Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,668)

Search Parameters:
Keywords = biomass alternative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11966 KiB  
Article
Improved Photosynthetic Accumulation Models for Biomass Estimation of Soybean and Cotton Using Vegetation Indices and Canopy Height
by Jinglong Liu, Jordi J. Mallorqui, Albert Aguasca, Xavier Fàbregas, Antoni Broquetas, Jordi Llop, Mireia Mas, Feng Zhao and Yanan Wang
Remote Sens. 2025, 17(15), 2736; https://doi.org/10.3390/rs17152736 (registering DOI) - 7 Aug 2025
Abstract
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate [...] Read more.
Most crops accumulate above-ground biomass (AGB) through photosynthesis, inspiring the development of the Photosynthetic Accumulation Model (PAM) and Simplified PAM (SPAM). Both models estimate AGB based on time-series optical vegetation indices (VIs) and canopy height. To further enhance the model performance and evaluate its applicability across different crop types, an improved PAM model (IPAM) is proposed with three strategies. They are as follows: (i) using numerical integration to reduce reliance on dense observations, (ii) introduction of Fibonacci sequence-based structural correction to improve model accuracy, and (iii) non-photosynthetic area masking to reduce overestimation. Results from both soybean and cotton demonstrate the strong performance of the PAM-series models. Among them, the proposed IPAM model achieved higher accuracy, with mean R2 and RMSE values of 0.89 and 207 g/m2 for soybean and 0.84 and 251 g/m2 for cotton, respectively. Among the vegetation indices tested, the recently proposed Near-Infrared Reflectance of vegetation (NIRv) and Kernel-based normalized difference vegetation index (Kndvi) yielded the most accurate results. Both Monte Carlo simulations and theoretical error propagation analyses indicate a maximum deviation percentage of approximately 20% for both crops, which is considered acceptable given the expected inter-annual variation in model transferability. In addition, this paper discusses alternatives to height measurements and evaluates the feasibility of incorporating synthetic aperture radar (SAR) VIs, providing practical insights into the model’s adaptability across diverse data conditions. Full article
Show Figures

Figure 1

27 pages, 5688 KiB  
Review
Tree Biomass Estimation in Agroforestry for Carbon Farming: A Comparative Analysis of Timing, Costs, and Methods
by Niccolò Conti, Gianni Della Rocca, Federico Franciamore, Elena Marra, Francesco Nigro, Emanuele Nigrone, Ramadhan Ramadhan, Pierluigi Paris, Gema Tárraga-Martínez, José Belenguer-Ballester, Lorenzo Scatena, Eleonora Lombardi and Cesare Garosi
Forests 2025, 16(8), 1287; https://doi.org/10.3390/f16081287 - 7 Aug 2025
Abstract
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing [...] Read more.
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing methods for estimating tree aboveground biomass (AGB) in AFSs, with a specific focus on their advantages, limitations, timing, and associated costs. Destructive methods, although accurate and necessary for developing and validating allometric equations, are time-consuming, costly, and labour-intensive. Conversely, satellite- and drone-based remote sensing offer scalable and non-invasive alternatives, increasingly supported by advances in machine learning and high-resolution imagery. Using data from the INNO4CFIs project, which conducted parallel destructive and remote measurements in an AFS in Tuscany (Italy), this study provides a novel quantitative comparison of the resources each method requires. The findings highlight that while destructive measurements remain indispensable for model calibration and new species assessment, their feasibility is limited by practical constraints. Meanwhile, remote sensing approaches, despite some accuracy challenges in heterogeneous AFSs, offer a promising path forward for cost-effective, repeatable biomass monitoring but in turn require reliable field data. The integration of both approaches might represent a valid strategy to optimize precision and resource efficiency in carbon farming applications. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 1967 KiB  
Article
Water Stress Promotes Secondary Sexual Dimorphism in Ecophysiological Traits of Papaya Seedlings
by Ingrid Trancoso, Guilherme A. R. de Souza, João Vitor Paravidini de Souza, Rosana Maria dos Santos Nani de Miranda, Diesily de Andrade Neves, Miroslava Rakocevic and Eliemar Campostrini
Plants 2025, 14(15), 2445; https://doi.org/10.3390/plants14152445 - 7 Aug 2025
Abstract
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification [...] Read more.
Plant genders could express different functional strategies to compensate for different reproductive costs, as females have an additional role in fruit and seed production. Secondary sexual dimorphism (SSD) expression is frequently greater under stress than under optimal growth conditions. The early gender identification in papaya may help to reduce orchard costs because the most desirable fruit shape is formed by hermaphrodite plants. We hypothesized that (a) gender ecophysiological phenotyping can be an alternative to make gender segregations in papaya seedlings, and (b) such gender segregation will be more efficient after a short drought exposure than under adequate water conditions. To test such hypotheses, seedlings of two papaya varieties (‘Candy’ and ‘THB’) were exposed to two kind of treatments: (1) water shortage (WS) for 45 h, after which they were well watered, and (2) continuously well-watered (WW). Study assessed the ecophysiological responses, such as stomatal conductance (gs), SPAD index, optical reflectance indices, morphological traits, and biomass accumulation in females (F) and hermaphrodites (H). In WS treatment, the SSD was expressed in 14 of 18 traits investigated, while in WW treatment, the SSD was expressed only in 7 of 18 traits. As tools for SSD expression, gs and simple ratio pigment index (SRPI) must be measured on the first or second day after the imposed WS was interrupted, respectively, while the other parameters must be measured after a period of four days. In some traits, the SSD was expressed in only one variety, or the response of H and F plants were of opposite values for two varieties. The choice of the clearest responses of gender segregation in WS treatment will be greenness index, combination of normalized difference vegetation index (CNDVI), photochemical reflectance index (PRI), water band index (WBI), SRPI, leaf number, leaf dry mass, and leaf mass ratio. If the WW conditions are maintained for papaya seedling production, the recommendation in gender segregation will be the analysis of CNDVI, carotenoid reflectance index 2 (CRI2), WBI, and SRPI. The non-destructive optical leaf indices segregated papaya hermaphrodites from females under both water conditions and eventually could be adjusted for wide-scale platform evaluations, with planned space arrangements of seedlings, and sensor’s set. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

15 pages, 3139 KiB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

20 pages, 11306 KiB  
Article
Bioactive Extracts of Spirulina platensis Inhibit Colletotrichum orchidearum and Fusarium nirenbergiae: A Green Approach to Hydroponic Lettuce Protection
by Leticia Eduarda Bender, Emily da Luz Monteiro, José Luís Trevizan Chiomento and Luciane Maria Colla
Processes 2025, 13(8), 2483; https://doi.org/10.3390/pr13082483 - 6 Aug 2025
Abstract
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly [...] Read more.
The growing demand for food and the environmental impact of conventional agriculture have prompted the search for sustainable alternatives. Phycocyanin (PC) and total phenolic compounds (TPC) extracted from Spirulina platensis have shown potential for the biological control of phytopathogens. The extraction method directly influences the yield and stability of these compounds. This study aimed to establish an efficient extraction protocol for PC and TPC and to evaluate their antimicrobial efficacy in vitro against Colletotrichum orchidearum, Fusarium nirenbergiae, and Alternaria sp. isolated from hydroponically grown lettuce. The phytopathogens were identified based on phylogenetic analyses using sequences from the ITS, EF1-α, GAPDH, and RPB2 gene regions. This is the first report of C. orchidearum in hydroponic lettuce culture in Brazil, expanding its known host range. Extracts were obtained using hydroalcoholic solvents and phosphate buffer (PB), combined with ultrasound-assisted extraction (bath and probe). The extracts were tested for in vitro antifungal activity. Data were analyzed by ANOVA (p < 0.05), followed by Tukey’s test. The combination of the PB and ultrasound probe resulted in the highest PC (95.6 mg·g−1 biomass) and TPC (21.9 mg GAE·g−1) yields, using 10% (w/v) biomass. After UV sterilization, the extract retained its PC and TPC content. The extract inhibited C. orchidearum by up to 53.52% after three days and F. nirenbergiae by 54.17% on the first day. However, it promoted the growth of Alternaria sp. These findings indicate that S. platensis extracts are a promising alternative for the biological control of C. orchidearum and F. nirenbergiae in hydroponic systems. Full article
Show Figures

Figure 1

17 pages, 3870 KiB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 - 5 Aug 2025
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 113
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

14 pages, 276 KiB  
Article
Inclusion of Hydrolyzed Feather Meal in Diets for Giant River Prawn (Macrobrachium rosenbergii) During the Nursery Phase: Effects on Growth, Digestive Enzymes, and Antioxidant Status
by Eduardo Luis Cupertino Ballester, Angela Trocino, Cecília de Souza Valente, Marlise Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Caio Henrique do Nascimento Ferreira and Francesco Bordignon
Appl. Sci. 2025, 15(15), 8627; https://doi.org/10.3390/app15158627 - 4 Aug 2025
Viewed by 137
Abstract
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. [...] Read more.
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. Survival rates ranged from 73.3 ± 5.44% to 83.3 ± 3.84% without significant differences among groups. Dietary HFM inclusion levels above 3.0% significantly improved prawn performance, including final weight (up to 2.18-fold higher than control), length (1.13-fold), antenna length (1.18-fold), biomass gain (2.14-fold), and feed conversion ratio (1.59-fold lower). Prawn-fed diets at 6.0% HFM showed the highest performance among all experimental groups. No significant effects were observed on antioxidant biomarkers or digestive enzymes in prawns hepatopancreas, which suggests no imbalance in the antioxidant system or impairment of digestive function. Likewise, carcass proximate composition remained stable across experimental groups. These findings suggest that HFM at 3.0–6.0% dietary inclusion levels is a potential alternative to fishmeal in nursery-phase diets for M. rosernbergii PL, promoting prawn growth and welfare and maintaining health and carcass quality. Notably, to the best of our knowledge, this is the first study demonstrating the potential effective use of HFM in feeding the nursery phase of M. rosernbergii. Full article
(This article belongs to the Section Agricultural Science and Technology)
25 pages, 2805 KiB  
Review
Cascade Processing of Agricultural, Forest, and Marine Waste Biomass for Sustainable Production of Food, Feed, Biopolymers, and Bioenergy
by Swarnima Agnihotri, Ellinor B. Heggset, Juliana Aristéia de Lima, Ilona Sárvári Horváth and Mihaela Tanase-Opedal
Energies 2025, 18(15), 4093; https://doi.org/10.3390/en18154093 - 1 Aug 2025
Viewed by 336
Abstract
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both [...] Read more.
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both human and feed grade proteins, as well as for biopolymers and bioenergy. As such, agricultural, forest, and marine waste biomass represent a valuable feedstock for production of food and feed ingredients, biopolymers, and bioenergy. However, the lack of integrated and efficient valorization strategies for these diverse biomass sources remains a major challenge. This literature review aims to give a systematic approach on the recent research status of agricultural, forest, and marine waste biomass valorization, focusing on cascade processing (a sequential combination of processes such as pretreatment, extraction, and conversion methods). Potential products will be identified that create the most economic value over multiple lifetimes, to maximize resource efficiency. It highlights the challenges associated with cascade processing of waste biomass and proposes technological synergies for waste biomass valorization. Moreover, this review will provide a comprehensive understanding of the potential of waste biomass valorization in the context of sustainable and circular bioeconomy. Full article
(This article belongs to the Special Issue Emerging Technologies for Waste Biomass to Green Energy and Materials)
Show Figures

Figure 1

22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti-Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 - 1 Aug 2025
Viewed by 267
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

8 pages, 890 KiB  
Communication
Single-Cell Protein Using an Indigenously Isolated Methanotroph Methylomagnum ishizawai, Using Biogas
by Jyoti A. Mohite, Kajal Pardhi and Monali C. Rahalkar
Microbiol. Res. 2025, 16(8), 171; https://doi.org/10.3390/microbiolres16080171 - 1 Aug 2025
Viewed by 219
Abstract
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas [...] Read more.
The use of methane as a carbon source for producing bacterial single-cell protein (SCP) has been one of the most interesting developments in recent years. Most of these upcoming industries are using a methanotroph, Methylococcus capsulatus Bath, for SCP production using natural gas as the substrate. In the present study, we have explored the possibility of using an indigenously isolated methanotroph from a rice field in India, Methylomagnum ishizawai strain KRF4, for producing SCP from biogas [derived from cow dung]. The process was eco-friendly, required minimal instruments and chemicals, and was carried out under semi-sterile conditions in a tabletop fish tank. As the name suggests, Methylomagnum is a genus of large methanotrophs, and the strain KRF4 had elliptical to rectangular size and dimensions of ~4–5 µm × 1–2 µm. In static cultures, when biogas and air were supplied in the upper part of the growing tank, the culture grew as a thick pellicle/biofilm that could be easily scooped. The grown culture was mostly pure, from the microscopic observations where the large size of the cells, with rectangular-shaped cells and dark granules, could easily help identify any smaller contaminants. Additionally, the large cell size could be advantageous for separating biomass during downstream processing. The amino acid composition of the lyophilized biomass was analyzed using HPLC, and it was seen that the amino acid composition was comparable to commercial fish meal, soymeal, Pruteen, and the methanotroph-derived SCP-UniProtein®. The only difference was that a slightly lower percentage of lysine, tryptophan, and methionine was observed in Methylomagnum-derived SCP. Methylomagnum ishizawai could be looked at as an alternative for SCP derived from methane or biogas due to the comparable SCP produced, on the qualitative level. Further intensive research is needed to develop a continuous, sustainable, and economical process to maximize biomass production and downstream processing. Full article
Show Figures

Figure 1

21 pages, 5409 KiB  
Article
Sustainable Rubber Solutions: A Study on Bio-Based Oil and Resin Blends
by Frances van Elburg, Fabian Grunert, Claudia Aurisicchio, Micol di Consiglio, Auke Talma, Pilar Bernal-Ortega and Anke Blume
Polymers 2025, 17(15), 2111; https://doi.org/10.3390/polym17152111 - 31 Jul 2025
Viewed by 330
Abstract
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic [...] Read more.
One of the most important challenges the tire industry faces is becoming carbon-neutral and using 100% sustainable materials by 2050. Utilizing materials from renewable sources and recycled substances is a key aspect of achieving this goal. Petroleum-based oils, such as Treated Distillate Aromatic Extract (TDAE), are frequently used in rubber compounds, and a promising strategy to enhance sustainability is to use bio-based plasticizer alternatives. However, research has shown that the replacement of TDAE oil with bio-based oils or resins can significantly alter the glass transition temperature (Tg) of the final compound, influencing the tire properties. In this study, the theory was proposed that using a plasticizer blend, comprising oil and resin, in a rubber compound would result in similar Tg values as the reference compound containing TDAE. To test this, the cycloaliphatic di-ester oil Hexamoll DINCH, which can be made out of bio-based feedstock by the BioMass Balance approach, was selected and blended with the cycloaliphatic hydrocarbon resin Escorez 5300. Various oil-to-resin ratios were investigated, and a linear increase in the Tg of the vulcanizate was obtained when increasing the resin content and decreasing the oil content. Additionally, a 50/50 blend, consisting of 18.75 phr Hexamoll DINCH and 18.75 phr Escorez 5300, resulted in the same Tg of −19 °C as a compound containing 37.5 phr TDAE. Furthermore, this blend resulted in similar curing characteristics and cured Payne effect as the reference with TDAE. Moreover, a similar rolling resistance indicator (tan δ at 60 °C = 0.115), a slight deterioration in wear resistance (ARI = 83%), but an improvement in the stress–strain behavior (M300 = 9.18 ± 0.20 MPa and Ts = 16.3 ± 0.6 MPa) and wet grip indicator (tan δ at 0 °C = 0.427) were observed. The results in this work show the potential of finding a balance between optimal performance and sustainability by using plasticizer blends. Full article
(This article belongs to the Special Issue Exploration and Innovation in Sustainable Rubber Performance)
Show Figures

Figure 1

18 pages, 4971 KiB  
Article
Sustainable Production of Bacterial Cellulose in a Rotary Disk Bioreactor: Grape Pomace as a Replacement for the Carbon Source
by Rodrigo Cáceres, Patricio Oyarzún, Juan Pablo Vargas, Francisca Cuevas, Kelly Torres, Elizabeth Elgueta, Irene Martínez and Dariela Núñez
Fermentation 2025, 11(8), 441; https://doi.org/10.3390/fermentation11080441 - 31 Jul 2025
Viewed by 317
Abstract
Bacterial nanocellulose (BNC) is a highly pure biopolymer with promising applications in the biomedical, food, and textile industries. However, the high production costs and low yields obtained in static conditions limit its scalability and industrial applications. This study addresses the sustainable production of [...] Read more.
Bacterial nanocellulose (BNC) is a highly pure biopolymer with promising applications in the biomedical, food, and textile industries. However, the high production costs and low yields obtained in static conditions limit its scalability and industrial applications. This study addresses the sustainable production of BNC using a rotary disk bioreactor (RDB) and explores the use of grape pomace extract as an alternative carbon source for BNC production. Parameters such as the BNC production and biomass yield were evaluated using Komagataeibacter xylinus ATCC 53524 under different operational conditions (disk surface, rotation speed, and number of disks). The results showed that cellulose production increased using silicone-coated disks at 7–9 rpm (up to 2.72 g L−1), while higher yields (5.23 g L−1) were achieved when using grape pomace extract as the culture medium in comparison with conventional HS medium. FTIR and TGA characterizations confirmed that BNC obtained with grape pomace extract presents the same thermal and chemical characteristics than BNC produced with HS medium. This work provides insight into the feasibility of upscaling BNC production using a bioprocessing strategy, combining production in the RDB system and the use of an agro-industrial waste as a sustainable and cost-effective alternative. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 292
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

19 pages, 30713 KiB  
Article
Modeling Biomass Conversion in Raceway Zone of Blast Furnace Using Resolved Lagrangian Particle Model
by Matthias Kiss, Christine Gruber, Michael Harasek and Markus Bösenhofer
Energies 2025, 18(15), 4038; https://doi.org/10.3390/en18154038 - 29 Jul 2025
Viewed by 156
Abstract
This study numerically investigates the suitability of biomass particles of varying diameters as alternative reducing agents in the blast furnace raceway zone, where harsh conditions can create internal gradients affecting conversion. An internally resolved 1D Lagrangian particle model, fully integrated into the open-source [...] Read more.
This study numerically investigates the suitability of biomass particles of varying diameters as alternative reducing agents in the blast furnace raceway zone, where harsh conditions can create internal gradients affecting conversion. An internally resolved 1D Lagrangian particle model, fully integrated into the open-source CFD toolbox OpenFOAM®, is used to model temperature and species gradients within thermally thick particles. The particle model is coupled with the surrounding Eulerian phase and includes drying, pyrolysis, oxidation, and gasification submodels. Results show that only biomass particles smaller than 250 μm fully convert in the raceway, while larger particles carry unconverted material beyond, potentially reducing blast furnace efficiency. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

Back to TopTop