Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces
Abstract
:1. Introduction
- A new 3D food printer based on the collaborative operation of a Cartesian and multi-joint manipulator, which can promote deposition in different spatial locations with diverse orientations of food inks.
- The proposed printer was fully designed, constructed, and automatized following a formal methodology that yields the possibility of extruding multiple materials simultaneously under controlled conditions.
2. Design and Development of Collaborative Heterogeneous Mini-Robotic 3D Printer
2.1. Design Requirements for the Food Printer
- Hyper-redundant configuration for the robotized section of the 3D printer to deposit extruded materials on curved surfaces.
- Multiple operative channels to extrude several materials simultaneously with an independently controlled flow.
- Regulated motion for all the actuators in the hyper-redundant configuration commanded by traditional G-code instruction set.
- Innocuous materials for developing the extruder containers.
- Space resolution of 0.002 m in the x-y plane and 0.001 m in the z plane.
- Motion velocity of the extrusion system of 0.2 m/s in all three motion axes.
- Material extrusion flow is regulated according to the rheological conditions of food inks.
- Minimum volume in the extruder device.
- Graphic user interface.
2.2. Mechanical Design of the Food Printer
2.3. Instrumentation of the Food Printer
2.4. Automation Strategy for Controlling the Food Printer
2.5. Instrument Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
DC | Direct current |
PMAC | Programmable multi-axis controller |
PWM | Pulse width modulation |
TE | Tracking error |
RPM | Revolutions per minute |
PMAC | Multi-axis controller |
FDM | Fused deposition modeling |
References
- Alami, A.H.; Olabi, A.G.; Khuri, S.; Aljaghoub, H.; Alasad, S.; Ramadan, M.; Ali Abdelkareem, M. 3D printing in the food industry: Recent progress and role in achieving sustainable development goals. Ain Shams Eng. J. 2024, 15, 102386. [Google Scholar] [CrossRef]
- Yadav, V.; Singh, A.; Gunasekaran, A.; Raut, R.; Narkhede, B. A systematic literature review of the agro-food supply chain: Challenges, network design, and performance measurement perspectives. Sustain. Prod. Consum. 2022, 29, 685–704. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Strategy for Food Safety 2022–2030: Towards Stronger Food Safety Systems and Global Cooperation; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Hussain, S.; Malakar, S.; Vinkel, K. Extrusion-Based 3D Food Printing: Technological Approaches, Material Characteristics, Printing Stability, and Post-processing. Food Eng. Rev. 2022, 14, 100–119. [Google Scholar] [CrossRef]
- Portanguen, S.; Tournayre, P.; Gibert, P.; Leonardi, S.; Astruc, T.; Mirade, P.S.M. Development of a 3D Printer for the Manufacture of Functional Food Protein Gels. Foods 2022, 11, 458. [Google Scholar] [CrossRef]
- Neamah, H.; Tandio, J. Towards the development of foods 3D printer: Trends and technologies for foods printing. Heliyon 2024, 10, e33882. [Google Scholar] [CrossRef]
- Hoek, M. Why 3D Printing Is Key to Sustainable Business; Association of MBAs: London, UK, 2020. [Google Scholar]
- Wegrzyn, T.; Golding, M.; Archer, R. Food Layered Manufacture: A new process for constructing solid foods. Trends Food Sci. Technol. 2012, 27, 66–72. [Google Scholar] [CrossRef]
- Soni, R.; Ponappa, K.; Tandon, P. A review on customized food fabrication process using Food Layered Manufacturing. LWT 2022, 161, 113411. [Google Scholar] [CrossRef]
- Pant, A.; Lee, A.; Karyappa, R.; Lee, C.; An, J.; Hashimoto, M.; Tan, U.-X.; Wong, G.; Chua, C.K.; Zhang, Y. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocoll. 2021, 114, 106546. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, Z.; Li, L.; Gao, Y.; Lai, K.H.; Cai, W. Multimaterial 3D printing of plant protein-based material. Innov. Food Sci. Emerg. Technol. 2025, 100, 103901. [Google Scholar] [CrossRef]
- Lee, C.; Yi, M.; Chian, N.; Hashimoto, M. Multi-material Direct Ink Writing 3D Food Printing using Multi-channel Nozzle. Future Foods 2024, 10, 100376. [Google Scholar] [CrossRef]
- Demircan, E.; Ozcelik, B. Development of affordable 3D food printer with an exchangeable syringe-pump mechanism. HardwareX 2023, 14, e00430. [Google Scholar] [CrossRef] [PubMed]
- Ichimori, I.; Watanabe, Y.; Fujiwara, K.; Ogawa, J.; Furukawa, H. Real-time material extrusion volume control system for 3D food printers. Res. Sq. 2024, preprint. [Google Scholar]
- Umeda, T.; Kozu, H.; Kobayashi, I. Analysis of Pumpkin Paste Printability for Screw-Based 3D Food Printer. Food Bioprocess Technol. 2024, 17, 188–204. [Google Scholar] [CrossRef]
- Ning, X.; Devahastin, S.; Wang, X.; Wu, N.; Liu, Z.; Gong, Y.; Zhou, L.; Huo, L.; Ding, W.; Yi, J.; et al. Understanding 3D food printing through computer simulation and extrusion force analysis. J. Food Eng. 2024, 370, 111972. [Google Scholar] [CrossRef]
- Tan, C.; Yan, W.; Wong, G.; Li, L. Extrusion-based 3D food printing - Materials and machines. Int. J. Bioprint. 2018, 4, 143. [Google Scholar] [CrossRef]
- Choc Edge Ltd. Choc Creator V2.0 Plus; Choc Edge Ltd.: Exeter, UK, 2018. [Google Scholar]
- Guangzhou WangNeng Design Co. Ltd. Commercial Art Pancakes Printer F5; Guangzhou WangNeng Design Co. Ltd.: Guanzhou, China, 2018. [Google Scholar]
- PancakeBot. Pancakebot 2.0; PancakeBot: Uxbridge, UK, 2018. [Google Scholar]
- Barilla Group. Pasta of the Future? It’s Printed in 3D; Barilla Group: Parma, Italy, 2016. [Google Scholar]
- Aiso, K.; Watanabe, Y.; Islam, N.; Khosla, A.; Ogawa, J.; Kawakami, M.; Furukawa, H. Food 3D Printing with Starch Suspension. ECS Meet. Abstr. 2021, 240, 1594. [Google Scholar] [CrossRef]
- Print2Taste. 3D Food Printer Procusini 3.0 & Procusini 3.0 Dual; Print2Taste: Freising, Germany, 2018. [Google Scholar]
- Structur3D Printing. Discov3ry 2.0 Complete; Structur3D Printing: Kitchener, ON, Canada, 2018. [Google Scholar]
- Lipton, J.; MacCurdy, R.; Boban, M.; Chartrain, N.; Withers, L., III; Gangjee, N.; Nagai, A.; Cohen, J.; Liu, K.S.J.; Qudsi, H.; et al. Fab@Home Model 3: A More Robust, Cost Effective and Accesible Open Hardware Fabrication Platform. In Proceedings of the 22 Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 25–27 July 2011. [Google Scholar]
- Matthew, J. F3D Printer Report. 2024. Available online: https://3digitalcooks.com/3d-printed-food/ (accessed on 1 December 2024).
- Chávez-Madero, C.; de León-Derby, M.D.; Samandari, M.; Ceballos-González, C.F.; Bolívar-Monsalve, E.J.; Mendoza-Buenrostro, C.; Holmberg, S.; Garza-Flores, N.A.; Almajhadi, M.A.; González-Gamboa, I.; et al. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro-and nanostructures: Continuous chaotic printing. Biofabrication 2020, 12, 035023. [Google Scholar] [CrossRef]
- Ceballos-González, C.F.; Bolívar-Monsalve, E.J.; Quevedo-Moreno, D.A.; Chávez-Madero, C.; Velásquez-Marín, S.; Lam-Aguilar, L.L.; Solís-Pérez, Ó.E.; Cantoral-Sánchez, A.; Neher, M.; Yzar-García, E.; et al. Plug-and-play multimaterial chaotic printing/bioprinting to produce radial and axial micropatterns in hydrogel filaments. Adv. Mater. Technol. 2023, 8, 2202208. [Google Scholar] [CrossRef]
- Ortega, R.; Loria, A.; Nicklasson, P.J.; Sira-Ramirez, H.; Ortega, R.; Loría, A.; Nicklasson, P.J.; Sira-Ramírez, H. Euler-Lagrange Systems; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Maggiore, M.; Consolini, L. Virtual holonomic constraints for Euler–Lagrange systems. IEEE Trans. Autom. Control. 2012, 58, 1001–1008. [Google Scholar] [CrossRef]
- Kawan, C.; Mironchenko, A.; Zamani, M. A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear systems. IEEE Trans. Autom. Control. 2022, 66, 5830–5844. [Google Scholar] [CrossRef]
- Bernal, M.; Sala, A.; Lendek, Z.; Guerra, T.M. Analysis and Synthesis of Nonlinear Control Systems; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Rauscher, M.; Kimmel, M.; Hirche, S. Constrained robot control using control barrier functions. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Danjeon, Republic of Korea, 9–14 October 2016; IEEE: New York, NY, USA, 2016; pp. 279–285. [Google Scholar]
- Yovchev, K.; Delchev, K.; Krastev, E. State space constrained iterative learning control for robotic manipulators. Asian J. Control 2018, 20, 1145–1150. [Google Scholar] [CrossRef]
- Grimble, M.; Martin, P. Restricted structure adaptive predictive control of nonlinear systems. In Proceedings of the International Conference on Control Applications, Glasgow, UK, 18–20 September 2002; IEEE: New York, NY, USA, 2002; Volume 2, pp. 663–668. [Google Scholar]
- Gomez-Correa, M.; Villela, U.; Cruz-Ortiz, D.; Salgado, I.; Ballesteros, M. Adaptive Tracking Controller with Exponential Restrictions for Robotic Manipulators. In Proceedings of the 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA), Grimstad, Norway, 1–3 November 2023; IEEE: New York, NY, USA, 2023; pp. 215–220. [Google Scholar]
- Bini, D.A.; Iannazzo, B.; Meini, B. Numerical Solution of Algebraic Riccati Equations; SIAM: Philadelphia, PA, USA, 2011. [Google Scholar]
- Cobian-Aquino, S.M.; Mendoza-Guerrero, J.E.; Danel-Muñoz, J.; Coronado-Quiel, M.A.; Guarneros-Sandoval, A.; Carbajal-Espinosa, O.E.; Chairez, I. Adaptive state restricted barrier Lyapunov-based control of a Stewart platform used as ankle-controlled mobilizer. ISA Trans. 2024, 148, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Pérez-San Lázaro, R.; Mendoza-Bautista, K.J.; Fuentes-Aguilar, R.Q.; Chairez, I. State-restricted adaptive control of a multilevel rotating electromagnetic mechanical flexible device using electromagnetic actuators. ISA Trans. 2024, 155, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Jagadiswaran, B.; Alagarasan, V.; Palanivelu, P.; Theagarajan, R.; Moses, J.; Anandharamakrishnan, C. Valorization of food industry waste and by-products using 3D printing: A study on the development of value-added functional cookies. Future Foods 2021, 4, 100036. [Google Scholar] [CrossRef]
- Garciamendez-Mijares, C.E.; Guerra-Alvarez, G.E.; Sánchez-Salazar, M.G.; García-Rubio, A.; García-Martínez, G.; Mertgen, A.S.; Ceballos-González, C.F.; Bolivar-Monsalve, E.J.; Zhang, Y.S.; Trujillo-de Santiago, G.; et al. Development of an affordable extrusion 3D bioprinter equipped with a temperature-controlled printhead. Int. J. Bioprint. 2023, 9, 0244. [Google Scholar] [CrossRef]
- Gleadall, A. FullControl GCode Designer: Open-source software for unconstrained design in additive manufacturing. Addit. Manuf. 2021, 46, 102109. [Google Scholar] [CrossRef]
System | Injectors | Cartesian | Manipulator |
---|---|---|---|
3 extruders | X-Y robots | 6 revolute joints | |
Components | Ink container | NEMA 34 stepper motor | Stepper motor |
food ink screw | |||
12 DC Motor | |||
End effector | Hose as conduit medium | Kenix static mixer (extruder) | Mobile food printer’s base |
Pea Protein Ink | Pea Protein InkMixed with Vegetable Fat | Pea Protein Ink with Synthetic Connective Tissue | |
---|---|---|---|
mL/s (mean) | 4.62 × | 6.78 × | 2.55 × |
S.D. | 0.0009 | 0.0013 | 0.0024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Bautista, K.J.; Flores-Jimenez, M.S.; Vázquez Tejeda Serrano, L.D.; Trujillo de Santiago, G.; Alvarez, M.M.; Molina, A.; Alfaro-Ponce, M.; Chairez, I. Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces. Micromachines 2025, 16, 264. https://doi.org/10.3390/mi16030264
Mendoza-Bautista KJ, Flores-Jimenez MS, Vázquez Tejeda Serrano LD, Trujillo de Santiago G, Alvarez MM, Molina A, Alfaro-Ponce M, Chairez I. Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces. Micromachines. 2025; 16(3):264. https://doi.org/10.3390/mi16030264
Chicago/Turabian StyleMendoza-Bautista, Karen Jazmin, Mariana S. Flores-Jimenez, Laisha Daniela Vázquez Tejeda Serrano, Grissel Trujillo de Santiago, Mario Moises Alvarez, Arturo Molina, Mariel Alfaro-Ponce, and Isaac Chairez. 2025. "Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces" Micromachines 16, no. 3: 264. https://doi.org/10.3390/mi16030264
APA StyleMendoza-Bautista, K. J., Flores-Jimenez, M. S., Vázquez Tejeda Serrano, L. D., Trujillo de Santiago, G., Alvarez, M. M., Molina, A., Alfaro-Ponce, M., & Chairez, I. (2025). Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces. Micromachines, 16(3), 264. https://doi.org/10.3390/mi16030264