Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (571)

Search Parameters:
Keywords = biomechanical stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1476 KiB  
Systematic Review
Intramedullary Nailing vs. Plate Fixation for Trochanteric Femoral Fractures: A Systematic Review and Meta-Analysis of Randomized Trials
by Ümit Mert, Maher Ghandour, Moh’d Yazan Khasawneh, Filip Milicevic, Ahmad Al Zuabi, Klemens Horst, Frank Hildebrand, Bertil Bouillon, Mohamad Agha Mahmoud and Koroush Kabir
J. Clin. Med. 2025, 14(15), 5492; https://doi.org/10.3390/jcm14155492 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, [...] Read more.
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, functional, perioperative, and biomechanical outcomes of IMN versus PF specifically in trochanteric fractures. Methods: A systematic search of six databases was conducted up to 20 May 2024, to identify RCTs comparing IMN and PF in adult patients with trochanteric femoral fractures. Data extraction followed PRISMA guidelines, and outcomes were pooled using random-effects models. Subgroup analyses examined the influence of fracture stability, implant type, and patient age. Risk of bias was assessed using the Cochrane RoB 2.0 tool. Results: Fourteen RCTs (n = 4603 patients) were included. No significant differences were found in reoperation rates, union time, implant cut-out, or mortality. IMN was associated with significantly reduced operative time (MD = −5.18 min), fluoroscopy time (MD = −32.92 s), and perioperative blood loss (MD = −111.68 mL). It also had a lower risk of deep infection. Functional outcomes and anatomical results were comparable. Subgroup analyses revealed fracture stability and nail type significantly modified operative time, and compression screws were associated with higher reoperation rates than IMN. Conclusions: For trochanteric femoral fractures, IMN and PF yield comparable results for most clinical outcomes, with IMN offering some advantages in surgical efficiency and perioperative morbidity, though functional outcomes were comparable. Implant selection and fracture stability influence outcomes, supporting individualized surgical decision making. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

11 pages, 2706 KiB  
Technical Note
The RESCUE Technique: A Mnemonic Acronym to Enhance Outcomes in Nail Fixation of Extracapsular Hip Fractures
by Anastasios P. Nikolaides, Julius Bryan Abesamis, Ahmed Hamed, Samer Sarofeen, Niraj Vetharajan, Rajpreet Sahemey, Omer Salar and Panagiotis Konstantinou
J. Clin. Med. 2025, 14(15), 5419; https://doi.org/10.3390/jcm14155419 (registering DOI) - 1 Aug 2025
Viewed by 140
Abstract
Intertrochanteric fractures in the elderly present complex challenges due to poor bone quality and comorbidities. Cephalomedullary (CM) nails offer biomechanical advantages that support early mobilization, yet complications such as cutout, implant failure, and malalignment persist. This review examines the effectiveness of CM nail [...] Read more.
Intertrochanteric fractures in the elderly present complex challenges due to poor bone quality and comorbidities. Cephalomedullary (CM) nails offer biomechanical advantages that support early mobilization, yet complications such as cutout, implant failure, and malalignment persist. This review examines the effectiveness of CM nail fixation in geriatric extracapsular hip fractures and introduces the RESCUE technique—a structured, mnemonic-based approach aimed at improving surgical outcomes and reducing common complications. RESCUE stands for Reduce, Entry point, Screw, Compress, Unleash traction, and Enhance full-weight bearing. This six-step framework addresses the critical elements of fixation, including precise reduction, optimal entry point selection, central screw placement, controlled fracture compression, cautious traction management, and early mobilization. Case illustrations of frequent failure patterns underscore the practical application of the RESCUE technique. By following this systematic approach, surgeons can enhance construct stability, minimize failure risk, and promote functional recovery in elderly patients. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Three-Dimensional-Printed Thermoplastic Polyurethane (TPU) Graft and H-Button Stabilization System for Intra-Articular Cranial Cruciate Ligament Reconstruction: Cadaveric Study
by Menna Nahla, Yara Abouelela, Mohammed Amer, Marwa Ali, Abdelbary Prince, Ayman Tolba and Ayman Mostafa
Vet. Sci. 2025, 12(8), 725; https://doi.org/10.3390/vetsci12080725 (registering DOI) - 31 Jul 2025
Viewed by 85
Abstract
Cranial cruciate ligament (CrCL) rupture is a common orthopedic disorder in dogs, leading to stifle joint instability and progressive osteoarthritis. This study aimed to develop and biomechanically evaluate a novel intra-articular reconstruction system designed to mimic the natural ligament and restore joint stability [...] Read more.
Cranial cruciate ligament (CrCL) rupture is a common orthopedic disorder in dogs, leading to stifle joint instability and progressive osteoarthritis. This study aimed to develop and biomechanically evaluate a novel intra-articular reconstruction system designed to mimic the natural ligament and restore joint stability following CrCL excision. The system consisted of a 3D-printed thermoplastic polyurethane (TPU) graft, cerclage wire, and H-button fixation. Fourteen pelvic limbs from mature mixed-breed cadaveric dogs were used. The inclination angle, dimensions, volume, tensile strength, and elongation of the native CrCL were measured. Seven CrCL-deficient stifles were reconstructed using the proposed system and tested biomechanically. The native CrCL showed a significantly higher tensile strength than the TPU graft; however, the TPU demonstrated a greater flexibility. The reconstruction system successfully stabilized the joint and provided repeatable fixation. Significant correlations were found between CrCL volume and both age and body weight. These findings support the mechanical suitability of the proposed system for ex vivo stifle stabilization and highlight the potential of 3D-printed TPU in ligament reconstruction. Further in vivo studies are recommended to assess long-term performance, including implant integration, tissue remodeling, and clinical outcomes. Full article
(This article belongs to the Section Veterinary Surgery)
Show Figures

Figure 1

16 pages, 738 KiB  
Review
A Rationale for the Use of Ivabradine in the Perioperative Phase of Cardiac Surgery: A Review
by Christos E. Ballas, Christos S. Katsouras, Konstantinos C. Siaravas, Ioannis Tzourtzos, Amalia I. Moula and Christos Alexiou
J. Cardiovasc. Dev. Dis. 2025, 12(8), 294; https://doi.org/10.3390/jcdd12080294 - 31 Jul 2025
Viewed by 309
Abstract
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing [...] Read more.
This review explores the advantages of ivabradine in the management of cardiac surgery patients, particularly highlighting its heart rate (HR)-reducing properties, its role in minimizing the impact of atrial fibrillation, and its contributions to improving left ventricular diastolic function, as well as reducing pain, stress, and anxiety. In parallel, studies provide evidence that ivabradine influences endothelial inflammatory responses through mechanisms such as biomechanical modulation. Unlike traditional beta-blockers that may induce hypotension, ivabradine selectively inhibits hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, allowing for effective HR reduction without compromising blood pressure stability. This characteristic is particularly beneficial for patients at risk of atrial fibrillation post-surgery, where HR control is crucial for cardiovascular stability. This is an area in which ivabradine appears to play a role prophylactically, possibly in combination with beta-blockers. Furthermore, ivabradine has been associated with enhanced diastolic parameters in left ventricular function, reflecting its potential to improve surgical outcomes in patients with compromised heart function. In addition to its cardiovascular benefits, it appears to alleviate psychological stress and anxiety, common in postoperative settings, by moderating the neuroendocrine response to stress, thereby reducing stress-induced hormone levels. Furthermore, it has notable analgesic properties, contributing to pain management through its action on HCN channels in both the peripheral and central nervous systems. Collectively, these findings indicate that ivabradine may serve as a valuable therapeutic agent in the perioperative care of cardiac surgery patients, addressing both physiological and psychological challenges during recovery. Full article
Show Figures

Figure 1

10 pages, 621 KiB  
Review
Optimizing Hip Abductor Strengthening for Lower Extremity Rehabilitation: A Narrative Review on the Role of Monster Walk and Lateral Band Walk
by Ángel González-de-la-Flor
J. Funct. Morphol. Kinesiol. 2025, 10(3), 294; https://doi.org/10.3390/jfmk10030294 - 30 Jul 2025
Viewed by 342
Abstract
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the [...] Read more.
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the hip abductors and external rotators in functional, weight-bearing tasks. Therefore, the aim was to summarize the current evidence on the biomechanics, muscle activation, and clinical applications of lateral and monster band walks. Methods: This narrative review was conducted following the SANRA guideline. A comprehensive literature search was performed across PubMed, Scopus, Web of Science, and SPORTDiscus up to April 2025. Studies on the biomechanics, electromyography, and clinical applications of lateral band walks and monster walks were included, alongside relevant evidence on hip abductor strengthening. Results: A total of 13 studies were included in the review, of which 4 specifically investigated lateral band walk and/or monster walk exercises. Lateral and monster walks elicit moderate to high activation of the gluteus medius and maximus, especially when performed with the band at the ankles or forefeet and in a semi-squat posture. This technique minimizes compensation from the tensor fasciae latae and promotes selective gluteal recruitment. Proper execution requires control of the trunk and pelvis, optimal squat depth, and consistent band tension. Anatomical factors (e.g., femoral torsion), sex differences, and postural variations may influence movement quality and necessitate tailored instruction. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

12 pages, 1515 KiB  
Article
From Myofascial Chains to the Polyconnective Network: A Novel Approach to Biomechanics and Rehabilitation Based on Graph Theory
by Daniele Della Posta, Immacolata Belviso, Jacopo Junio Valerio Branca, Ferdinando Paternostro and Carla Stecco
Life 2025, 15(8), 1200; https://doi.org/10.3390/life15081200 - 28 Jul 2025
Viewed by 403
Abstract
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification [...] Read more.
In recent years, the concept of the myofascial network has transformed biomechanical understanding by emphasizing the body as an integrated, multidirectional system. This study advances that paradigm by applying graph theory to model the osteo-myofascial system as an anatomical network, enabling the identification of topologically central nodes involved in force transmission, stability, and coordination. Using the aNETomy model and the BIOMECH 3.4 database, we constructed an undirected network of 2208 anatomical nodes and 7377 biomechanical relationships. Centrality analysis (degree, betweenness, and closeness) revealed that structures such as the sacrum and thoracolumbar fascia exhibit high connectivity and strategic importance within the network. These findings, while derived from a theoretical modeling approach, suggest that such key nodes may inform targeted treatment strategies, particularly in complex or compensatory musculoskeletal conditions. The proposed concept of a polyconnective skeleton (PCS) synthesizes the most influential anatomical hubs into a functional core of the system. This framework may support future clinical and technological applications, including integration with imaging modalities, real-time monitoring, and predictive modeling for personalized and preventive medicine. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

12 pages, 786 KiB  
Article
Frictional Cohesive Force and Multifunctional Simple Machine for Advanced Engineering and Biomedical Applications
by Carlos Aurelio Andreucci, Ahmed Yaseen and Elza M. M. Fonseca
Appl. Sci. 2025, 15(15), 8215; https://doi.org/10.3390/app15158215 - 23 Jul 2025
Viewed by 351
Abstract
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often [...] Read more.
A new, simple machine was developed to address a long-standing challenge in biomedical and mechanical engineering: how to enhance the primary stability and long-term integration of screws and implants in low-density or heterogeneous materials, such as bone or composite substrates. Traditional screws often rely solely on external threading for fixation, leading to limited cohesion, poor integration, or early loosening under cyclic loading. In response to this problem, we designed and built a novel device that leverages a unique mechanical principle to simultaneously perforate, collect, and compact the substrate material during insertion. This mechanism results in an internal material interlock, enhancing cohesion and stability. Drawing upon principles from physics, chemistry, engineering, and biology, we evaluated its biomechanical behavior in synthetic bone analogs. The maximum insertion (MIT) and removal torques (MRT) were measured on synthetic osteoporotic bones using a digital torquemeter, and the values were compared directly. Experimental results demonstrated that removal torque (mean of 21.2 Ncm) consistently exceeded insertion torque (mean of 20.2 Ncm), indicating effective material interlocking and cohesive stabilization. This paper reviews the relevant literature, presents new data, and discusses potential applications in civil infrastructure, aerospace, and energy systems where substrate cohesion is critical. The findings suggest that this new simple machine offers a transformative approach to improving fixation and integration across multiple domains. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Viewed by 474
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 2537 KiB  
Article
Comparative Assessment of the Mechanical Response to Different Screw Dimensions in Scaphoid Fracture Fixation
by Esin Rothenfluh, Sambhav Jain, William R. Taylor and Seyyed Hamed Hosseini Nasab
Bioengineering 2025, 12(8), 790; https://doi.org/10.3390/bioengineering12080790 - 22 Jul 2025
Viewed by 310
Abstract
The scaphoid is the most commonly fractured carpal bone. Headless compression screws became the gold standard for fixation, but the ideal screw diameter remains debated. This study investigates the relative benefit of using a larger screw diameter to improve stability in typical scaphoid [...] Read more.
The scaphoid is the most commonly fractured carpal bone. Headless compression screws became the gold standard for fixation, but the ideal screw diameter remains debated. This study investigates the relative benefit of using a larger screw diameter to improve stability in typical scaphoid fractures. It also examines the effects of preload and screw length on mechanical behaviour. A finite element (FE) model of a mid-waist scaphoid fracture was created. Screws from Medartis (1.7 mm, 2.2 mm, and 3.0 mm diameter; 23 mm length) were placed along the longitudinal axis. Boundary and loading conditions matched prior studies. Interfragmentary displacement (IFD) and von Mises stress were compared across screw sizes. The effects of screw length and preload were also evaluated. Maximum in-plane IFD was 2.08 mm (1.7 mm screw), 0.53 mm (2.2 mm), and 0.27 mm (3.0 mm). The 1.7 mm screw exceeded the scaphoid’s average ultimate stress (60.51 MPa). Increasing preload reduced IFD, especially above 60 N. Screws longer than 1.5 times the mid-waist diameter offered no added benefit. Larger screws provide better biomechanical fracture stability. However, the gain from 2.2 mm to 3.0 mm is minor, while 1.7 mm screws lack sufficient strength. The 2.2 mm screw offers a good balance of stability and bone preservation, making it the preferred choice. Full article
(This article belongs to the Special Issue Advanced Engineering Technologies in Orthopaedic Research)
Show Figures

Graphical abstract

11 pages, 948 KiB  
Article
Finite Element Analysis of Stress Distribution in Canine Lumbar Fractures with Different Pedicle Screw Insertion Angles
by Ziyao Zhou, Xiaogang Shi, Jiahui Peng, Xiaoxiao Zhou, Liuqing Yang, Zhijun Zhong, Haifeng Liu, Guangneng Peng, Chengli Zheng and Ming Zhang
Vet. Sci. 2025, 12(7), 682; https://doi.org/10.3390/vetsci12070682 - 19 Jul 2025
Viewed by 361
Abstract
Pedicle screw fixation is a critical technique for stabilizing lumbar fractures in canines, yet the biomechanical implications of insertion angles remain underexplored. This study aims to identify optimal screw trajectories by analyzing stress distribution and deformation patterns in beagle lumbar segments (L6-L7) using [...] Read more.
Pedicle screw fixation is a critical technique for stabilizing lumbar fractures in canines, yet the biomechanical implications of insertion angles remain underexplored. This study aims to identify optimal screw trajectories by analyzing stress distribution and deformation patterns in beagle lumbar segments (L6-L7) using finite element analysis (FEA). A 3D finite element model was reconstructed from CT scans of a healthy beagle, incorporating cortical/cancellous bone, intervertebral disks, and cartilage. Pedicle screws (2.4 mm diameter, 22 mm length) were virtually implanted at angles ranging from 45° to 65°. A 10 N vertical load simulated standing conditions. Equivalent stress and total deformation were evaluated under static loading. The equivalent stress occurred at screw–rod junctions, with maxima at 50° (11.73 MPa) and minima at 58° (3.25 MPa). Total deformation ranged from 0.0033 to 0.0064 mm, with the highest at 55° and the lowest at 54°. The 58° insertion angle demonstrated optimal biomechanical stability with minimal stress concentration, with 56–60° as a biomechanically favorable range for pedicle screw fixation in canine lumbar fractures, balancing stress distribution and deformation control. Future studies should validate these findings in multi-level models and clinical settings. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Influence of Healing Abutment Height on Secondary Implant Stability Using Resonance Frequency Analysis: A Prospective Clinical Study
by Alicia Martín-Martín, Esteban Pérez-Pevida, Saray Férnandez-Hernández, Jaime Lubillo-Valdeón and Aritza Brizuela-Velasco
J. Clin. Med. 2025, 14(14), 5140; https://doi.org/10.3390/jcm14145140 - 19 Jul 2025
Viewed by 295
Abstract
Background/Objectives: The aim of the present study is to evaluate the influence of the healing abutment height on secondary implant stability measured by resonance frequency analysis. In this prospective observational clinical study of 30 implants, the secondary stability of the implant was measured [...] Read more.
Background/Objectives: The aim of the present study is to evaluate the influence of the healing abutment height on secondary implant stability measured by resonance frequency analysis. In this prospective observational clinical study of 30 implants, the secondary stability of the implant was measured via resonance frequency analysis of the abutment during the osseointegration process. Methods: Two groups were compared: a <4 group (n = 15), with a space between the healing abutment and the antagonist of <4 mm, and a ≥4 group (n = 15), with a space of ≥4 mm. Results: Statistically significant differences (p < 0.05) in the implant stability values obtained at surgery (T0) and at the eighth week of osseointegration (T8) were observed between the two groups, with higher values for the <4 group. Pearson’s correlation analysis revealed a trend towards a significant relationship with the mean force (−0.6546) and a linear inverse relationship, so that by decreasing the distance between the abutment and the contact with the antagonist, the secondary implant stability values increased. A comparison of the mesial and distal peri-implant marginal bone levels at T0 and T8 did not reveal statistically significant differences (p > 0.05). A greater healing abutment height, placing it closer to the antagonist, increases and accelerates secondary stability, as measured by resonance frequency analysis. Conclusions: The results of the study support the recommendation of using high healing abutments, placing the abutment close to the opposing occlusal plane, according to biomechanical criteria. Full article
(This article belongs to the Special Issue Research Progress in Osseointegrated Oral Implants)
Show Figures

Figure 1

10 pages, 997 KiB  
Article
Does Malpositioning of Pedicle Screws Affect Biomechanical Stability in a Novel Quasistatic Test Setup?
by Stefan Schleifenbaum, Florian Metzner, Janine Schultze, Sascha Kurz, Christoph-Eckhard Heyde and Philipp Pieroh
Bioengineering 2025, 12(7), 781; https://doi.org/10.3390/bioengineering12070781 - 18 Jul 2025
Viewed by 381
Abstract
Pedicle screw fixation is a common spinal surgery technique, but concerns remain about stability when screws are malpositioned. Traditional in vitro pull-out tests assess anchorage but lack physiological accuracy. This study examined the stability of correctly placed and intentionally malpositioned pedicle screws on [...] Read more.
Pedicle screw fixation is a common spinal surgery technique, but concerns remain about stability when screws are malpositioned. Traditional in vitro pull-out tests assess anchorage but lack physiological accuracy. This study examined the stability of correctly placed and intentionally malpositioned pedicle screws on forty vertebrae from five cadavers. Optimal screw paths were planned via CT scans and applied using 3D-printed guides. Four malposition types—medial, lateral, superior, and superior-lateral—were created by shifting the original trajectory. A custom setup applied three consecutive cycles of tensile and compressive load from 50 N to 200 N. Screw inclination under load was measured with a 3D optical system. The results showed increasing screw inclination with higher forces, reaching about 1° at 50 N and 2° at 100 N, similar in both load directions. Significant differences in inclination were only found at 100 N tensile load, where malpositioned screws showed a lower inclination. Overall, malpositioning had no major effect on screw loosening. These findings suggest that minor deviations in screw placement do not significantly compromise mechanical stability. Clinically, the main concern with malpositioning lies in the potential for injury to nearby structures rather than reduced screw fixation strength. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

12 pages, 2989 KiB  
Article
Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model
by Thomas Colding-Rasmussen, Nanett Kvist Nikolaisen, Peter Frederik Horstmann, Michael Mørk Petersen, Daniel John Hutchinson, Michael Malkoch, Stine Jacobsen and Christian Nai En Tierp-Wong
Materials 2025, 18(14), 3359; https://doi.org/10.3390/ma18143359 - 17 Jul 2025
Viewed by 271
Abstract
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in [...] Read more.
A novel composite patch osteosynthesis technique (CPT) has demonstrated promising ex vivo biomechanical performance in small tubular bones. To bridge the gap toward clinical evaluations, this study compared the stability of the CPT to a stainless-steel locking plate (LP) in an experimental in vivo ovine bilateral proximal phalanx fracture model. Eight sheep underwent a midline osteotomy with a 4.5 mm circular unicortical defect in the lateral proximal phalanx of both front limbs, treated with the CPT (n = 8) or the LP (n = 8). A half-limb walking cast, or a custom off-loading hoof shoe, was used for postoperative protection. Implant stability was assessed by post-surgery X-ray evaluations and post-euthanasia (16 weeks) dual-energy X-ray absorptiometry (DXA). At week one, all CPT implants demonstrated mechanical failure, while all LPs remained overall intact. Mean BMD was 0.45 g/cm2 for CPT and 0.60 g/cm2 for LP in the fracture area (p = 0.078), and 0.37 g/cm2 vs. 0.41 g/cm2 in the distal epiphysis (p = 0.016), respectively. In conclusion, the CPT demonstrated indications of inferior stability compared to the LP in this fracture model, which may limit its clinical applicability in weight-bearing or high-load scenarios and in non-compliant patients. Full article
Show Figures

Figure 1

16 pages, 3137 KiB  
Systematic Review
Correction of Anterior Open Bite Using Temporary Anchorage Devices: A Systematic Review and Meta-Analysis
by Patricia Burgos-Lancero, Marta Ibor-Miguel, Laura Marqués-Martínez, Paula Boo-Gordillo, Esther García-Miralles and Clara Guinot-Barona
J. Clin. Med. 2025, 14(14), 4958; https://doi.org/10.3390/jcm14144958 - 13 Jul 2025
Viewed by 431
Abstract
Background/Objectives: Anterior open bite (AOB) is a complex malocclusion characterized by the lack of vertical overlap between the upper and lower teeth during maximum intercuspation. It often results in functional impairments and aesthetic concerns. Traditional treatments for adult patients, including orthognathic surgery, are [...] Read more.
Background/Objectives: Anterior open bite (AOB) is a complex malocclusion characterized by the lack of vertical overlap between the upper and lower teeth during maximum intercuspation. It often results in functional impairments and aesthetic concerns. Traditional treatments for adult patients, including orthognathic surgery, are effective but invasive. Temporary anchorage devices (TADs) have emerged as a minimally invasive alternative. The aim of this systematic review and meta-analysis was to evaluate the effectiveness of TADs for molar intrusion in the correction of AOB. Methods: A systematic review was conducted according to the PRISMA 2020 guidelines. An electronic search was performed in PubMed and Scopus until March 2025. The inclusion criteria comprised clinical studies in humans published in English or Spanish in the last 10 years. The risk of bias was assessed using RoB 2, ROBINS-I, and the Joanna Briggs Institute tools. A random-effects meta-analysis was carried out to estimate pooled intrusion values, and heterogeneity was evaluated using Cochran’s Q test and the I2 statistic. Results: Twelve studies were included. Molar intrusion using TADs achieved significant overbite improvements, with a pooled mean intrusion of 1.70 mm (95% CI: 0.53–2.87 mm). The heterogeneity among studies was high (I2 = 88.5%). Despite variability in force magnitude and TAD type, lighter forces were generally associated with similar outcomes and fewer adverse effects. Conclusions: TADs offer a predictable and less invasive alternative to orthognathic surgery for AOB correction. When appropriately indicated and biomechanically managed, they provide effective vertical control and short- to medium-term stability in adult patients. Full article
(This article belongs to the Special Issue Latest Advances in Orthodontics)
Show Figures

Figure 1

15 pages, 6645 KiB  
Review
Iliac Stemmed Cups: A Review of History, Indications, and Clinical Outcomes in Revision Hip Arthroplasty and Primary Severe Dysplasia
by Pier Giorgio Vasina, Paolo Palumbi, Ideal Frakulli, Christos Christoforidis, Claudio D’Agostino, Alberto Di Martino and Cesare Faldini
J. Clin. Med. 2025, 14(14), 4955; https://doi.org/10.3390/jcm14144955 - 13 Jul 2025
Viewed by 362
Abstract
Background: The increasing incidence of revision total hip arthroplasties (rTHAs), particularly due to failure of the acetabular components and severe bone loss, necessitates reliable surgical solutions. Iliac stemmed cups (ISCs) have emerged as effective options for managing complex pelvic defects, including Paprosky type [...] Read more.
Background: The increasing incidence of revision total hip arthroplasties (rTHAs), particularly due to failure of the acetabular components and severe bone loss, necessitates reliable surgical solutions. Iliac stemmed cups (ISCs) have emerged as effective options for managing complex pelvic defects, including Paprosky type 3A and 3B acetabular defects, severe developmental dysplasia, and selected pelvic discontinuities. This review examines the historical evolution, clinical indications, and outcomes associated with ISCs. Methods: This narrative review analyzed the historical and recent literature concerning various ISC designs. We critically assessed clinical outcomes, complication rates, and implant survival from 13 key studies. Results: ISCs have progressed significantly from initial monobloc designs to contemporary modular configurations, substantially enhancing surgical versatility and biomechanical stability. Clinical outcomes varied with reported complications such as infection, dislocation, mechanical failure, and aseptic loosening ranging from 10% to over 30%. Newer modular implants like the Sansone cup have demonstrated improved outcomes, with complication rates below 10% and five-year survival rates exceeding 95%. Conclusions: ISCs are reliable and versatile implants, particularly suited to address significant pelvic bone deficiencies. Optimal surgical techniques and careful implant selection remain essential to minimize complications and achieve favorable long-term functional outcomes, making these implants valuable tools in complex hip arthroplasty. Full article
(This article belongs to the Special Issue Advanced Approaches in Hip and Knee Arthroplasty)
Show Figures

Figure 1

Back to TopTop