Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = biomaterial ink

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6202 KB  
Article
Three-Dimensional Printing of Calcium Phosphate-Mesoporous Bioactive Glass Scaffolds for Bone Tissue Engineering
by Ana Beatriz Gomes de Carvalho, Lais Medeiros Cardoso, Igor Paulino Mendes Soares, Joyce Rodrigues de Souza, Arpita Roy, Prabaha Sikder, Aldo R. Boccaccini, Eliandra de Sousa Trichês and Marco C. Bottino
J. Funct. Biomater. 2025, 16(12), 463; https://doi.org/10.3390/jfb16120463 - 16 Dec 2025
Viewed by 1619
Abstract
Calcium phosphate cements (CPCs) and biomaterials, such as mesoporous bioactive glass (MBG), are critical for bone tissue engineering. This study aimed to 3D-print CPC scaffolds modified with MBG to enhance their osteogenic potential and regenerative ability. MBG powder was synthesized and characterized using [...] Read more.
Calcium phosphate cements (CPCs) and biomaterials, such as mesoporous bioactive glass (MBG), are critical for bone tissue engineering. This study aimed to 3D-print CPC scaffolds modified with MBG to enhance their osteogenic potential and regenerative ability. MBG powder was synthesized and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption–desorption techniques. A commercial CPC ink (hydroxyapatite/α-tricalcium phosphate) was mixed with 5% MBG (w/w; CPC/MBG), and, after rheological assessment, the mixture was used to obtain scaffolds via 3D printing. These scaffolds were then tested for chemical, morphological, and mechanical properties, as well as ion release analysis. Unmodified CPC 3D-printed scaffolds served as controls. Biological experiments, including cell viability, DNA content, cell adhesion/spreading, and osteogenic gene expression, were performed by seeding alveolar bone-derived mesenchymal stem cells onto the scaffolds. Statistics were performed using Student’s t-test and ANOVA with post hoc tests (α = 5%). MBG characterization showed a typical mesoporous structure with aligned microchannels and an amorphous structure. Both formulations released calcium and phosphate ions; however, CPC/MBG also released silicon. Cell viability, adhesion/spreading, and DNA content were significantly greater in CPC/MBG scaffolds compared to CPC (p < 0.05) after 3 and 7 days of culture. Furthermore, CPC/MBG supported increased expression of key osteogenic genes, including collagen (COL1A1), osteocalcin (OCN), and Runt-related transcription factor 2 (RUNX2), after 14 days (p < 0.05). The combination of CPC ink with MBG particles effectively enhances the biocompatibility and osteogenic potential of the scaffold, making it an innovative bioceramic ink formulation for 3D printing personalized scaffolds for bone regeneration. Full article
Show Figures

Figure 1

34 pages, 4501 KB  
Review
Harnessing Cross-Linked Cysteine Scaffolds for Soft Tissue Engineering Applications
by Lusanda Mtetwa, Thashree Marimuthu, Hillary Mndlovu, Mduduzi N. Sithole, Maya M. Makatini and Yahya E. Choonara
Polymers 2025, 17(23), 3231; https://doi.org/10.3390/polym17233231 - 4 Dec 2025
Viewed by 662
Abstract
Biomaterials are either cross-linked ionically, chemically, or physically, or they can be functionalized with amino acids to overcome inherent biocompatibility and stability limitations. Hydrogels for scaffold fabrication have been effectively utilized to promote tissue integration and cellular processes for soft tissue regeneration. Despite [...] Read more.
Biomaterials are either cross-linked ionically, chemically, or physically, or they can be functionalized with amino acids to overcome inherent biocompatibility and stability limitations. Hydrogels for scaffold fabrication have been effectively utilized to promote tissue integration and cellular processes for soft tissue regeneration. Despite significant progress, poor remodeling limitations persist, hence the need for cross-linkers with dynamic adaptability, native tissue mimicry, and controllable degradation. The aim of this review is to highlight cysteine’s capability and potential to cross-link biomaterials using thiol chemistry while discussing the different cross-linking strategies to aid in the fabrication of robust hydrogel inks and bioinks. Furthermore, cysteine’s limitations and research scarcity in soft tissue scaffolds are highlighted for its chemical significance and potential role. The review examines cysteine’s thiol reactions, including disulfide bonds, thiol–ene, thiol–yne, and Michael additions, and cross-linking ability, with a specialized focus on adipose tissue regeneration. The fabrication methods reviewed include 3D bioprinting, electrospinning, films, and nanostructured scaffolds, with a primary focus on 3D bioprinting of hydrogel scaffolds. Cysteine cross-linking enhances the scaffolds’ stability, printability, biocompatibility, degradability, and biological performance of scaffolds with an 85% increase in Young’s modulus. Cysteine adequately enhances the mechanical properties and degradation rates of adipose tissue scaffolds. This review addresses the underexplored use of cysteine cross-linking in soft tissue scaffolds, beyond its common bone tissue applications. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials for Tissue Engineering Applications)
Show Figures

Graphical abstract

10 pages, 1116 KB  
Proceeding Paper
A Brief Overview on Polysaccharide-Based Hydrogels in 3D Bioprinting for Biomedical Applications: Cases of Cellulose, Chitosan, and Lignin
by Chaymaa Hachimi Alaoui, Pierre Weiss, Ahmed Fatimi and Gildas Réthoré
Eng. Proc. 2024, 81(1), 21; https://doi.org/10.3390/engproc2024081021 - 25 Sep 2025
Viewed by 753
Abstract
Three-dimensional (3D) bioprinting has become one of the most advanced and useful innovations that allows the creation of personalized macroscopic and microscopic constructs at different scales that match a patient’s anatomy. Intensive research efforts are currently underway to develop highly printable and biocompatible [...] Read more.
Three-dimensional (3D) bioprinting has become one of the most advanced and useful innovations that allows the creation of personalized macroscopic and microscopic constructs at different scales that match a patient’s anatomy. Intensive research efforts are currently underway to develop highly printable and biocompatible materials. Among the variety of bioprinting materials (i.e., biomaterial inks), naturally derived hydrogels have attracted great interest due to their beneficial properties in terms of biocompatibility, cost-effectiveness, and biodegradability. In this proceeding paper, we provide an overview of the formulation and use of three functional polysaccharides as ink-based hydrogels. First, 3D bioprinting is summarized as revolutionary technology that is able to create cell-laden structures layer by layer in a specific pattern that mimics native tissue and organs. Cellulose, chitosan, and lignin are presented below, followed by an overview of their applicability in 3D bioprinting, focusing on printability and the resulting printed 3D structures as illustrated in various published figures. In the same way, a comparative overview of 3D bioprinting applications is summarized. Finally, a section dedicated to comparisons, limitations, and crosslinking strategies is provided. It is worth noting that this proceedings paper provides a brief overview rather than a comprehensive review, as it is limited by page constraints and is based on the content of our poster presented at the 1st International Online Conference on Bioengineering. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 1424
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

38 pages, 1200 KB  
Review
3D Printing for Tissue Engineering: Printing Techniques, Biomaterials, Challenges, and the Emerging Role of 4D Bioprinting
by Victor M. Arias-Peregrino, Aldo Y. Tenorio-Barajas, Claudia O. Mendoza-Barrera, Jesús Román-Doval, Esteban F. Lavariega-Sumano, Sandra P. Torres-Arellanes and Ramón Román-Doval
Bioengineering 2025, 12(9), 936; https://doi.org/10.3390/bioengineering12090936 - 30 Aug 2025
Cited by 3 | Viewed by 4382
Abstract
Organ failure constitutes a significant global concern requiring urgent attention. While organ transplantation offers prospective treatment, it remains suboptimal. The scarcity of donor organs and the need for lifelong immunosuppressive treatments highlight the necessity for innovative approaches in regenerative medicine. In response, tissue [...] Read more.
Organ failure constitutes a significant global concern requiring urgent attention. While organ transplantation offers prospective treatment, it remains suboptimal. The scarcity of donor organs and the need for lifelong immunosuppressive treatments highlight the necessity for innovative approaches in regenerative medicine. In response, tissue engineering has emerged as a promising alternative, particularly through advancements in three-dimensional (3D) and four-dimensional (4D) printing technologies. These approaches enable the fabrication of complex, patient-specific constructs for regenerating tissues such as skin, bone, cartilage, and vascularized organs. This review systematically examines 3D printing techniques, commonly used biomaterials (e.g., hydrogels, bio-inks, and polymers), and their applications in dermal, cardiovascular, bone, and neural regeneration. In addition to discussing 3D technology, an introduction to 4D bioprinting is provided, enabling advanced biomedical applications and establishing itself as an innovative tool that enhances the classic approach to 3D bioprinting in the context of regenerative medicine. Finally, key challenges and ethical considerations are discussed to provide a comprehensive perspective on the current state and future of printed scaffolds in regenerative medicine. Full article
Show Figures

Figure 1

19 pages, 1066 KB  
Review
Structure-Forming Properties of Pleurotus ostreatus: A Promising Resource for Edible 3D Printing Applications
by Alona Tiupova and Joanna Harasym
Molecules 2025, 30(16), 3350; https://doi.org/10.3390/molecules30163350 - 12 Aug 2025
Cited by 3 | Viewed by 2828
Abstract
Approximately 20–30% of cultivated oyster mushrooms (Pleurotus ostreatus) are classified as low grade due to morphological and visual imperfections or mechanical damage, representing significant waste in mushroom production systems. This review examines the structural and biochemical properties of P. ostreatus, [...] Read more.
Approximately 20–30% of cultivated oyster mushrooms (Pleurotus ostreatus) are classified as low grade due to morphological and visual imperfections or mechanical damage, representing significant waste in mushroom production systems. This review examines the structural and biochemical properties of P. ostreatus, particularly focusing on cell wall components including chitin, β-glucans, and mannogalactans, which provide crucial rheological characteristics for 3D printing. The literature results demonstrate that these natural polysaccharides contribute essential viscosity, water-binding capacity, and mechanical stability required for printable edible inks. Notably, the mushroom stipe contains significantly higher concentrations of glucans compared to the cap, with 57% more α-glucans and 33% more β-glucans. The unique combination of rigidity from chitin, elasticity from β-glucans, and water retention capabilities creates printable structures that maintain shape fidelity while delivering nutritional benefits. This approach addresses dual challenges in sustainable food systems by reducing agricultural waste streams while advancing eco-friendly food innovation. The integration of mushroom-derived biomaterials into 3D printing technologies offers a promising pathway toward developing nutrient-rich, functional foods within a regenerative production model. Full article
Show Figures

Figure 1

12 pages, 3155 KB  
Article
A Case Study on Fish Gelatin/Microcrystalline Cellulose Biomaterial Inks for Extrusion-Based Bioprinting
by Yubo Tao, Jinbao Du, Tong Hu, Peng Li, Ling Pan, Fangong Kong and Jingfa Zhang
Gels 2025, 11(6), 458; https://doi.org/10.3390/gels11060458 - 16 Jun 2025
Cited by 1 | Viewed by 1188
Abstract
The development of printable, biocompatible, biodegradable, and cost-effective bioinks, or biomaterial inks, remains a focal point in extrusion-based bioprinting research. In this study, fish gelatin (FG) was reinforced with microcrystalline cellulose (MCC) to formulate biomaterial inks. These FG/MCC composite inks were fabricated into [...] Read more.
The development of printable, biocompatible, biodegradable, and cost-effective bioinks, or biomaterial inks, remains a focal point in extrusion-based bioprinting research. In this study, fish gelatin (FG) was reinforced with microcrystalline cellulose (MCC) to formulate biomaterial inks. These FG/MCC composite inks were fabricated into 3D scaffolds using an extrusion bioprinter. The influence of MCC concentration on printability was systematically evaluated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirmed the formation of hydrogen bonds between MCC and FG, indicating molecular-level interactions. Notably, MCC incorporation enhanced the rheological properties of the ink and significantly improved the compressive strength of printed scaffolds. Furthermore, MCC content modulated key scaffold characteristics, including porosity, degradation rate, swelling behavior, and microarchitecture. These findings demonstrate that FG/MCC composite hydrogels exhibit optimal properties for extrusion-based 3D bioprinting, offering a promising platform for tissue engineering applications. Full article
(This article belongs to the Special Issue Application of Hydrogels in 3D Bioprinting for Tissue Engineering)
Show Figures

Figure 1

29 pages, 4161 KB  
Article
Three-Dimensional Bioprinted Gelatin—Genipin Hydrogels Enriched with hUCMSC-Derived Small Extracellular Vesicles for Regenerative Wound Dressings
by Manal Hussein Taghdi, Maimonah Eissa Al-Masawa, Barathan Muttiah, Mh Busra Fauzi, Jia Xian Law, Ani Amelia Zainuddin and Yogeswaran Lokanathan
Polymers 2025, 17(9), 1163; https://doi.org/10.3390/polym17091163 - 24 Apr 2025
Cited by 5 | Viewed by 2001
Abstract
Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) have shown great promise in promoting tissue repair, including skin wound healing, but challenges like rapid degradation and short retention have limited their clinical application. Hydrogels have emerged as effective carriers for sustained EV release. Three-dimensional [...] Read more.
Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) have shown great promise in promoting tissue repair, including skin wound healing, but challenges like rapid degradation and short retention have limited their clinical application. Hydrogels have emerged as effective carriers for sustained EV release. Three-dimensional printing enables the development of personalized skin substitutes tailored to the wound size and shape. This study aimed to develop 3D bioprinted gelatin–genipin hydrogels incorporating human umbilical cord MSC-sEVs (hUCMSC-sEVs) for future skin wound healing applications. Gelatin hydrogels (8% and 10% w/v) were crosslinked with 0.3% genipin (GECL) to improve stability. The hydrogels were evaluated for their suitability for extrusion-based 3D bioprinting and physicochemical properties, such as the swelling ratio, hydrophilicity, enzymatic degradation, and water vapor transmission rate (WVTR). Chemical characterization was performed using EDX, XRD, and FTIR. The hUCMSC-sEVs were isolated via centrifugation and tangential flow filtration (TFF) and characterized. The crosslinked hydrogels were successfully 3D bioprinted and demonstrated superior properties, including high hydrophilicity, a swelling ratio of ~500%, slower degradation, and optimal WVTR. hUCMSC-sEVs, ranging from 50 to 200 nm, were positive for surface and cytosolic markers. Adding 75 μg/mL of hUCMSC-EVs into 10% GECL hydrogels significantly improved the biocompatibility. These hydrogels offer ideal properties for 3D bioprinting and wound healing, demonstrating their potential as biomaterial scaffolds for skin tissue regeneration applications. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 2nd Edition)
Show Figures

Figure 1

10 pages, 1886 KB  
Article
The Use of Vacuum Plasma Surface Treatment to Improve the Hydrophilicity and Wettability of Bone Graft Substitutes and Resorbable Membranes: An In Vitro Study
by Marco Tallarico, Silvio Mario Meloni, Michele Troia, Carlotta Cacciò, Aurea Immacolata Lumbau, Ieva Gendviliene, Francesco Mattia Ceruso and Milena Pisano
Dent. J. 2025, 13(4), 141; https://doi.org/10.3390/dj13040141 - 25 Mar 2025
Cited by 2 | Viewed by 1300
Abstract
Background/Objectives: We wished to evaluate in vitro whether vacuum plasma surface treatment of bone graft substitutes and resorbable membranes could improve the hydrophilicity and wettability of the tested materials. Methods: A total of 28 sterilized samples were considered for this research and divided [...] Read more.
Background/Objectives: We wished to evaluate in vitro whether vacuum plasma surface treatment of bone graft substitutes and resorbable membranes could improve the hydrophilicity and wettability of the tested materials. Methods: A total of 28 sterilized samples were considered for this research and divided into three groups. Six samples were used for the SEM-EDS analysis. The other 22 samples were randomly assigned into the test (plasma-treated, n = 11) and control (no treatment, n = 11) groups. Vacuum plasma surface treatment was performed in the test group before the SEM-EDS analysis using the ACTILINK reborn with a material holder (Plasmapp Co., Ltd., Daejeon, Republic of Korea). Plasmatreat (Plasmatreat, Steinhagen, Germany) inks were used to evaluate the differences in the hydrophilicity between the test and control groups. The outcome measures were the absorption time, wettability grade, and grade of decontamination after different time cycles. Results: After the vacuum plasma surface treatment, the absorption time of the inks statistically decreased in all of the subgroups (p < 0.05), while the wettability grade increased. The SEM-EDS analyses showed an increased reduction rate of carbon impurities after up to three vacuum plasma surface treatment cycles. Furthermore, the SEM-EDS analysis did not reveal any areas of damage caused by the multiple treatments. Conclusions: Within the limitations of this in vitro study, the vacuum plasma surface treatment increased the hydrophilicity and wettability of the tested biomaterials. Particle bone graft and bone blocks should be treated using longer time programs. Further well-conducted randomized clinical trials with sample size calculations are needed to confirm these preliminary results. Full article
(This article belongs to the Special Issue Oral Implantology and Bone Regeneration)
Show Figures

Figure 1

17 pages, 3924 KB  
Article
Photo- and Schiff Base-Crosslinkable Chitosan/Oxidized Glucomannan Composite Hydrogel for 3D Bioprinting
by Mitsuyuki Hidaka and Shinji Sakai
Polysaccharides 2025, 6(1), 19; https://doi.org/10.3390/polysaccharides6010019 - 4 Mar 2025
Cited by 4 | Viewed by 3082
Abstract
Chitosan is an attractive material for developing inks for extrusion-based bioprinting of 3D structures owing to its excellent properties, including its mechanical properties and antimicrobial activity when used in wound dressings. A key challenge in formulating chitosan-based inks is to improve its gelation [...] Read more.
Chitosan is an attractive material for developing inks for extrusion-based bioprinting of 3D structures owing to its excellent properties, including its mechanical properties and antimicrobial activity when used in wound dressings. A key challenge in formulating chitosan-based inks is to improve its gelation property to ensure reliable printing and the mechanical stability of the printed structures. To address these challenges, this article presents a novel chitosan/oxidized glucomannan composite hydrogel obtained through the combination of Schiff base and phenol crosslinking reactions. The proposed biomaterial forms soft hydrogels through Schiff base crosslinking, which can be further stabilized via visible light-induced phenol crosslinking. This dual-crosslinking approach enhances the printability and robustness of chitosan-based ink materials. The proposed chitosan/oxidized glucomannan hydrogel exhibits excellent extrudability and improved shape retention after extrusion, along with antimicrobial properties against Escherichia coli. Moreover, good cytocompatibility was confirmed in animal cell studies using mouse fibroblast 10T1/2 cells. These favorable features make this hydrogel highly promising for the extrusion-based bioprinting of complex 3D structures, such as tubes and nose-like structures, at a low crosslinker concentration and can expand the prospects of chitosan in bioprinting, providing a safer and more efficient alternative for tissue engineering and other biomedical applications. Full article
Show Figures

Graphical abstract

20 pages, 23479 KB  
Article
Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces
by Karen Jazmin Mendoza-Bautista, Mariana S. Flores-Jimenez, Laisha Daniela Vázquez Tejeda Serrano, Grissel Trujillo de Santiago, Mario Moises Alvarez, Arturo Molina, Mariel Alfaro-Ponce and Isaac Chairez
Micromachines 2025, 16(3), 264; https://doi.org/10.3390/mi16030264 - 26 Feb 2025
Cited by 1 | Viewed by 1297
Abstract
The necessity of developing more realistic artificial food requires the aggregation of different biomaterials in an ordered and controlled manner. One of the most advanced methods for this is food printers reproducing additive manufacturing processes. This study presents a fully automatized 3D food [...] Read more.
The necessity of developing more realistic artificial food requires the aggregation of different biomaterials in an ordered and controlled manner. One of the most advanced methods for this is food printers reproducing additive manufacturing processes. This study presents a fully automatized 3D food printer leveraging collaborative Cartesian and multi-ink robotic systems to create complex food structures, with materials with different rheological settings using a screw conveyor configuration with controlled motion velocity. The developed food printer followed a formal mechatronic design strategy with fully functional instrumentation and automation systems. An adaptive controller was developed and implemented to regulate the coordinated operation of booth robotic devices, which are enforced by the G-code corresponding to the target food structure, leading to the necessary resolution. This device was tested with different commercial food inks to develop structures with complex shapes. The workability of the developed printer was confirmed by examining the food samples obtained using multiple materials, including creating different three-dimensional structures of a single complex food ink and creating simple structures made of different food inks with diverse structures that could yield a synthetic tissue that reproduces synthetic meat. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

18 pages, 4956 KB  
Article
An Exosome-Laden Hydrogel Wound Dressing That Can Be Point-of-Need Manufactured in Austere and Operational Environments
by E. Cate Wisdom, Andrew Lamont, Hannah Martinez, Michael Rockovich, Woojin Lee, Kristin H. Gilchrist, Vincent B. Ho and George J. Klarmann
Bioengineering 2024, 11(8), 804; https://doi.org/10.3390/bioengineering11080804 - 8 Aug 2024
Cited by 3 | Viewed by 5295
Abstract
Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivity is preserved after [...] Read more.
Skin wounds often form scar tissue during healing. Early intervention with tissue-engineered materials and cell therapies may promote scar-free healing. Exosomes and extracellular vesicles (EV) secreted by mesenchymal stromal cells (MSC) are believed to have high regenerative capacity. EV bioactivity is preserved after lyophilization and storage to enable use in remote and typically resource-constrained environments. We developed a bioprinted bandage containing reconstituted EVs that can be fabricated at the point-of-need. An alginate/carboxymethyl cellulose (CMC) biomaterial ink was prepared, and printability and mechanical properties were assessed with rheology and compression testing. Three-dimensional printed constructs were evaluated for Young’s modulus relative to infill density and crosslinking to yield material with stiffness suitable for use as a wound dressing. We purified EVs from human MSC-conditioned media and characterized them with nanoparticle tracking analysis and mass spectroscopy, which gave a peak size of 118 nm and identification of known EV proteins. Fluorescently labeled EVs were mixed to form bio-ink and bioprinted to characterize EV release. EV bandages were bioprinted on both a commercial laboratory bioprinter and a custom ruggedized 3D printer with bioprinting capabilities, and lyophilized EVs, biomaterial ink, and thermoplastic filament were deployed to an austere Arctic environment and bioprinted. This work demonstrates that EVs can be bioprinted with an alginate/CMC hydrogel and released over time when in contact with a skin-like substitute. The technology is suitable for operational medical applications, notably in resource-limited locations, including large-scale natural disasters, humanitarian crises, and combat zones. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

21 pages, 5043 KB  
Article
The Impact of Gelatin and Fish Collagen on Alginate Hydrogel Properties: A Comparative Study
by Adrianna Wierzbicka, Mateusz Bartniak, Joanna Waśko, Beata Kolesińska, Jacek Grabarczyk and Dorota Bociaga
Gels 2024, 10(8), 491; https://doi.org/10.3390/gels10080491 - 25 Jul 2024
Cited by 16 | Viewed by 6178
Abstract
Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements [...] Read more.
Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements of separate clinical applications. These materials, however, have numerous limitations in the area of biological activity. In order to eliminate their limitations, sodium alginate is popularly applied in combination with added gelatin, which represents a product of collagen hydrolysis. Despite numerous beneficial biological properties, matrix materials based on gelatin have poor mechanical properties and are characterized by their ability for rapid degradation in an aqueous environment, particularly at the physiological temperature of the body, which significantly limits the independent application opportunities of this type of composition in the range of scaffolding production dedicated for tissue engineering. Collagen hydrogels, unlike gelatin, are characterized by higher bioactivity, dictated by a greater number of ligands that allow for cell adhesion, as well as better stability under physiological conditions. Fish-derived collagen provides a material that may be efficiently extracted without the risk of mammalian prion infection and can be used in all patients without religious restrictions. Considering the numerous advantages of collagen indicating its superiority over gelatin, within the framework of this study, the compositions of hydrogel materials based on sodium alginate and fish collagen in different concentrations were developed. Prepared hydrogel materials were compared with the properties of a typical composition of alginate with the addition of gelatin. The rheological, mechanical, and physicochemical properties of the developed polymer compositions were evaluated. The first trials of 3D printing by extrusion technique using the analyzed polymer solutions were also conducted. The results obtained indicate that replacing gelatin with fish collagen at an analogous concentration leads to obtaining materials with a lower swelling degree, better mechanical properties, higher stability, limited release kinetics of calcium ions cross-linking the alginate matrix, a slowed process of protein release under physiological conditions, and the possibility of extrusion 3D printing. The conducted analysis highlights that the optimization of the applied concentrations of fish collagen additives to composition based on sodium alginate creates the possibility of designing materials with appropriate mechanical and rheological properties and degradation kinetics adjusted to the requirements of specific applications, leading to the prospective opportunity to produce materials capable of mimicking the properties of relevant soft tissues. Thanks to its excellent bioactivity and lower-than-gelatin viscosity of the polymer solution, fish collagen also provides a prospective solution for applications in the field of 3D bioprinting. Full article
(This article belongs to the Special Issue Recent Trends in Gels for 3D Printing)
Show Figures

Graphical abstract

16 pages, 7741 KB  
Article
Digital Light Processing of 19F MRI-Traceable Gelatin-Based Biomaterial Inks towards Bone Tissue Regeneration
by Anna Szabó, Kristyna Kolouchova, Laurens Parmentier, Vit Herynek, Ondrej Groborz and Sandra Van Vlierberghe
Materials 2024, 17(12), 2996; https://doi.org/10.3390/ma17122996 - 19 Jun 2024
Cited by 1 | Viewed by 2010
Abstract
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to [...] Read more.
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

33 pages, 6789 KB  
Review
Natural and Synthetic Polymers for Biomedical and Environmental Applications
by Galina Satchanska, Slavena Davidova and Petar D. Petrov
Polymers 2024, 16(8), 1159; https://doi.org/10.3390/polym16081159 - 20 Apr 2024
Cited by 291 | Viewed by 28939
Abstract
Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., [...] Read more.
Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering, stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food packaging. In the following review, recent advancements in polymer chemistry, which enable the imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral, anticancer, and antimicrobial activities. This work contains the authors’ experimental contributions to biomedical and environmental polymer applications. This review is a vast overview of natural and synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation methods, critically assessessing their advantages, limitations, and prospects. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Figure 1

Back to TopTop