nucleic acid aptamer-based biosensor for health monitoring: A review and future prospects. Microchem. J. 2025, 214, 113894. [Google Scholar] [CrossRef]
- Wang, W.; He, Y.; He, S.; Deng, L.; Wang, H.; Cao, Z.; Feng, Z.; Xiong, B.; Yin, Y. A Brief Review of Aptamer-Based Biosensors in Recent Years. Biosensors 2025, 15, 120. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: Challenges and advances in aptamer-based biosensors. Mater. Adv. 2020, 1, 2663–2687. [Google Scholar] [CrossRef]
- Sequeira-Antunes, B.; Ferreira, H.A. Nucleic acid aptamer-based biosensors: A review. Biomedicines 2023, 11, 3201. [Google Scholar] [CrossRef]
- Ji, C.; Wei, J.; Zhang, L.; Hou, X.; Tan, J.; Yuan, Q.; Tan, W. Aptamer–protein interactions: From regulation to biomolecular detection. Chem. Rev. 2023, 123, 12471–12506. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef]
- Alkhamis, O.; Canoura, J.; Yu, H.; Liu, Y.; Xiao, Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. TrAC Trends Anal. Chem. 2019, 121, 115699. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, C.; Wang, Y.; Chen, G. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol. Biol. Rep. 2022, 49, 7979–7993. [Google Scholar] [CrossRef]
- Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteom.–Clin. Appl. 2012, 6, 563–573. [Google Scholar] [CrossRef]
- Toh, S.Y.; Citartan, M.; Gopinath, S.C.; Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2015, 64, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Nandi, I.; Verma, J.; Prasad, R.; Singh, S.K.; Chandra, P. Comprehensive Approaches to Expending CRISPR Biosensor Applications Beyond Nucleic Acid Targets. TrAC Trends Anal. Chem. 2025, 185, 118179. [Google Scholar] [CrossRef]
- Son, H. Harnessing CRISPR/Cas systems for DNA and RNA detection: Principles, techniques, and challenges. Biosensors 2024, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Singh, S.; Singh, S.P. Molecularly imprinted polymers: Applications and challenges in biological and environmental sample analysis. In Molecularly Imprinted Polymers (MIPs); Elsevier: Amsterdam, The Netherlands, 2023; pp. 321–344. [Google Scholar]
- Yuhan, J.; Zhu, L.; Zhu, L.; Huang, K.; He, X.; Xu, W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J. Control. Release 2022, 346, 405–420. [Google Scholar] [CrossRef]
- Ning, Y.; Hu, J.; Lu, F. Aptamers used for biosensors and targeted therapy. Biomed. Pharmacother. 2020, 132, 110902. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Didarian, R.; Ozbek, H.K.; Ozalp, V.C.; Erel, O.; Yildirim-Tirgil, N. Enhanced SELEX Platforms for Aptamer Selection with Improved Characteristics: A Review. Mol. Biotechnol. 2025, 67, 2962–2977. [Google Scholar] [CrossRef]
- Chinchilla-Cárdenas, D.J.; Cruz-Méndez, J.S.; Petano-Duque, J.M.; García, R.O.; Castro, L.R.; Lobo-Castañón, M.J.; Cancino-Escalante, G.O. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J. Genet. Eng. Biotechnol. 2024, 22, 100400. [Google Scholar] [CrossRef]
- Murphy, M.B.; Fuller, S.T.; Richardson, P.M.; Doyle, S.A. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res. 2003, 31, e110. [Google Scholar] [CrossRef] [PubMed]
- Grozio, A.; Gonzalez, V.M.; Millo, E.; Sturla, L.; Vigliarolo, T.; Bagnasco, L.; Guida, L.; D’Arrigo, C.; De Flora, A.; Salis, A. Selection and characterization of single stranded DNA aptamers for the hormone abscisic acid. Nucleic Acid Ther. 2013, 23, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.G.; Kiel, J.L. Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 2002, 32, 178–183. [Google Scholar] [CrossRef]
- Manea, I.; Casian, M.; Hosu-Stancioiu, O.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Cristea, C. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Anal. Chim. Acta 2024, 1297, 342325. [Google Scholar] [CrossRef]
- Song, M.; Li, C.; Wu, S.; Duan, N. Screening of specific aptamers against chlorpromazine and construction of novel ratiometric fluorescent aptasensor based on metal-organic framework. Talanta 2023, 252, 123850. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ong, S.; Chen, Y.; Jimmy Huang, P.-J.; Liu, J. Label-free and dye-free fluorescent sensing of tetracyclines using a capture-selected DNA aptamer. Anal. Chem. 2022, 94, 10175–10182. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, A.Z.; Liu, J. Capture-SELEX for chloramphenicol binding aptamers for labeled and label-free fluorescence sensing. Environ. Health 2023, 1, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Khan, I.M.; Wang, Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021, 229, 122274. [Google Scholar] [CrossRef]
- Nutiu, R.; Li, Y. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 2005, 44, 1061–1065. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Liu, J. Capture-SELEX of DNA aptamers for label-free detection of epinephrine and norepinephrine in urine. Biosens. Bioelectron. 2025, 279, 117392. [Google Scholar] [CrossRef]
- Mosing, R.K.; Mendonsa, S.D.; Bowser, M.T. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 2005, 77, 6107–6112. [Google Scholar] [CrossRef]
- Mosing, R.K.; Bowser, M.T. Isolating aptamers using capillary electrophoresis–SELEX (CE–SELEX). In Nucleic Acid and Peptide Aptamers: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2009; pp. 33–43. [Google Scholar]
- Zhu, C.; Li, L.; Fang, S.; Zhao, Y.; Zhao, L.; Yang, G.; Qu, F. Selection and characterization of an ssDNA aptamer against thyroglobulin. Talanta 2021, 223, 121690. [Google Scholar] [CrossRef]
- Dembowski, S.K.; Bowser, M.T. Microfluidic methods for aptamer selection and characterization. Analyst 2018, 143, 21–32. [Google Scholar] [CrossRef]
- Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A.E.; Lagally, E.T.; Atzberger, P.; Tarasow, T.M.; Heeger, A.J.; Soh, H.T. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. USA 2009, 106, 2989–2994. [Google Scholar] [CrossRef]
- Park, S.-m.; Ahn, J.-Y.; Jo, M.; Lee, D.-k.; Lis, J.T.; Craighead, H.G.; Kim, S. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab A Chip 2009, 9, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Olsen, T.R.; Zhu, J.; Hilton, J.P.; Yang, K.-A.; Pei, R.; Stojanovic, M.N.; Lin, Q. Integrated microfluidic isolation of aptamers using electrophoretic oligonucleotide manipulation. Sci. Rep. 2016, 6, 26139. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Wang, Z.; Flynn, C.D.; Mahmud, A.; Labib, M.; Wang, H.; Geraili, A.; Li, X.; Zhang, J.; Sargent, E.H. A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities. Nat. Chem. 2023, 15, 773–780. [Google Scholar] [CrossRef]
- White, R.; Rusconi, C.; Scardino, E.; Wolberg, A.; Lawson, J.; Hoffman, M.; Sullenger, B. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. 2001, 4, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, B.; Wu, Z.; Liu, G.; Li, W.; Tang, Y. In Silico discovery of aptamers with an enhanced library design strategy. Comput. Struct. Biotechnol. J. 2023, 21, 1005–1013. [Google Scholar] [CrossRef]
- Lee, S.J.; Cho, J.; Lee, B.-H.; Hwang, D.; Park, J.-W. Design and prediction of aptamers assisted by in silico methods. Biomedicines 2023, 11, 356. [Google Scholar] [CrossRef]
- Mushebenge, A.G.-A.; Ugbaja, S.C.; Mbatha, N.A.; Khan, R.B.; Kumalo, H.M. Assessing the potential contribution of in silico studies in discovering drug candidates that interact with various SARS-CoV-2 receptors. Int. J. Mol. Sci. 2023, 24, 15518. [Google Scholar] [CrossRef]
- Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 2019, 37, 28–50. [Google Scholar] [CrossRef]
- Kissmann, A.-K.; Bolotnikov, G.; Li, R.; Müller, F.; Xing, H.; Krämer, M.; Gottschalk, K.-E.; Andersson, J.; Weil, T.; Rosenau, F. IMPATIENT-qPCR: Monitoring SELEX success during in vitro aptamer evolution. Appl. Microbiol. Biotechnol. 2024, 108, 284. [Google Scholar] [CrossRef]
- Komarova, N.; Kuznetsov, A. Inside the black box: What makes SELEX better? Molecules 2019, 24, 3598. [Google Scholar] [CrossRef] [PubMed]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar] [CrossRef]
- Levay, A.; Brenneman, R.; Hoinka, J.; Sant, D.; Cardone, M.; Trinchieri, G.; Przytycka, T.M.; Berezhnoy, A. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Res. 2015, 43, e82. [Google Scholar] [CrossRef]
- Shao, K.; Ding, W.; Wang, F.; Li, H.; Ma, D.; Wang, H. Emulsion PCR: A high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS ONE 2011, 6, e24910. [Google Scholar] [CrossRef]
- Gelinas, A.D.; Davies, D.R.; Janjic, N. Embracing proteins: Structural themes in aptamer–protein complexes. Curr. Opin. Struct. Biol. 2016, 36, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, H.; Palizban, A.A.; Khanahmad, H.; Mofid, M.R. Novel approach to overcome defects of cell-SELEX in developing aptamers against aspartate β-hydroxylase. ACS Omega 2021, 6, 11005–11014. [Google Scholar] [CrossRef]
- Lakhin, A.; Tarantul, V.Z.; Gening, L. Aptamers: Problems, solutions and prospects. Acta Naturae 2013, 5, 34–43. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Lin, A.; Mallikaratchy, P.; McConnell, E.M.; McKeague, M.; Patel, R.; Shigdar, S. In vitro selection of aptamers and their applications. Nat. Rev. Methods Primers 2023, 3, 54. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Jiao, B.; Wang, L. Post-SELEX optimization of aptamers. Anal. Bioanal. Chem. 2016, 408, 4567–4573. [Google Scholar] [CrossRef]
- Fallah, A.; Havaei, S.A.; Sedighian, H.; Kachuei, R.; Fooladi, A.A.I. Prediction of aptamer affinity using an artificial intelligence approach. J. Mater. Chem. B 2024, 12, 8825–8842. [Google Scholar] [CrossRef]
- Yu, X.; Yu, Y.; Zeng, Q. Support vector machine classification of streptavidin-binding aptamers. PLoS ONE 2014, 9, e99964. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yu, R.; Tang, L.; Guo, Q.; Zhang, Y.; Zhou, Y.; Yang, Q.; He, X.; Yang, X.; Wang, K. Recognition of candidate aptamer sequences for human hepatocellular carcinoma in SELEX screening using structure–activity relationships. Chemom. Intell. Lab. Syst. 2014, 136, 10–14. [Google Scholar] [CrossRef]
- Heredia, F.L.; Roche-Lima, A.; Parés-Matos, E.I. A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers. PLoS Comput. Biol. 2021, 17, e1009247. [Google Scholar] [CrossRef]
- Li, B.-Q.; Zhang, Y.-C.; Huang, G.-H.; Cui, W.-R.; Zhang, N.; Cai, Y.-D. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS ONE 2014, 9, e86729. [Google Scholar] [CrossRef]
- Asif, M.; Orenstein, Y. DeepSELEX: Inferring DNA-binding preferences from HT-SELEX data using multi-class CNNs. Bioinformatics 2020, 36 (Suppl. S2), i634–i642. [Google Scholar] [CrossRef]
- Douaki, A.; Garoli, D.; Inam, A.S.; Angeli, M.A.C.; Cantarella, G.; Rocchia, W.; Wang, J.; Petti, L.; Lugli, P. Smart approach for the design of highly selective aptamer-based biosensors. Biosensors 2022, 12, 574. [Google Scholar] [CrossRef]
- Shin, I.; Kang, K.; Kim, J.; Sel, S.; Choi, J.; Lee, J.-W.; Kang, H.Y.; Song, G. AptaTrans: A deep neural network for predicting aptamer-protein interaction using pretrained encoders. BMC Bioinform. 2023, 24, 447. [Google Scholar] [CrossRef] [PubMed]
- Di Gioacchino, A.; Procyk, J.; Molari, M.; Schreck, J.S.; Zhou, Y.; Liu, Y.; Monasson, R.; Cocco, S.; Šulc, P. Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection. PLoS Comput. Biol. 2022, 18, e1010561. [Google Scholar] [CrossRef]
- Iwano, N.; Adachi, T.; Aoki, K.; Nakamura, Y.; Hamada, M. Generative aptamer discovery using RaptGen. Nat. Comput. Sci. 2022, 2, 378–386. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Zhang, W.; Li, Y.; Feng, Y.; Lv, S.; Diao, H.; Luo, Z.; Yan, P.; He, M. AptaDiff: De novo design and optimization of aptamers based on diffusion models. Brief. Bioinform. 2024, 25, bbae517. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Yang, H.; Huang, X. Prediction of the binding affinity of aptamers against the influenza virus. SAR QSAR Environ. Res. 2019, 30, 51–62. [Google Scholar] [CrossRef]
- Yang, X.; Chan, C.H.; Yao, S.; Chu, H.Y.; Lyu, M.; Chen, Z.; Xiao, H.; Ma, Y.; Yu, S.; Li, F. DeepAptamer: Advancing high-affinity aptamer discovery with a hybrid deep learning model. Mol. Ther. Nucleic Acids 2025, 36, 102436. [Google Scholar] [CrossRef]
- Neves, M.A.; Reinstein, O.; Saad, M.; Johnson, P.E. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophys. Chem. 2010, 153, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Colon, S.; Paige, A.; Bolarinho, R.; Young, H.; Gerdon, A.E. Secondary Structure of DNA Aptamer Influences Biomimetic Mineralization of Calcium Carbonate. ACS Appl. Mater. Interfaces 2023, 15, 6274–6282. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.; Adams, M.C.; Naik, R.R.; Milam, V.T. Analyzing secondary structure patterns in DNA aptamers identified via CompELS. Molecules 2019, 24, 1572. [Google Scholar] [CrossRef]
- Afanasyeva, A.; Nagao, C.; Mizuguchi, K. Prediction of the secondary structure of short DNA aptamers. Biophys. Physicobiol. 2019, 16, 287–294. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Y.; Wang, J.; Xiao, Y. Using 3dRNA/DNA for RNA and DNA 3D structure prediction and evaluation. Curr. Protoc. 2023, 3, e770. [Google Scholar] [CrossRef]
- Biesiada, M.; Pachulska-Wieczorek, K.; Adamiak, R.W.; Purzycka, K.J. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 2016, 103, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Jeddi, I.; Saiz, L. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci. Rep. 2017, 7, 1178. [Google Scholar] [CrossRef]
- Medina-Benítez, A.; García-Alonso, C.A.; Fragoso-Rodríguez, R.; Torres-Huerta, A.L.; Antonio-Pérez, A. Stability and affinity evaluation of aptamers as a biorecognition system for testosterone and its analogs. bioRxiv 2024. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Lee, G.; Jang, G.H.; Kang, H.Y.; Song, G. Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. PLoS ONE 2021, 16, e0253760. [Google Scholar] [CrossRef]
- Bartley, S.; Rhinehardt, K.; Dellinger, K. Investigating DNA Aptamer Binding to Domains of the SARS-CoV-2 Spike Protein: Insights from Molecular Dynamics and MM/PBSA Analysis. ChemistrySelect 2025, 10, e202500900. [Google Scholar] [CrossRef]
- Poolsup, S.; Zaripov, E.; Hüttmann, N.; Minic, Z.; Artyushenko, P.V.; Shchugoreva, I.A.; Tomilin, F.N.; Kichkailo, A.S.; Berezovski, M.V. Discovery of DNA aptamers targeting SARS-CoV-2 nucleocapsid protein and protein-binding epitopes for label-free COVID-19 diagnostics. Mol. Ther.-Nucleic Acids 2023, 31, 731–743. [Google Scholar] [CrossRef]
- Ropii, B.; Bethasari, M.; Anshori, I.; Koesoema, A.P.; Shalannanda, W.; Satriawan, A.; Setianingsih, C.; Akbar, M.R.; Aditama, R. The assessment of molecular dynamics results of three-dimensional RNA aptamer structure prediction. PLoS ONE 2023, 18, e0288684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Eriksson, L.A.; Zhang, R.-B. Mechanism of Dual-Site Recognition in a Classic DNA Aptamer. J. Chem. Inf. Model. 2024, 64, 7698–7708. [Google Scholar] [CrossRef]
- Su, C.-H.; Chen, H.-L.; Ju, S.-P.; You, T.-D.; Lin, Y.-S.; Tseng, T.-F. Exploring the most stable aptamer/target molecule complex by the stochastic tunnelling-basin hopping-discrete molecular dynamics method. Sci. Rep. 2021, 11, 11406. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Oh, I.-H.; Park, D.-Y.; Cha, J.-M.; Shin, W.-R.; Kim, J.H.; Kim, S.C.; Cho, B.-K.; Ahn, J.-Y.; Kim, Y.-H. Docking simulation and sandwich assay for aptamer-based botulinum neurotoxin type C detection. Biosensors 2020, 10, 98. [Google Scholar] [CrossRef]
- Ching, K.W.C.; Nazri, M.N.M.; Rachman, A.R.A.; Mustafa, K.M.F.; Mokhtar, N.F. In silico Study of shape complementarity, binding affinity, and protein–ligand interactions of systematic evolution of ligands by exponential enrichment-aptamer to programmed death ligand-1 using patchdock. J. Prev. Diagn. Treat. Strateg. Med. 2022, 1, 127–133. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Li, L.; Mao, X.; Shi, M.; Li, K. Capture and detection of nucleic acid aptamer target proteins in colorectal cancer. Chem. Eng. J. 2025, 504, 158746. [Google Scholar] [CrossRef]
- Huang, C.-P.; Hu, W.-P.; Yang, W.; Lee, Z.-J.; Chen, W.-Y. In silico maturation of DNA aptamer against the prostate-specific antigen (PSA) and kinetic analysis. Biochem. Biophys. Res. Commun. 2025, 759, 151638. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhu, Y.; Kianfar, E. Nano biosensors: Properties, applications and electrochemical techniques. J. Mater. Res. Technol. 2021, 12, 1649–1672. [Google Scholar] [CrossRef]
- Kamińska, A.; Marzec, M.E.; Stępień, E.Ł. Design and optimization of a biosensor surface functionalization to effectively capture urinary extracellular vesicles. Molecules 2021, 26, 4764. [Google Scholar] [CrossRef]
- Qin, J.; Wang, W.; Gao, L.; Yao, S.Q. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem. Sci. 2022, 13, 2857–2876. [Google Scholar] [CrossRef]
- Rozenblum, G.T.; Pollitzer, I.G.; Radrizzani, M. Challenges in electrochemical aptasensors and current sensing architectures using flat gold surfaces. Chemosensors 2019, 7, 57. [Google Scholar] [CrossRef]
- Evtugyn, G.; Porfireva, A.; Shamagsumova, R.; Hianik, T. Advances in electrochemical aptasensors based on carbon nanomaterials. Chemosensors 2020, 8, 96. [Google Scholar] [CrossRef]
- Amiri, M.; Nekoueian, K.; Saberi, R.S. Graphene-family materials in electrochemical aptasensors. Anal. Bioanal. Chem. 2021, 413, 673–699. [Google Scholar] [CrossRef]
- Radi, A.-E.; Abd-Ellatief, M.R. Electrochemical aptasensors: Current status and future perspectives. Diagnostics 2021, 11, 104. [Google Scholar] [CrossRef]
- Rabiee, N.; Ahmadi, S.; Rahimizadeh, K.; Chen, S.; Veedu, R.N. Metallic nanostructure-based aptasensors for robust detection of proteins. Nanoscale Adv. 2024, 6, 747–776. [Google Scholar] [CrossRef]
- Su, T.; Mi, Z.; Xia, Y.; Jin, D.; Xu, Q.; Hu, X.; Shu, Y. A wearable sweat electrochemical aptasensor based on the Ni–Co MOF nanosheet-decorated CNTs/PU film for monitoring of stress biomarker. Talanta 2023, 260, 124620. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Cai, Y.; Xu, S.; Wu, H.; Chen, X.; Huang, Y.; Li, F. Integrated Electrochemical Aptasensor Array toward Monitoring Anticancer Drugs in Sweat. Anal. Chem. 2024, 96, 4997–5005. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Gómez, C.; Parreira, P.; Martins, M.C.L.; Azevedo, H.S. Peptide-based self-assembled monolayers (SAMs): What peptides can do for SAMs and vice versa. Chem. Soc. Rev. 2024, 53, 3714–3773. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Xie, Y.; Liu, T.; Chu, Z.; Dempsey, E.; Jin, W. Conductive polymer nanocomposites: Recent advances in the construction of electrochemical biosensors. Sens. Diagn. 2024, 3, 165–180. [Google Scholar] [CrossRef]
- Borg, K.N.; Ho, Y.P.; Zeng, S. Recent Developments on Optical Aptasensors for the Detection of Pro-Inflammatory Cytokines with Advanced Nanostructures. Adv. Opt. Mater. 2024, 12, 2400608. [Google Scholar] [CrossRef]
- Pereira, A.C.; Moreira, F.T.; Rodrigues, L.R.; Sales, M.G.F. Paper-based aptasensor for colorimetric detection of osteopontin. Anal. Chim. Acta 2022, 1198, 339557. [Google Scholar] [CrossRef]
- Dong, J.-M.; Wang, R.-Q.; Yuan, N.-N.; Guo, J.-H.; Yu, X.-Y.; Peng, A.-H.; Cai, J.-Y.; Xue, L.; Zhou, Z.-L.; Sun, Y.-H. Recent advances in optical aptasensors for biomarkers in early diagnosis and prognosis monitoring of hepatocellular carcinoma. Front. Cell Dev. Biol. 2023, 11, 1160544. [Google Scholar] [CrossRef]
- Guo, C.; He, Y.; Chen, K.; Zhang, S.; Wang, M.; He, L.; Zhang, Z. The surface plasmon resonance aptasensor based on the dual-interface Mott− Schottky heterojunction of Zr-doped MnB4 nanosheets decorated with gold nanoparticles for sensitively detecting nucleolin. Sens. Actuators B Chem. 2025, 437, 137721. [Google Scholar] [CrossRef]
- Ghosh, S.; Chen, Y.; Sebastian, J.; George, A.; Dutta, M.; Stroscio, M.A. A study on the response of FRET based DNA aptasensors in intracellular environment. Sci. Rep. 2020, 10, 13250. [Google Scholar] [CrossRef]
- Park, S.; Cho, E.; Chueng, S.-T.D.; Yoon, J.-S.; Lee, T.; Lee, J.-H. Aptameric fluorescent biosensors for liver cancer diagnosis. Biosensors 2023, 13, 617. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Fang, F.; Na, J.; Yan, R.; Huang, Y.; Zhou, Z.; Zhao, Y.; Li, G. Fluorescent “turn-on” aptamer sensor for sensitive and reliable detection of Golgi glycoprotein 73 based on nitrogen-doped graphene quantum dots and molybdenum disulfide nanosheets. J. Pharm. Biomed. Anal. 2023, 225, 115215. [Google Scholar] [CrossRef]
- Ng, S.; Lim, H.S.; Ma, Q.; Gao, Z. Optical aptasensors for adenosine triphosphate. Theranostics 2016, 6, 1683. [Google Scholar] [CrossRef]
- Zahra, Q.u.a.; Khan, Q.A.; Luo, Z. Advances in optical aptasensors for early detection and diagnosis of various cancer types. Front. Oncol. 2021, 11, 632165. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Özgür, E.; Denizli, A. Quartz crystal microbalance-based aptasensors for medical diagnosis. Micromachines 2022, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, B.S.; Horta, I.M.; de Oliveira, R.S.; Pereira, R.M.; Schatkoski, V.M.; Bacher, G.; Massi, M.; Thim, G.P.; Pereira, A.L.d.J.; da Silva Sobrinho, A.S. Recent improvements on surface acoustic wave sensors based on graphenic nanomaterials. Mater. Sci. Semicond. Process. 2023, 167, 107811. [Google Scholar] [CrossRef]
- Filius, M.; Fasching, L.; van Wee, R.; Rwei, A.Y.; Joo, C. Decoding aptamer-protein binding kinetics for continuous biosensing using single-molecule techniques. Sci. Adv. 2025, 11, eads9687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, N.; Xu, Y.; Lu, P.; Qi, N.; Yang, M.; Hou, C.; Huo, D. An ultrasensitive dual-signal aptasensor based on functionalized Sb@ ZIF-67 nanocomposites for simultaneously detect multiple biomarkers. Biosens. Bioelectron. 2022, 214, 114508. [Google Scholar] [CrossRef]
- Miyagawa, A.; Okada, Y.; Okada, T. Aptamer-Based Sensing of Small Organic Molecules by Measuring Levitation Coordinate of Single Microsphere in Combined Acoustic–Gravitational Field. ACS Omega 2020, 5, 3542–3549. [Google Scholar] [CrossRef]
- Spagnolo, S.; Davoudian, K.; Franier, B.D.L.; Kocsis, R.; Hianik, T.; Thompson, M. Nanoparticle-Enhanced Acoustic Wave Biosensor Detection of Pseudomonas aeruginosa in Food. Biosensors 2025, 15, 146. [Google Scholar] [CrossRef]
- Wang, X.; Ji, J.; Yang, P.; Li, X.; Pang, Y.; Lu, P. A love-mode surface acoustic wave aptasensor with dummy fingers based on monolayer MoS2/Au NPs nanocomposites for alpha-fetoprotein detection. Talanta 2022, 243, 123328. [Google Scholar] [CrossRef]
- Nair, M.P.; Teo, A.J.; Li, K.H.H. Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines 2021, 13, 24. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Ning, Z.; Duan, M.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Design and application of microfluidics in aptamer SELEX and Aptasensors. Biotechnol. Adv. 2024, 77, 108461. [Google Scholar] [CrossRef]
- Khan, N.I.; Song, E. Lab-on-a-chip systems for aptamer-based biosensing. Micromachines 2020, 11, 220. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Xie, H.; Xu, D. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal. Chim. Acta 2020, 1132, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kwak, B.S.; Kim, H.O.; Kim, J.H.; Lee, S.; Jung, H.-I. Quantitative analysis of sialic acid on erythrocyte membranes using a photothermal biosensor. Biosens. Bioelectron. 2012, 35, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Vehusheia, S.L.; Roman, C.; Braissant, O.; Arnoldini, M.; Hierold, C. Enabling direct microcalorimetric measurement of metabolic activity and exothermic reactions onto microfluidic platforms via heat flux sensor integration. Microsyst. Nanoeng. 2023, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.-N.; Tinnefeld, P.; Li, G.-L.; He, Z.-K.; Xu, Q.-F. Aptamer melting biosensors for thousands of signaling and regenerating cycles. Biosens. Bioelectron. 2025, 271, 116998. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Son, S.E.; Ha, C.H.; Kim, D.H.; Seong, G.H. Dual-mode colorimetric and photothermal aptasensor for detection of kanamycin using flocculent platinum nanoparticles. Biosens. Bioelectron. 2024, 249, 116007. [Google Scholar] [CrossRef]
- Ayodele, O.O.; Adesina, A.O.; Pourianejad, S.; Averitt, J.; Ignatova, T. Recent advances in nanomaterial-based aptasensors in medical diagnosis and therapy. Nanomaterials 2021, 11, 932. [Google Scholar] [CrossRef]
- Fan, J.; Yang, W. Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein. Sens. Actuators B Chem. 2022, 353, 131100. [Google Scholar] [CrossRef]
- Du, Y.; Chen, C.; Li, B.; Zhou, M.; Wang, E.; Dong, S. Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosens. Bioelectron. 2010, 25, 1902–1907. [Google Scholar] [CrossRef]
- Xing, J.; Han, Q.; Liu, J.; Yan, Z. Electrochemical aptasensor fabricated by anchoring recognition aptamers and immobilizing redox probes on bipolar silica nanochannel array for reagentless detection of carbohydrate antigen 15-3. Front. Chem. 2023, 11, 1324469. [Google Scholar] [CrossRef]
- De Penning, S.; Murphy, M.P.; Kingston, T.A.; Nilsen-Hamilton, M.; Shrotriya, P. Influence of crosslinker on aptamer immobilization and aptasensor sensing response for non-metallic surfaces. Biosens. Bioelectron. 2025, 270, 116933. [Google Scholar] [CrossRef]
- Liu, Y.; Canoura, J.; Alkhamis, O.; Xiao, Y. Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors. ACS Appl. Mater. Interfaces 2021, 13, 9491–9499. [Google Scholar] [CrossRef]
- Lupoi, T.; Baccara, S.; Leroux, Y.R.; Feier, B.; Pasturel, M.; Cercus, J.-L.; Cristea, C.; Geneste, F. Optimizing self-assembled monolayer construction for aptasensors and preventing false signals. The case of erythromycin detection. Electrochim. Acta 2025, 525, 146097. [Google Scholar] [CrossRef]
- Keighley, S.D.; Li, P.; Estrela, P.; Migliorato, P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2008, 23, 1291–1297. [Google Scholar] [CrossRef]
- Simon, L.; Bognár, Z.; Gyurcsányi, R.E. Finding the Optimal Surface Density of Aptamer Monolayers by SPR Imaging Detection-based Aptamer Microarrays. Electroanalysis 2020, 32, 851–858. [Google Scholar] [CrossRef]
- Odeh, F.; Nsairat, H.; Alshaer, W.; Ismail, M.A.; Esawi, E.; Qaqish, B.; Bawab, A.A.; Ismail, S.I. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules 2019, 25, 3. [Google Scholar] [CrossRef]
- Pilehvar, S.; Rather, J.A.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K. Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum. Biosens. Bioelectron. 2014, 54, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, S.; Simge, E.; Mobashar, A.; Gelen, S.S.; Rahdar, A.; Ebrahimi, N.; Hosseinikhah, S.M.; Bilal, M.; Kyzas, G.Z. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem.-Biol. Interact. 2022, 361, 109964. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Narwade, V.N.; Sontakke, K.S.; Hianik, T.; Shirsat, M.D. Layer-by-layer immobilization of DNA aptamers on Ag-incorporated co-succinate metal–organic framework for Hg (II) detection. Sensors 2024, 24, 346. [Google Scholar] [CrossRef]
- Huang, J.; Dong, R.; Habibul, M.; Zhang, Y.; Guan, M.; Li, G. An electrochemiluminescence aptasensor based on poly (aniline-luminol)/graphene oxide/chitosan for ultra-sensitive detection of Hg2+. Polym. Bull. 2023, 80, 12945–12958. [Google Scholar] [CrossRef]
- Hianik, T.; Ostatná, V.; Sonlajtnerova, M.; Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry 2007, 70, 127–133. [Google Scholar] [CrossRef]
- Hanson, E.K.; Whelan, R.J. Combining the Benefits of Biotin–Streptavidin Aptamer Immobilization with the Versatility of Ni-NTA Regeneration Strategies for SPR. Sensors 2024, 24, 2805. [Google Scholar] [CrossRef] [PubMed]
- Hamming, P.E.; Huskens, J. Streptavidin coverage on biotinylated surfaces. ACS Appl. Mater. Interfaces 2021, 13, 58114–58123. [Google Scholar] [CrossRef]
- Jarczewska, M.; Malinowska, E. The application of antibody–aptamer hybrid biosensors in clinical diagnostics and environmental analysis. Anal. Methods 2020, 12, 3183–3199. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Luo, D.; Liu, B. A dual-mode biosensor for salivary cortisol with antibody-aptamer sandwich pattern and enzyme catalytic amplification. J. Solid State Electrochem. 2023, 27, 399–408. [Google Scholar] [CrossRef]
- Hua, Y.; Ma, J.; Li, D.; Wang, R. DNA-based biosensors for the biochemical analysis: A review. Biosensors 2022, 12, 183. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, Y.; Liu, J. G-quadruplex DNA for construction of biosensors. TrAC Trends Anal. Chem. 2020, 132, 116060. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, T.; Zhang, H. Recent advances in the peptide-based biosensor designs. Colloids Surf. B Biointerfaces 2023, 231, 113559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-L.; Lv, C.; Li, Z.-H.; Jiang, S.; Cai, D.; Liu, S.-S.; Wang, T.; Zhang, K.-H. Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Front. Chem. 2023, 11, 1144347. [Google Scholar] [CrossRef]
- Sun, D.; Sun, M.; Zhang, J.; Lin, X.; Zhang, Y.; Lin, F.; Zhang, P.; Yang, C.; Song, J. Computational tools for aptamer identification and optimization. TrAC Trends Anal. Chem. 2022, 157, 116767. [Google Scholar] [CrossRef]
- Jeddi, I.; Saiz, L. Computational design of single-stranded DNA hairpin aptamers immobilized on a biosensor substrate. Sci. Rep. 2021, 11, 10984. [Google Scholar] [CrossRef]
- Patel, S.; Fraser, K.; Peng, Z.; Friedman, A.D.; Yao, O.; Chatterjee, P.; Yao, S. AptaBLE: A Deep Learning Platform for SELEX Optimization. In Proceedings of the NeurIPS 2024 Workshop on AI for New Drug Modalities, Vancouver, BC, Canada, 10–15 December 2024. [Google Scholar]
- Yu, H.; Zhu, J.; Shen, G.; Deng, Y.; Geng, X.; Wang, L. Improving aptamer performance: Key factors and strategies. Microchim. Acta 2023, 190, 255. [Google Scholar] [CrossRef]
- Emami, N.; Ferdousi, R. AptaNet as a deep learning approach for aptamer–protein interaction prediction. Sci. Rep. 2021, 11, 6074. [Google Scholar] [CrossRef]
- Yang, Q.; Jia, C.; Li, T. Prediction of aptamer–protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier. Math. Biosci. 2019, 311, 103–108. [Google Scholar] [CrossRef]
- Uwiragiye, E.; Rhinehardt, K.L. Tfidf-random forest: Prediction of aptamer-protein interacting pairs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 3032–3037. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Yang, Q.; Wang, J.; Hoyer, S.; Chou, W.; McLean, C.; Davis, G.; Gong, Q.; Armstrong, Z.; Jang, J. Machine learning guided aptamer refinement and discovery. Nat. Commun. 2021, 12, 2366. [Google Scholar] [CrossRef]
- Go, Y.J.; Kalathingal, M.; Rhee, Y.M. An Ensemble Docking Approach for Analyzing and Designing Aptamer Heterodimers Targeting VEGF165. Int. J. Mol. Sci. 2024, 25, 4066. [Google Scholar] [CrossRef]
- Ramasanoff, R.R.; Sokolov, P.A. The binding model of adenosine-specific DNA aptamer: Umbrella sampling study. J. Mol. Graph. Model. 2023, 118, 108338. [Google Scholar] [CrossRef]
- Tanida, Y.; Matsuura, A. Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex. J. Comput. Chem. 2020, 41, 1804–1819. [Google Scholar] [CrossRef] [PubMed]
- Cleri, F.; Lensink, M.F.; Blossey, R. DNA aptamers block the receptor binding domain at the spike protein of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 713003. [Google Scholar] [CrossRef]
- Singh, J.; Hanson, J.; Paliwal, K.; Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 2019, 10, 5407. [Google Scholar] [CrossRef]
- Singh, J.; Paliwal, K.; Zhang, T.; Singh, J.; Litfin, T.; Zhou, Y. Improved RNA secondary structure and tertiary base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional transfer learning. Bioinformatics 2021, 37, 2589–2600. [Google Scholar] [CrossRef]
- Binet, T.; Padiolleau-Lefèvre, S.; Octave, S.; Avalle, B.; Maffucci, I. Comparative study of single-stranded oligonucleotides secondary structure prediction tools. BMC Bioinform. 2023, 24, 422. [Google Scholar] [CrossRef] [PubMed]
- Fasogbon, I.V.; Ondari, E.N.; Tusubira, D.; Rangasamy, L.; Venkatesan, J.; Musyoka, A.M.; Aja, P.M. Recent Focus in Non-Selex-Computational Approach for de Novo Aptamer Design: A Mini Review. Anal. Biochem. 2024, 699, 115756. [Google Scholar] [CrossRef]
- Arano-Martinez, J.A.; Martínez-González, C.L.; Salazar, M.I.; Torres-Torres, C. A framework for biosensors assisted by multiphoton effects and machine learning. Biosensors 2022, 12, 710. [Google Scholar] [CrossRef]
- Raji, H.; Tayyab, M.; Sui, J.; Mahmoodi, S.R.; Javanmard, M. Biosensors and machine learning for enhanced detection, stratification, and classification of cells: A review. Biomed. Microdevices 2022, 24, 26. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhu, Y.; Li, H.; Yan, J. Evolutionary computational intelligence-based multi-objective sensor management for multi-target tracking. Remote Sens. 2022, 14, 3624. [Google Scholar] [CrossRef]
- Xu, L.; Duan, J.; Chen, J.; Ding, S.; Cheng, W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal. Chim. Acta 2021, 1148, 238187. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, G.; Lv, S.; Xiong, Q.; Xu, H. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. TrAC Trends Anal. Chem. 2023, 160, 116953. [Google Scholar] [CrossRef]
- Miti, A.; Zuccheri, G. Hybridization chain reaction design and biosensor implementation. DNA Nanotechnol. Methods Protoc. 2018, 1811, 115–135. [Google Scholar]
- Zhang, C.; Chen, J.; Sun, R.; Huang, Z.; Luo, Z.; Zhou, C.; Wu, M.; Duan, Y.; Li, Y. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens. 2020, 5, 2977–3000. [Google Scholar] [CrossRef]
- Malekzad, H.; Sahandi Zangabad, P.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev. 2017, 6, 301–329. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Dai, S.; Miao, T.; Chen, J.; Wang, Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta 2015, 182, 917–923. [Google Scholar] [CrossRef]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET based biosensor: Principle applications recent advances and challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater. 2021, 13, 8. [Google Scholar] [CrossRef]
- Kalyana Sundaram, S.d.; Hossain, M.M.; Rezki, M.; Ariga, K.; Tsujimura, S. Enzyme cascade electrode reactions with nanomaterials and their applicability towards biosensor and biofuel cells. Biosensors 2023, 13, 1018. [Google Scholar] [CrossRef]
- Moore, M.D.; Escudero-Abarca, B.I.; Jaykus, L.-A. An enzyme-linked aptamer sorbent assay to evaluate aptamer binding. Synth. Antibodies Methods Protoc. 2017, 1575, 291–302. [Google Scholar]
- Zhang, F.; Du, H.; Li, L.; Li, T.; Wang, J.; Chen, Z.; Yan, M.; Zhu, C.; Qu, F. Enzyme-linked aptamer kits for rapid, visual, and sensitive determination of lactoferrin in dairy products. Foods 2022, 11, 3763. [Google Scholar] [CrossRef]
- Xie, S.; Walton, S.P. Development of a dual-aptamer-based multiplex protein biosensor. Biosens. Bioelectron. 2010, 25, 2663–2668. [Google Scholar] [CrossRef]
- Onaş, A.M.; Dascălu, C.; Raicopol, M.D.; Pilan, L. Critical design factors for electrochemical aptasensors based on target-induced conformational changes: The case of small-molecule targets. Biosensors 2022, 12, 816. [Google Scholar] [CrossRef]
- Zhou, L.; Ou, L.-J.; Chu, X.; Shen, G.-L.; Yu, R.-Q. Aptamer-based rolling circle amplification: A platform for electrochemical detection of protein. Anal. Chem. 2007, 79, 7492–7500. [Google Scholar] [CrossRef]
- Qing, M.; Sun, Z.; Wang, L.; Du, S.Z.; Zhou, J.; Tang, Q.; Luo, H.Q.; Li, N.B. CRISPR/Cas12a-regulated homogeneous electrochemical aptasensor for amplified detection of protein. Sens. Actuators B Chem. 2021, 348, 130713. [Google Scholar] [CrossRef]
- Mo, L.; He, W.; Li, Z.; Liang, D.; Qin, R.; Mo, M.; Yang, C.; Lin, W. Recent progress in the development of DNA-based biosensors integrated with hybridization chain reaction or catalytic hairpin assembly. Front. Chem. 2023, 11, 1134863. [Google Scholar] [CrossRef]
- Zhang, W.; Song, Y.; Deng, D.; Liu, M.; Chen, H.; Zhang, W.; Lei, H.; Li, Z.; Luo, L. Exponential rolling circle amplification-hybridization chain reaction (EXRCA-HCR) for AgNPs@ gel-enhanced fluorescence ultrasensitive detection of miRNA-21. Anal. Chim. Acta 2025, 1358, 344095. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Fang, Y.; Li, H.; Yang, M.; Wang, W.; Chen, S.; Xiao, Q. An ultra-sensitive electrochemical biosensor for circulating tumor DNA utilizing dual enzyme-assisted target recycle and hybridization chain reaction amplification strategies. Microchem. J. 2024, 204, 111164. [Google Scholar] [CrossRef]
- Tian, W.; Li, P.; He, W.; Liu, C.; Li, Z. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens. Bioelectron. 2019, 128, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, G.; Alsadig, A.; Chiriacò, M.S.; Turco, A.; Foscarini, A.; Ferrara, F.; Gigli, G.; Primiceri, E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024, 268, 125280. [Google Scholar] [CrossRef]
- Fu, L.; Liu, X.; Cao, J.; Li, H.; Xie, A.; Liu, Y. Recent advance in electrochemical immunosensors for lung cancer biomarkers sensing. Rev. Anal. Chem. 2024, 43, 20230068. [Google Scholar] [CrossRef]
- Ukirade, N.; Choudhari, U.; Jadhav, U.; Jagtap, S.; Rane, S. Horseradish peroxidase/graphene electrochemical biosensor for glutathione detection. Nanomater. Energy 2024, 13, 102–109. [Google Scholar] [CrossRef]
- Muthurasu, A.; Ganesh, V. Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors. Appl. Biochem. Biotechnol. 2014, 174, 945–959. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Z.; Chang, Y.; Chai, Y.; Yuan, R. An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2@ Au nanocatalysts for microRNA-21 detection. Biosens. Bioelectron. 2018, 119, 170–175. [Google Scholar] [CrossRef]
- Hou, X.; Wang, R.; Zhang, H.; Zhang, M.; Qu, X.; Hu, X. Iron-Coordinated L-Lysine–Based Nanozymes with High Peroxidase-like Activity for Sensitive Hydrogen Peroxide and Glucose Detection. Polymers 2023, 15, 3002. [Google Scholar] [CrossRef] [PubMed]
- Kurup, C.P.; Ahmed, M.U. Nanozymes towards personalized diagnostics: A recent progress in biosensing. Biosensors 2023, 13, 461. [Google Scholar] [CrossRef]
- Yang, H.; Gong, C.; Miao, L.; Xu, F. A glucose biosensor based on horseradish peroxidase and glucose oxidase co-entrapped in carbon nanotubes modified electrode. Int. J. Electrochem. Sci. 2017, 12, 4958–4969. [Google Scholar] [CrossRef]
- Gao, J.; Hua, X.; Yuan, R.; Li, Q.; Xu, W. Amplified electrochemical biosensing based on bienzymatic cascade catalysis confined in a functional DNA structure. Talanta 2021, 234, 122643. [Google Scholar] [CrossRef]
- Guo, F.; Sun, M.; Zhang, Y.; Xie, J.; Gao, Q.; Duan, W.-J.; Chen, J.-X.; Chen, J.; Dai, Z.; Li, M. A dual aptamer recognition-based fluorescent biosensor for extracellular vesicles assays with high sensitivity and specificity. Sens. Actuators B Chem. 2023, 389, 133890. [Google Scholar] [CrossRef]
- Guo, Q.; Yin, J.; Zhang, Y.; Wang, Y.; Zhai, H.; Yan, L.; Tian, M.; Guo, Y.; Sun, X.; Zhang, Y. Dual-mode colorimetric electrochemical aptamer sensor based on Au@ Pd bimetallic nanoparticles for the detection of Pb (II) in edible mushrooms. J. Appl. Electrochem. 2024, 54, 1833–1843. [Google Scholar] [CrossRef]
- Ma, X.; Hui, M.; Yuan, J.; Wang, Z.; Ma, X. Construction of colorimetric-fluorescent dual-signal aptamer-based assay using COF-Au nanozyme and magnetic nanoparticle–based CdTe quantum dots for sensitive zearalenone determination. Microchim. Acta 2025, 192, 38. [Google Scholar] [CrossRef]
- Huang, R.; Yin, L.-K.; Yang, C.; Wang, Z.-L.; Ni, R.-M.; Zhan, H.-Y.; Zhang, Z.-Q. A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence. Anal. Bioanal. Chem. 2025, 417, 2333–2343. [Google Scholar] [CrossRef] [PubMed]
- Ou, D.; Sun, D.; Lin, X.; Liang, Z.; Zhong, Y.; Chen, Z. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J. Mater. Chem. B 2019, 7, 3661–3669. [Google Scholar] [CrossRef]
- Yazdanparast, S.; Benvidi, A.; Banaei, M.; Nikukar, H.; Tezerjani, M.D.; Azimzadeh, M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly (glutamic acid)/MWNT nanocomposite. Microchim. Acta 2018, 185, 405. [Google Scholar] [CrossRef]
- Zhang, Y.; Figueroa-Miranda, G.; Wu, C.; Willbold, D.; Offenhäusser, A.; Mayer, D. Electrochemical dual-aptamer biosensors based on nanostructured multielectrode arrays for the detection of neuronal biomarkers. Nanoscale 2020, 12, 16501–16513. [Google Scholar] [CrossRef] [PubMed]
- Feagin, T.A.; Maganzini, N.; Soh, H.T. Strategies for creating structure-switching aptamers. ACS Sens. 2018, 3, 1611–1615. [Google Scholar] [CrossRef]
- Yoshikawa, A.M.; Rangel, A.E.; Zheng, L.; Wan, L.; Hein, L.A.; Hariri, A.A.; Eisenstein, M.; Soh, H.T. A massively parallel screening platform for converting aptamers into molecular switches. Nat. Commun. 2023, 14, 2336. [Google Scholar] [CrossRef]
- Kalsoom, I.; Shehzadi, K.; Irfan, M.; Qiu, L.; Wang, Y.; Xu, Z.; Meng, Z. Structure switching aptamer enhance sensitivity and specificity of photonic crystal-based sensors for RSV-G protein detection. Biosens. Bioelectron. 2025, 273, 117091. [Google Scholar] [CrossRef]
- Kettler, H.; White, K.; Hawkes, S. Mapping the Landscape of Diagnostics for Sexually Transmitted Infections: Key Findings and Recommendations; World Health Organization (WHO): Geneva, Switzerland, 2004. [Google Scholar]
- Land, K.J.; Boeras, D.I.; Chen, X.-S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Fleming, K.A.; Horton, S.; Wilson, M.L.; Atun, R.; DeStigter, K.; Flanigan, J.; Sayed, S.; Adam, P.; Aguilar, B.; Andronikou, S. The Lancet Commission on diagnostics: Transforming access to diagnostics. Lancet 2021, 398, 1997–2050. [Google Scholar] [CrossRef]
- Antoñanzas, F.; Juárez-Castelló, C.; Rodríguez-Ibeas, R. Using point-of-care diagnostic testing for improved antibiotic prescription: An economic model. Health Econ. Rev. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Pittman, T.W.; Decsi, D.B.; Punyadeera, C.; Henry, C.S. Saliva-based microfluidic point-of-care diagnostic. Theranostics 2023, 13, 1091. [Google Scholar] [CrossRef]
- Boeke, C.E.; Joseph, J.; Wang, M.; Abate, Z.M.; Atem, C.; Coulibaly, K.D.; Kebede, A.; Kiernan, B.; Kingwara, L.; Mangwendeza, P. Point-of-care testing can achieve same-day diagnosis for infants and rapid ART initiation: Results from government programmes across six African countries. J. Int. AIDS Soc. 2021, 24, e25677. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.; Huang, Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021, 227, 122188. [Google Scholar] [CrossRef]
- Zhou, R.; Gao, Y.; Yang, C.; Zhang, X.; Hu, B.; Zhao, L.; Guo, H.; Sun, M.; Wang, L.; Jiao, B. A novel SELEX based on immobilizing libraries enables screening of saxitoxin aptamers for BLI aptasensor applications. Toxins 2022, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, Q.; Zhang, S.; Sun, X.; Zhou, H.; Wang, Z.; Wu, J. A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023, 294, 121997. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Cheng, Y.; Zhang, S.; Zheng, X.; Wu, J. A biolayer interferometry-based, aptamer–antibody receptor pair biosensor for real-time, sensitive, and specific detection of the disease biomarker TNF-α. Chem. Eng. J. 2022, 433, 133268. [Google Scholar] [CrossRef]
- Zou, L.; Liu, X.; Zhou, Y.; Mei, W.; Wang, Q.; Yang, X.; Wang, K. Optical fiber amplifier and thermometer assisted point-of-care biosensor for detection of cancerous exosomes. Sens. Actuators B Chem. 2022, 351, 130893. [Google Scholar] [CrossRef]
- Loyez, M.; Lobry, M.; Hassan, E.M.; DeRosa, M.C.; Caucheteur, C.; Wattiez, R. HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 2021, 221, 121452. [Google Scholar] [CrossRef]
- Yalow, R.S.; Berson, S.A. Immunoassay of endogenous plasma insulin in man. J. Clin. Investig. 1960, 39, 1157–1175. [Google Scholar] [CrossRef]
- Mohammadi, F.; Zahraee, H.; Kazemi, M.I.; Habibi, Z.S.; Taghdisi, S.M.; Abnous, K.; Khoshbin, Z.; Chen, C.-H. Recent advances in aptamer-based platforms for cortisol hormone monitoring. Talanta 2024, 266, 125010. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ruppert, C.; Rentschler, S.; Laufer, S.; Deigner, H.-P. Combining aptamers and antibodies: Lateral flow quantification for thrombin and interleukin-6 with smartphone readout. Sens. Actuators B Chem. 2021, 333, 129246. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, J.; Lee, B.H.; Song, C.-S.; Gu, M.B. Specific detection of avian influenza H5N2 whole virus particles on lateral flow strips using a pair of sandwich-type aptamers. Biosens. Bioelectron. 2019, 134, 123–129. [Google Scholar] [CrossRef]
- Sun, F.; Yan, C.; Jia, Q.; Wu, W.; Cao, Y. A novel aptamer lateral flow strip for the rapid detection of gram-positive and gram-negative bacteria. J. Anal. Test. 2023, 7, 79–88. [Google Scholar] [CrossRef]
- Kim, J.; Baek, S.; Nam, J.; Park, J.; Kim, K.; Kang, J.; Yeom, G. Simultaneous detection of infectious diseases using aptamer-conjugated gold nanoparticles in the lateral flow immunoassay-based signal amplification platform. Anal. Chem. 2024, 96, 1725–1732. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, G.; Pan, Q.; Xue, F.; Wang, Z.; Peng, C. Rapid and ultra-sensitive lateral flow assay for pathogens based on multivalent aptamer and magnetic nanozyme. Biosens. Bioelectron. 2024, 250, 116044. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Le, T.T.; Chang, P.; Benton, D.J.; McCauley, J.W.; Iqbal, M.; Cass, A.E. Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal. Chem. 2017, 89, 6781–6786. [Google Scholar] [CrossRef]
- Çam Derin, D.; Gültekin, E.; Gündüz, E.; Otlu, B. Comparison of Six Aptamer-Aptamer Pairs on Rapid Detection of SARS-CoV-2 by Lateral Flow Assay. J. AOAC Int. 2024, 107, 464–470. [Google Scholar] [CrossRef]
- Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 2020, 92, 9895–9900. [Google Scholar] [CrossRef]
- Yang, L.F.; Kacherovsky, N.; Panpradist, N.; Wan, R.; Liang, J.; Zhang, B.; Salipante, S.J.; Lutz, B.R.; Pun, S.H. Aptamer sandwich lateral flow assay (AptaFlow) for antibody-free SARS-CoV-2 detection. Anal. Chem. 2022, 94, 7278–7285. [Google Scholar] [CrossRef]
- Kacherovsky, N.; Yang, L.F.; Dang, H.V.; Cheng, E.L.; Cardle, I.I.; Walls, A.C.; McCallum, M.; Sellers, D.L.; DiMaio, F.; Salipante, S.J. Discovery and characterization of spike N-terminal domain-binding Aptamers for rapid SARS-CoV-2 detection. Angew. Chem. Int. Ed. 2021, 60, 21211–21215. [Google Scholar] [CrossRef]
- Kim, S.W.; Han, M.J.; Rahman, M.S.; Kim, H.; Noh, J.E.; Lee, M.K.; Kim, M.; Lee, J.-O.; Jang, S.K. Ultra-Sensitive Aptamer-Based Diagnostic Systems for Rapid Detection of All SARS-CoV-2 Variants. Int. J. Mol. Sci. 2025, 26, 745. [Google Scholar] [CrossRef] [PubMed]
- Tandale, P.; Choudhary, N.; Singh, J.; Sharma, A.; Shukla, A.; Sriram, P.; Soni, U.; Singla, N.; Barnwal, R.P.; Singh, G. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer. Biochem. Biophys. Rep. 2021, 26, 100962. [Google Scholar] [CrossRef]
- Li, H.; Fu, X.; You, Q.; Shi, D.; Su, L.; Song, M.; Peng, R.; Fu, T.; Wang, P.; Tan, W. Multiple aptamer recognition-based quantum dot lateral flow platform: Ultrasensitive point-of-care testing of respiratory infectious diseases. J. Mater. Chem. B 2025, 13, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gurung, A.S.; Qiu, W. Lateral flow aptasensor for simultaneous detection of platelet-derived growth factor-BB (PDGF-BB) and thrombin. Molecules 2019, 24, 756. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhu, Z.; Xi, X.; Cao, T.; Wen, W.; Zhang, X.; Wang, S. An aptamer-based hook-effect-recognizable three-line lateral flow biosensor for rapid detection of thrombin. Biosens. Bioelectron. 2019, 133, 177–182. [Google Scholar] [CrossRef]
- Swanson, C.; D’Andrea, A. Lateral flow assay with near-infrared dye for multiplex detection. Clin. Chem. 2013, 59, 641–648. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Hai, X.; Zhang, J.; Wang, J. Smartphone-aided fluorescent probe combining lateral flow assay for Cys testing in food and organism. Food Chem. 2025, 473, 143106. [Google Scholar] [CrossRef]
- Dey, M.K.; Iftesum, M.; Devireddy, R.; Gartia, M.R. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. Anal. Methods 2023, 15, 4351–4376. [Google Scholar] [CrossRef]
- Al-Hawary, S.I.S.; Althomali, R.H.; Elov, B.B.; Hussn, M.; Sapaev, I.; Obaid, R.F.; Jabbar, H.S.; Romero-Parra, R.M.; Zearah, S.A.; Albahash, Z.F. Biomedical applications of smartphone-based lateral flow detection systems as a diagnosis tool. Microchem. J. 2023, 193, 109159. [Google Scholar] [CrossRef]
- Sarathkumar, E.; Jibin, K.; Sivaselvam, S.; Sharma, A.S.; Alexandar, V.; Resmi, A.; Velswamy, P.; Jayasree, R.S. Enhancing chemical signal transformation in lateral flow assays using aptamer-architectured plasmonic nanozymes and para-phenylenediamine. Nanoscale 2025, 17, 2469–2479. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Kumar, A.; Sachan, M.; Gupta, S.; Nara, S. Aptamer-gold nanozyme based competitive lateral flow assay for rapid detection of CA125 in human serum. Biosens. Bioelectron. 2020, 165, 112368. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Chen, X.; Cai, Y.; Yang, H.; Zhang, C.; Zhang, Y.; Wang, Z.; Peng, C. Accelerated and signal amplified nanozyme-based lateral flow assay of acetamiprid based on bivalent triple helix aptamer. Sens. Actuators B Chem. 2023, 378, 133148. [Google Scholar] [CrossRef]
- Mao, M.; Sun, F.; Wang, J.; Li, X.; Pan, Q.; Peng, C.; Wang, Z. Delayed delivery of chromogenic substrate to nanozyme amplified aptamer lateral flow assay for acetamiprid. Sens. Actuators B Chem. 2023, 385, 133720. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J. 2019, 43, 383. [Google Scholar] [CrossRef]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal, E. Aptasensors versus immunosensors—Which will prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Downs, A.M.; Plaxco, K.W. Real-time, in vivo molecular monitoring using electrochemical aptamer based sensors: Opportunities and challenges. ACS Sens. 2022, 7, 2823–2832. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Kizilkurtlu, A.A.; Demirbas, E.; Agel, H.E. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol. Appl. Biochem. 2023, 70, 1460–1479. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, H.; Yalikun, Y.; Cheng, S.; Li, M. Chronoamperometric interrogation of an electrochemical aptamer-based sensor with tetrahedral DNA nanostructure pendulums for continuous biomarker measurements. Anal. Chim. Acta 2024, 1305, 342587. [Google Scholar] [CrossRef]
- Khan, R.; Deshpande, A.S.; Proteasa, G.; Andreescu, S. Aptamer-based electrochemical biosensor with S protein binding affinity for COVID-19 detection: Integrating computational design with experimental validation of S protein binding affinity. Sens. Actuators B Chem. 2024, 399, 134775. [Google Scholar] [CrossRef]
- Niroula, J.; Premaratne, G.; Krishnan, S. Lab-on-paper aptasensor for label-free picomolar detection of a pancreatic hormone in serum. Biosens. Bioelectron. X 2022, 10, 100114. [Google Scholar] [CrossRef]
- Ji, X.; Lin, X.; Rivnay, J. Organic electrochemical transistors as on-site signal amplifiers for electrochemical aptamer-based sensing. Nat. Commun. 2023, 14, 1665. [Google Scholar] [CrossRef]
- Villalonga, A.; Vegas, B.; Paniagua, G.; Eguilaz, M.; Mayol, B.; Parrado, C.; Rivas, G.; Díez, P.; Villalonga, R. Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles modified electrode. J. Electroanal. Chem. 2020, 877, 114511. [Google Scholar] [CrossRef]
- Paniagua, G.; Villalonga, A.; Eguilaz, M.; Vegas, B.; Parrado, C.; Rivas, G.; Díez, P.; Villalonga, R. Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. Anal. Chim. Acta 2019, 1061, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Estabiel, I.; Pérez-Calabuig, A.M.; Mayol, B.; Parrado, C.; Villalonga, R. Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosens. Bioelectron. 2021, 183, 113203. [Google Scholar] [CrossRef]
- Jo, H.; Her, J.; Lee, H.; Shim, Y.-B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 2017, 165, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Gomis, S.; Chen, J.B.; Yousefi, H.; Ahmed, S.; Mahmud, A.; Zhou, W.; Sargent, E.H.; Kelley, S.O. Reagentless biomolecular analysis using a molecular pendulum. Nat. Chem. 2021, 13, 428–434. [Google Scholar] [CrossRef]
- Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Foroutan, F.; Chen, J.B.; Pandey, L.; Flynn, C.D.; Yousefi, H.; Geraili, A. Monitoring Cardiac Biomarkers with Aptamer-Based Molecular Pendulum Sensors. Angew. Chem. Int. Ed. 2023, 62, e202213567. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duan, H.; Yalikun, Y.; Cheng, S.; Li, M. A pendulum-type electrochemical aptamer-based sensor for continuous, real-time and stable detection of proteins. Talanta 2024, 266, 125026. [Google Scholar] [CrossRef]
- Parolo, C.; Idili, A.; Heikenfeld, J.; Plaxco, K.W. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. Lab A Chip 2023, 23, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Siu, R.H.; Jesky, R.G.; Fan, Y.-J.; Au-Yeung, C.C.; Kinghorn, A.B.; Chan, K.-H.; Hung, I.F.-N.; Tanner, J.A. Aptamer-Mediated Electrochemical Detection of SARS-CoV-2 Nucleocapsid Protein in Saliva. Biosensors 2024, 14, 471. [Google Scholar] [CrossRef]
- Idili, A.; Parolo, C.; Alvarez-Diduk, R.; Merkoçi, A. Rapid and efficient detection of the SARS-CoV-2 spike protein using an electrochemical aptamer-based sensor. ACS Sens. 2021, 6, 3093–3101. [Google Scholar] [CrossRef]
- Curti, F.; Fortunati, S.; Knoll, W.; Giannetto, M.; Corradini, R.; Bertucci, A.; Careri, M. A folding-based electrochemical aptasensor for the single-step detection of the SARS-CoV-2 spike protein. ACS Appl. Mater. Interfaces 2022, 14, 19204–19211. [Google Scholar] [CrossRef]
- Wu, Y.; Ranallo, S.; Del Grosso, E.; Chamoro-Garcia, A.; Ennis, H.L.; Milosavic, N.; Yang, K.; Kippin, T.; Ricci, F.; Stojanovic, M. Using spectroscopy to guide the adaptation of aptamers into electrochemical aptamer-based sensors. Bioconjug. Chem. 2022, 34, 124–132. [Google Scholar] [CrossRef]
- Brown, A.; Brill, J.; Amini, R.; Nurmi, C.; Li, Y. Development of better aptamers: Structured library approaches, selection methods, and chemical modifications. Angew. Chem. Int. Ed. 2024, 63, e202318665. [Google Scholar] [CrossRef]
- Guo, S.; Lin, J.; Lin, L.; Xu, W.; Guo, Y.; Xu, Z.; Lu, C.; Shi, X.; Chen, L.; Yang, H. Selecting small molecule DNA aptamers with significant conformational changes for constructing transcriptional switches and biosensors. Sci. China Chem. 2023, 66, 1529–1536. [Google Scholar] [CrossRef]
- Sanford, A.A.; Rangel, A.E.; Feagin, T.A.; Lowery, R.G.; Argueta-Gonzalez, H.S.; Heemstra, J.M. RE-SELEX: Restriction enzyme-based evolution of structure-switching aptamer biosensors. Chem. Sci. 2021, 12, 11692–11702. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.; Cramer, A.; Webb, S.; Goorskey, E.; Chushak, Y.; Mirau, P.; Arroyo-Currás, N.; Chávez, J.L. Rational approach to optimizing conformation-switching aptamers for biosensing applications. ACS Sens. 2024, 9, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Chung, S.; Chang, A.-Y.; Wang, J.; Hall, D.A. A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer. Biosens. Bioelectron. 2023, 227, 115097. [Google Scholar] [CrossRef]
- Jiang, B.; Li, F.; Yang, C.; Xie, J.; Xiang, Y.; Yuan, R. Aptamer pseudoknot-functionalized electronic sensor for reagentless and single-step detection of immunoglobulin E in human serum. Anal. Chem. 2015, 87, 3094–3098. [Google Scholar] [CrossRef]
- Leung, K.K.; Downs, A.M.; Ortega, G.; Kurnik, M.; Plaxco, K.W. Elucidating the mechanisms underlying the signal drift of electrochemical aptamer-based sensors in whole blood. ACS Sens. 2021, 6, 3340–3347. [Google Scholar] [CrossRef] [PubMed]
- McHenry, A.; Friedel, M.; Heikenfeld, J. Voltammetry peak tracking for longer-lasting and reference-electrode-free electrochemical biosensors. Biosensors 2022, 12, 782. [Google Scholar] [CrossRef]
- Arroyo-Currás, N.; Somerson, J.; Vieira, P.A.; Ploense, K.L.; Kippin, T.E.; Plaxco, K.W. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl. Acad. Sci. USA 2017, 114, 645–650. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Weng, W.-Y.; Yeh, Y.-T.; Chien, J.-C. Dual-Aptamer Drift Canceling Techniques to Improve Long-Term Stability of Real-Time Structure-Switching Aptasensors. ACS Sens. 2023, 8, 3380–3388. [Google Scholar] [CrossRef]
- Li, H.; Dauphin-Ducharme, P.; Arroyo-Currás, N.; Tran, C.H.; Vieira, P.A.; Li, S.; Shin, C.; Somerson, J.; Kippin, T.E.; Plaxco, K.W. A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew. Chem. Int. Ed. 2017, 56, 7492–7495. [Google Scholar] [CrossRef] [PubMed]
- Shaver, A.; Curtis, S.D.; Arroyo-Curras, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces 2020, 12, 11214–11223. [Google Scholar] [CrossRef]
- Schoukroun-Barnes, L.R.; Macazo, F.C.; Gutierrez, B.; Lottermoser, J.; Liu, J.; White, R.J. Reagentless, structure-switching, electrochemical aptamer-based sensors. Annu. Rev. Anal. Chem. 2016, 9, 163–181. [Google Scholar] [CrossRef]
- Downs, A.M.; Gerson, J.; Hossain, M.N.; Ploense, K.; Pham, M.; Kraatz, H.-B.; Kippin, T.; Plaxco, K.W. Nanoporous gold for the miniaturization of in vivo electrochemical aptamer-based sensors. ACS Sens. 2021, 6, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Kuang, Z.; Xu, F.; Li, S.; Li, H.; Xia, F. Employing a redox reporter-modified self-assembly monolayer in electrochemical aptamer-based sensors to enable calibration-free measurements. ACS Appl. Bio Mater. 2023, 6, 1586–1593. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Dai, J.; Li, C.; Zhu, M.; Li, H.; Lou, X.; Xia, F.; Plaxco, K.W. High frequency, calibration-free molecular measurements in situ in the living body. Chem. Sci. 2019, 10, 10843–10848. [Google Scholar] [CrossRef] [PubMed]
- Abeykoon, S.W.; White, R.J. Single Voltammetric Sweep Calibration-Free Interrogation of Electrochemical Aptamer-Based Sensors Employing Continuous Square Wave Voltammetry. Anal. Chem. 2024, 96, 6958–6967. [Google Scholar] [CrossRef]
- Idili, A.; Parolo, C.; Ortega, G.; Plaxco, K.W. Calibration-free measurement of phenylalanine levels in the blood using an electrochemical aptamer-based sensor suitable for point-of-care applications. ACS Sens. 2019, 4, 3227–3233. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical impedance spectroscopy─A tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Pourbahram, B.; Majd, S.M.; Shamsipur, M. DPV and EIS-based ultrasensitive aptasensor for VEGF165 detection based on nanoporous gold platform modified with SH-aptamer. Sens. Bio-Sens. Res. 2025, 47, 100766. [Google Scholar] [CrossRef]
- Takita, S.; Nabok, A.; Mussa, M.; Kitchen, M.; Lishchuk, A.; Smith, D. Ultrasensitive prostate cancer marker PCA3 detection with impedimetric biosensor based on specific label-free aptamers. Biosens. Bioelectron. X 2024, 18, 100462. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Xuan, T.; Wang, J.; Wang, X. Label-free electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of lung cancer biomarker carcinoembryonic antigen. Front. Chem. 2021, 9, 721008. [Google Scholar] [CrossRef] [PubMed]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the stability of gold electrodes by ferri-/ferrocyanide redox couple electrolytes during electrochemical impedance spectroscopy. Anal. Chem. 2016, 88, 682–687. [Google Scholar] [CrossRef]
- Schrattenecker, J.D.; Heer, R.; Melnik, E.; Maier, T.; Fafilek, G.; Hainberger, R. Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens. Bioelectron. 2019, 127, 25–30. [Google Scholar] [CrossRef]
- Lee, S.; Kim, W.J.; Chung, M. Enhanced electrochemical biosensing on gold electrodes with a ferri/ferrocyanide redox couple. Analyst 2021, 146, 5236–5244. [Google Scholar] [CrossRef]
- Erdem, A.; Senturk, H.; Yildiz, E.; Maral, M. Optimized aptamer-based next generation biosensor for the ultra-sensitive determination of SARS-CoV-2 S1 protein in saliva samples. Int. J. Biol. Macromol. 2024, 281, 136233. [Google Scholar] [CrossRef]
- Abrego-Martinez, J.C.; Jafari, M.; Chergui, S.; Pavel, C.; Che, D.; Siaj, M. Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy. Biosens. Bioelectron. 2022, 195, 113595. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Miranda, G.; Feng, L.; Shiu, S.C.-C.; Dirkzwager, R.M.; Cheung, Y.-W.; Tanner, J.A.; Schöning, M.J.; Offenhäusser, A.; Mayer, D. Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability. Sens. Actuators B Chem. 2018, 255, 235–243. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Corrigan, D.K. Comparing nanobody and aptamer-based capacitive sensing for detection of interleukin-6 (IL-6) at physiologically relevant levels. Anal. Bioanal. Chem. 2023, 415, 7035–7045. [Google Scholar] [CrossRef]
- Niu, Y.; Qin, Z.; Zhang, Y.; Chen, C.; Liu, S.; Chen, H. Expanding the potential of biosensors: A review on organic field effect transistor (OFET) and organic electrochemical transistor (OECT) biosensors. Mater. Futures 2023, 2, 042401. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef]
- Liu, D.; Tian, X.; Bai, J.; Wang, S.; Dai, S.; Wang, Y.; Wang, Z.; Zhang, S. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 2024, 7, 1176–1185. [Google Scholar] [CrossRef]
- Tian, X.; Liu, D.; Bai, J.; Chan, K.S.; Ip, L.C.; Chan, P.K.; Zhang, S. Pushing OECTs toward wearable: Development of a miniaturized analytical control unit for wireless device characterization. Anal. Chem. 2022, 94, 6156–6162. [Google Scholar] [CrossRef]
- Bidinger, S.L.; Keene, S.T.; Han, S.; Plaxco, K.W.; Malliaras, G.G.; Hasan, T. Pulsed transistor operation enables miniaturization of electrochemical aptamer-based sensors. Sci. Adv. 2022, 8, eadd4111. [Google Scholar] [CrossRef]
- Ali, S.A.; Chen, Y.-L.; Tseng, H.-S.; Ayalew, H.; She, J.-W.; Gautam, B.; Tu, H.-L.; Hsiao, Y.-S.; Yu, H.-h. Poly (3, 4-ethylenedioxythiophene) Nanorod Arrays-Based Organic Electrochemical Transistor for SARS-CoV-2 Spike Protein Detection in Artificial Saliva. ACS Sens. 2025, 10, 2007–2018. [Google Scholar] [CrossRef]
- Soliman, I.; Gunathilake, C. Aptamer-enhanced organic electrochemical transistors for ultra-sensitive dopamine detection. Next Mater. 2024, 3, 100160. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, T.; Zhou, L.; Offenhäusser, A.; Mayer, D. Label-free split aptamer sensor for femtomolar detection of dopamine by means of flexible organic electrochemical transistors. Materials 2020, 13, 2577. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.; Ahmed, K.; Aziz, A.; Asif, M.; Kong, J.; Fang, X. Microneedle wearables in advanced microsystems: Unlocking next-generation biosensing with AI. TrAC Trends Anal. Chem. 2025, 187, 118208. [Google Scholar] [CrossRef]
- Rabiee, N. Revolutionizing biosensing with wearable microneedle patches: Innovations and applications. J. Mater. Chem. B 2025, 13, 5264–5289. [Google Scholar] [CrossRef]
- Sen, D.; Volya, N.; Muhammed, Y.; Lazenby, R.A. Fabrication and Characterization of a Tunable Microelectrode Array Probe for Simultaneous Multiplexed Electrochemical Detection. Anal. Chem. 2025, 97, 7702–7710. [Google Scholar] [CrossRef] [PubMed]
- ŞAHiN, E.; Arslan, N.N.; Özdemir, D. Unlocking the black box: An in-depth review on interpretability, explainability, and reliability in deep learning. Neural Comput. Appl. 2025, 37, 859–965. [Google Scholar] [CrossRef]
- Rajvanshi, S.; Kaur, G.; Dhatwalia, A.; Arunima, A.S.; Bhasin, A. Research on Problems and Solutions of Overfitting in Machine Learning; LNEE; Springer Nature: Singapore, 2024; Volume 1191. [Google Scholar]
Criteria | Description |
---|---|
Real-time connectivity | The tests are connected to a mobile reader to provide the diagnostic result |
Ease of specimen collection | Specimen are collected by non-invasion sampling techniques |
Affordable | The tests are cheap and affordable to the public |
Sensitive | Avoid false negative |
Specific | Avoid false positive |
User-friendly | The tests are performed by the end users without difficulties |
Rapid and Robust | The assays are repeatable and generate results within a short time |
Equipment free | The tests are performed without the need of external instrument |
Deliverable | The products should be accessible to all users |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesky, R.G.; Lo, L.H.Y.; Siu, R.H.P.; Tanner, J.A. Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications. Biosensors 2025, 15, 637. https://doi.org/10.3390/bios15100637
Jesky RG, Lo LHY, Siu RHP, Tanner JA. Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications. Biosensors. 2025; 15(10):637. https://doi.org/10.3390/bios15100637
Chicago/Turabian StyleJesky, Robert G., Louisa H. Y. Lo, Ryan H. P. Siu, and Julian A. Tanner. 2025. "Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications" Biosensors 15, no. 10: 637. https://doi.org/10.3390/bios15100637
APA StyleJesky, R. G., Lo, L. H. Y., Siu, R. H. P., & Tanner, J. A. (2025). Designing the Future of Biosensing: Advances in Aptamer Discovery, Computational Modeling, and Diagnostic Applications. Biosensors, 15(10), 637. https://doi.org/10.3390/bios15100637