Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,850)

Search Parameters:
Keywords = biomarker(s)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1471 KiB  
Article
RANKL/OPG Axis and Bone Mineral Density in Pediatric Inflammatory Bowel Disease
by Mariusz Olczyk, Agnieszka Frankowska, Marcin Tkaczyk, Anna Socha-Banasiak, Renata Stawerska, Anna Łupińska, Zuzanna Gaj, Ewa Głowacka and Elżbieta Czkwianianc
J. Clin. Med. 2025, 14(15), 5440; https://doi.org/10.3390/jcm14155440 (registering DOI) - 1 Aug 2025
Abstract
Background: Inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis (UC), may impair bone metabolism, particularly in children. The RANKL/OPG axis, as a key regulator of bone turnover, may contribute to these disturbances. However, data in the pediatric population [...] Read more.
Background: Inflammatory bowel diseases (IBD), such as Crohn’s disease (CD) and ulcerative colitis (UC), may impair bone metabolism, particularly in children. The RANKL/OPG axis, as a key regulator of bone turnover, may contribute to these disturbances. However, data in the pediatric population remain limited. Methods: A single-center, prospective observational study included 100 children aged 4–18 years, with a comparable number of girls and boys. Among them, 72 had IBD (27 CD, 45 UC) and 28 were healthy controls. Anthropometric, biochemical, and densitometric assessments were performed, including serum levels of RANKL and OPG, and markers of inflammation and bone turnover. Results: Children with CD had significantly lower height and weight percentiles compared to UC and controls. Serum RANKL and the RANKL/OPG ratio were significantly elevated in IBD patients, particularly in CD (p < 0.01). Total body BMD Z-scores were lower in IBD compared to controls (p = 0.03). Low BMD was found in 14.7% of UC and 26.3% of CD patients. In both groups, over 30% had values in the “gray zone” (−1.0 to −2.0). A positive correlation was observed between height and weight and bone density (p < 0.01). Higher OPG was associated with lower body weight (p < 0.001), while increased RANKL correlated with osteocalcin (p = 0.03). Patients receiving biological therapy had significantly lower BMD. Conclusions: Pediatric IBD is associated with significant alterations in the RANKL/OPG axis and reduced bone density. These findings support early screening and suggest RANKL/OPG as a potential biomarker of skeletal health. Full article
37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 (registering DOI) - 1 Aug 2025
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

28 pages, 820 KiB  
Systematic Review
The Effects of Nutritional Education and School-Based Exercise Intervention Programs on Preschool and Primary School Children’s Cardiometabolic Biomarkers: A Systematic Review of Randomized Controlled Trials
by Markel Rico-González, Daniel González-Devesa, Carlos D. Gómez-Carmona and Adrián Moreno-Villanueva
Appl. Sci. 2025, 15(15), 8564; https://doi.org/10.3390/app15158564 (registering DOI) - 1 Aug 2025
Abstract
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines [...] Read more.
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD420251085194). Five databases were systematically searched through June 2025. Twelve randomized controlled trials involving 18,231 children were included and assessed using the PEDro scale. Ten trials demonstrated significant improvements in at least one cardiometabolic biomarker. Blood pressure (8 studies) outcomes showed systolic reductions of 1.41–6.0 mmHg in six studies. Glucose metabolism (5 studies) improved in two studies with reductions of 0.20–0.22 mmol/L. Lipid profiles (7 studies) improved in three studies, including total cholesterol (−0.32 mmol/L). Insulin levels (5 studies) decreased significantly in two investigations. Anthropometric improvements included BMI and body fat. Physical activity increased by >45 min/week and dietary habits improved significantly. Programs with daily implementation (90-min sessions 4x/week), longer duration (≥12 months), family involvement (parent education), and curriculum integration (classroom lessons) showed superior effectiveness. Interventions targeting children with overweight/obesity demonstrated higher changes compared to the general population. However, methodological limitations included a lack of assessor blinding, absence of subject/therapist blinding, and inadequate retention rates. School-based interventions combining nutrition and physical activity can produce significant improvements in cardiometabolic biomarkers, supporting comprehensive, sustained multicomponent programs for early chronic disease prevention. Full article
(This article belongs to the Special Issue Research of Sports Medicine and Health Care: Second Edition)
Show Figures

Figure 1

21 pages, 360 KiB  
Review
Prognostic Models in Heart Failure: Hope or Hype?
by Spyridon Skoularigkis, Christos Kourek, Andrew Xanthopoulos, Alexandros Briasoulis, Vasiliki Androutsopoulou, Dimitrios Magouliotis, Thanos Athanasiou and John Skoularigis
J. Pers. Med. 2025, 15(8), 345; https://doi.org/10.3390/jpm15080345 (registering DOI) - 1 Aug 2025
Abstract
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more [...] Read more.
Heart failure (HF) poses a substantial global burden due to its high morbidity, mortality, and healthcare costs. Accurate prognostication is crucial for optimizing treatment, resource allocation, and patient counseling. Prognostic tools range from simple clinical scores such as ADHERE and MAGGIC to more complex models incorporating biomarkers (e.g., NT-proBNP, sST2), imaging, and artificial intelligence techniques. In acute HF, models like EHMRG and STRATIFY aid early triage, while in chronic HF, tools like SHFM and BCN Bio-HF support long-term management decisions. Despite their utility, most models are limited by poor generalizability, reliance on static inputs, lack of integration into electronic health records, and underuse in clinical practice. Novel approaches involving machine learning, multi-omics profiling, and remote monitoring hold promise for dynamic and individualized risk assessment. However, these innovations face challenges regarding interpretability, validation, and ethical implementation. For prognostic models to transition from theoretical promise to practical impact, they must be continuously updated, externally validated, and seamlessly embedded into clinical workflows. This review emphasizes the potential of prognostic models to transform HF care but cautions against uncritical adoption without robust evidence and practical integration. In the evolving landscape of HF management, prognostic models represent a hopeful avenue, provided their limitations are acknowledged and addressed through interdisciplinary collaboration and patient-centered innovation. Full article
(This article belongs to the Special Issue Personalized Treatment for Heart Failure)
13 pages, 1192 KiB  
Article
Serum Endocan Levels Correlate with Metabolic Syndrome Severity and Endothelial Dysfunction: A Cross-Sectional Study Using the MetS-Z Score
by Mehmet Vatansever, Selçuk Yaman, Ahmet Cimbek, Yılmaz Sezgin and Serap Ozer Yaman
Metabolites 2025, 15(8), 521; https://doi.org/10.3390/metabo15080521 (registering DOI) - 1 Aug 2025
Abstract
Background: Metabolic syndrome (MetS) is a complex clinical condition characterized by the coexistence of interrelated metabolic abnormalities that significantly increase the risk of cardiovascular diseases and type 2 diabetes mellitus. Endocan—an endothelial cell-specific molecule—is considered a biomarker of endothelial dysfunction and inflammation. This [...] Read more.
Background: Metabolic syndrome (MetS) is a complex clinical condition characterized by the coexistence of interrelated metabolic abnormalities that significantly increase the risk of cardiovascular diseases and type 2 diabetes mellitus. Endocan—an endothelial cell-specific molecule—is considered a biomarker of endothelial dysfunction and inflammation. This study aimed to evaluate the relationship between serum endocan levels and the severity of MetS, assessed using the MetS-Z score. Methods: This study included 120 patients with MetS and 50 healthy controls. MetS was diagnosed according to the NCEP-ATP III criteria. MetS-Z scores were calculated using the MetS Severity Calculator. Serum levels of endocan, sICAM-1, and sVCAM-1 were measured using the ELISA method. Results: Serum levels of endocan, sICAM-1, and sVCAM-1 were significantly higher in the MetS group compared to the control group (all p < 0.001). When the MetS group was divided into tertiles based on MetS-Z scores, stepwise and statistically significant increases were observed in the levels of endocan and other endothelial markers from the lowest to highest tertile (p < 0.0001). Correlation analysis revealed a strong positive association between the MetS-Z score and serum endocan levels (r = 0.584, p < 0.0001). ROC curve analysis showed that endocan has high diagnostic accuracy for identifying MetS (AUC = 0.967, p = 0.0001), with a cutoff value of >88.0 ng/L. Conclusions: Circulating levels of endocan were significantly increased in MetS and were associated with the severity of MetS, suggesting that endocan may play a role in the cellular response to endothelial dysfunction-related injury in patients with MetS. Full article
(This article belongs to the Special Issue Lipid Metabolism Disorders in Obesity)
Show Figures

Figure 1

15 pages, 504 KiB  
Article
Long-Term Impact of Neonatal Acute Kidney Injury on Renal Function in Children Born Preterm: A Follow-Up Study
by Tuğba Barsan Kaya, Özge Aydemir, Ozge Surmeli Onay, Evin Kocaturk, Çiğdem Öztunalı, Aslı Kavaz Tufan, Nuran Cetin, Özkan Alataş and Ayşe Neslihan Tekin
Children 2025, 12(8), 1018; https://doi.org/10.3390/children12081018 (registering DOI) - 1 Aug 2025
Abstract
Background and Objectives: The long-term renal and cardiovascular effects of neonatal acute kidney injury (AKI) in preterm infants remain unclear. This study investigated whether neonatal AKI leads to persistent subclinical kidney injury and blood pressure changes in school-aged children born preterm. Methods: In [...] Read more.
Background and Objectives: The long-term renal and cardiovascular effects of neonatal acute kidney injury (AKI) in preterm infants remain unclear. This study investigated whether neonatal AKI leads to persistent subclinical kidney injury and blood pressure changes in school-aged children born preterm. Methods: In this prospective cohort, preterm-born children (≤35 weeks’ gestation) with (n = 19) and without (n = 38) neonatal AKI were evaluated at 7–12 years. A term-born control group (n = 44) was included for biomarker comparison. Assessments included perinatal data, anthropometry, office and ambulatory blood pressure monitoring (ABPM), and renal ultrasonography. Kidney function was evaluated using serum creatinine (sCr), cystatin C, and estimated glomerular filtration rate (eGFR). Tubular injury was assessed using urinary kidney injury molecule-1/Cr (KIM-1/Cr), neutrophil gelatinase-associated lipocalin/Cr (NGAL/Cr), and trefoil factor 3/Cr (TFF3/Cr) ratios, as well as serum TFF3. Results: Conventional kidney function markers were similar among groups. However, the AKI group had higher serum cystatin C, lower cystatin C–based eGFR, and elevated urinary KIM-1/Cr and NGAL/Cr compared to no-AKI and term controls. Serum TFF3 was also higher in the AKI group. ABPM revealed higher nocturnal systolic blood pressure and blood pressure load in the AKI group. Kidney size did not differ between preterm subgroups. Conclusions: Neonatal AKI in preterm infants is associated with subtle alterations and potential renal stress or injury at school age, detectable only with sensitive biomarkers and ABPM. Further prospective studies are needed to validate these biomarkers and determine their role in predicting long-term outcomes in preterm infants with neonatal AKI. Full article
(This article belongs to the Section Pediatric Nephrology & Urology)
Show Figures

Figure 1

24 pages, 2572 KiB  
Article
Hair Levels of Lead, Cadmium, Selenium, and Their Associations with Neurotoxicity and Hematological Biomarkers in Children from the Mojana Region, Colombia
by Jenny Palomares-Bolaños, Jesus Olivero-Verbel and Karina Caballero-Gallardo
Molecules 2025, 30(15), 3227; https://doi.org/10.3390/molecules30153227 (registering DOI) - 1 Aug 2025
Abstract
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing [...] Read more.
Heavy metals are a major toxicological concern due to their adverse effects on human health, particularly in children exposed to contaminated areas. This study evaluated biomarkers of exposure in 253 children aged 6 to 12 from Magangue, Achi, and Arjona (Bolivar, Colombia), analyzing their relationship with neurotoxicity and hematological markers. The mean Pb concentrations at the study sites were 1.98 µg/g (Magangue) > 1.51 µg/g (Achi) > 1.24 µg/g (Arjona). A similar pattern was observed for Cd concentrations for Magangue (0.39 µg/g) > Achi (0.36 µg/g) > Arjona (0.14 µg/g). In contrast, Se concentrations followed a different trend for Arjona (0.29 µg/g) > Magangue (0.21 µg/g) > Achi (0.16 µg/g). The proportion of Se/Pb molar ratios > 1 was higher in Arjona (3.8%) than in Magangue (0.9%) and Achi (2.0%). For Se/Cd ratios, values > 1 were also more frequent in Arjona (70.7%), exceeding 20% in the other two locations. Significant differences were found among locations in red and white blood cell parameters and platelet indices. Neurotransmitter-related biomarkers, including serotonin, monoamine oxidase A (MAO-A), and acetylcholinesterase levels, also varied by location. Principal component analysis showed that Pb and Cd had high loadings on the same component as PLT, WBC, and RDW, and while Se loaded together with HGB, PDW, MCHC, MCH, and MCV, suggesting distinct hematological patterns associated with each element. Multiple linear regression analysis demonstrated a statistically significant inverse association between hair Pb levels and serotonin concentrations. Although MAO-A and Cd showed negative β coefficients, these associations were not statistically significant after adjustment. These findings highlight the potential impact of toxic element exposure on key hematological and neurochemical parameters in children, suggesting early biological alterations that may compromise health and neurodevelopment. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 1399 KiB  
Article
GSTM5 as a Potential Biomarker for Treatment Resistance in Prostate Cancer
by Patricia Porras-Quesada, Lucía Chica-Redecillas, Beatriz Álvarez-González, Francisco Gutiérrez-Tejero, Miguel Arrabal-Martín, Rosa Rios-Pelegrina, Luis Javier Martínez-González, María Jesús Álvarez-Cubero and Fernando Vázquez-Alonso
Biomedicines 2025, 13(8), 1872; https://doi.org/10.3390/biomedicines13081872 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Androgen deprivation therapy (ADT) is widely used to manage prostate cancer (PC), but the emergence of treatment resistance remains a major clinical challenge. Although the GST family has been implicated in drug resistance, the specific role of GSTM5 remains poorly understood. [...] Read more.
Background/Objectives: Androgen deprivation therapy (ADT) is widely used to manage prostate cancer (PC), but the emergence of treatment resistance remains a major clinical challenge. Although the GST family has been implicated in drug resistance, the specific role of GSTM5 remains poorly understood. This study investigates whether GSTM5, alone or in combination with clinical variables, can improve patient stratification based on the risk of early treatment resistance. Methods: In silico analyses were performed to examine GSTM5’s role in protein interactions, molecular pathways, and gene expression. The rs3768490 polymorphism was genotyped in 354 patients with PC, classified by ADT response. Descriptive analysis and logistic regression models were applied to evaluate associations between genotype, clinical variables, and ADT response. GSTM5 expression related to the rs3768490 genotype and ADT response was also analyzed in 129 prostate tissue samples. Results: The T/T genotype of rs3768490 was significantly associated with a lower likelihood of early ADT resistance in both individual (p = 0.0359, Odd Ratios (OR) = 0.18) and recessive models (p = 0.0491, OR = 0.21). High-risk classification according to D’Amico was strongly associated with early progression (p < 0.0004; OR > 5.4). Combining genotype and clinical risk improved predictive performance, highlighting their complementary value in stratifying patients by treatment response. Additionally, GSTM5 expression was slightly higher in T/T carriers, suggesting a potential protective role against ADT resistance. Conclusions: The T/T genotype of rs3768490 may protect against ADT resistance by modulating GSTM5 expression in PC. These preliminary findings highlight the potential of integrating genetic biomarkers into clinical models for personalized treatment strategies, although further studies are needed to validate these observations. Full article
(This article belongs to the Special Issue Molecular Biomarkers of Tumors: Advancing Genetic Studies)
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

20 pages, 1886 KiB  
Article
Elevated IGFBP4 and Cognitive Impairment in a PTFE-Induced Mouse Model of Obstructive Sleep Apnea
by E. AlShawaf, N. Abukhalaf, Y. AlSanae, I. Al khairi, Abdullah T. AlSabagh, M. Alonaizi, A. Al Madhoun, A. Alterki, M. Abu-Farha, F. Al-Mulla and J. Abubaker
Int. J. Mol. Sci. 2025, 26(15), 7423; https://doi.org/10.3390/ijms26157423 (registering DOI) - 1 Aug 2025
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical observation of elevated IGFBP4 in OSA patients motivated the present investigation in a controlled animal model. Building on the previously reported protocol, OSA was induced in male C57BL/6 mice (9–12 weeks old) through intralingual injection of polytetrafluoroethylene (PTFE), producing tongue hypertrophy, intermittent airway obstruction, and hypoxemia. After 8–10 weeks, the study assessed (1) hypoxia biomarkers—including HIF-1α and VEGF expression—and (2) neurobehavioral outcomes in anxiety and cognition using the open-field and novel object recognition tests. PTFE-treated mice exhibited a significant increase in circulating IGFBP4 versus both baseline and control groups. Hepatic Igfbp4 mRNA was also upregulated. Behaviorally, PTFE mice displayed heightened anxiety-like behavior and impaired novel object recognition, paralleling cognitive deficits reported in human OSA. These findings validate the PTFE-induced model as a tool for studying OSA-related hypoxia and neurocognitive dysfunction, and they underscore IGFBP4 as a promising biomarker and potential mediator of OSA’s systemic effects. Full article
(This article belongs to the Special Issue Sleep and Breathing: From Molecular Perspectives)
Show Figures

Figure 1

16 pages, 661 KiB  
Article
Comparative Evaluation of ARB Monotherapy and SGLT2/ACE Inhibitor Combination Therapy in the Renal Function of Diabetes Mellitus Patients: A Retrospective, Longitudinal Cohort Study
by Andrew W. Ngai, Aqsa Baig, Muhammad Zia, Karen Arca-Contreras, Nadeem Ul Haque, Veronica Livetsky, Marcelina Rokicki and Shiryn D. Sukhram
Int. J. Mol. Sci. 2025, 26(15), 7412; https://doi.org/10.3390/ijms26157412 (registering DOI) - 1 Aug 2025
Abstract
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for [...] Read more.
Diabetic nephropathy affects approximately 30–40% of individuals with diabetes mellitus (DM) and is a major contributor to end-stage renal disease (ESRD). While angiotensin II receptor blockers (ARBs) have long served as a standard treatment, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have recently gained attention for their renal and cardiovascular benefits. However, comparative real-world data on their long-term renal effectiveness remain limited. We conducted a retrospective, longitudinal study over a 2-year period to compare the impact of ARB monotherapy versus SGLT2i and angiotensin-converting enzyme inhibitor (ACEi) combination therapy on the progression of chronic kidney disease (CKD) in patients with DM. A total of 126 patients were included and grouped based on treatment regimen. Renal biomarkers were analyzed using t-tests and ANOVA (p < 0.01). Albuminuria was qualitatively classified via urinalysis as negative, level 1 (+1), level 2 (+2), or level 3 (+3). The ARB group demonstrated higher estimated glomerular filtration rate (eGFR) and lower serum creatinine (sCr) levels than the combination therapy group, with glycated hemoglobin (HbA1c), potassium (K+), and blood pressure remaining within normal limits in both cohorts. Albuminuria remained stable over time, with 60.8% of ARB users and 73.1% of combination therapy users exhibiting persistently or on-average negative results. Despite the expected additive benefits of SGLT2i/ACEi therapy, ARB monotherapy was associated with slightly more favorable renal function markers and a lower incidence of severe albuminuria. These findings suggest a need for further controlled studies to clarify the comparative long-term renal effects of these treatment regimens. Full article
Show Figures

Figure 1

16 pages, 1179 KiB  
Article
APOE Genotyping in Cognitive Disorders: Preliminary Observations from the Greek Population
by Athanasia Athanasaki, Ioanna Tsantzali, Christos Kroupis, Aikaterini Theodorou, Fotini Boufidou, Vasilios C. Constantinides, John S. Tzartos, Socrates J. Tzartos, Georgios Velonakis, Christina Zompola, Amalia Michalopoulou, Panagiotis G. Paraskevas, Anastasios Bonakis, Sotirios Giannopoulos, Paraskevi Moutsatsou, Georgios Tsivgoulis, Elisabeth Kapaki and George P. Paraskevas
Int. J. Mol. Sci. 2025, 26(15), 7410; https://doi.org/10.3390/ijms26157410 (registering DOI) - 1 Aug 2025
Abstract
Alzheimer’s disease (AD) is the most common cause of cognitive decline. Among the various susceptibility genes, the gene of apolipoprotein E (APOE) is probably the most important. It may be present in three allelic forms, termed ε2, ε3 and ε4, and [...] Read more.
Alzheimer’s disease (AD) is the most common cause of cognitive decline. Among the various susceptibility genes, the gene of apolipoprotein E (APOE) is probably the most important. It may be present in three allelic forms, termed ε2, ε3 and ε4, and the most common genotype is the ε3/ε3. Recently, it has been observed that subjects with the ε4/ε4 genotype may show near-full penetrance of AD biology (pathology and biomarkers), leading to the suggestion that ε4 homozygosity may represent a distinct genetic type of AD. The aim of the present study was to investigate the role of ε4 homozygosity or heterozygosity in the presence or absence of the AD biomarker profile in patients with cognitive disorders in the Greek population. A total of 274 patients were included in the study. They underwent APOE genotyping and cerebrospinal fluid (CSF) biomarker profiling. The presence of ε4 was associated with a lower age of symptom onset and decreased amyloid biomarkers (irrespective to AD or non-AD profiles), and predicted the presence of an AD profile by a positive predictive value approaching 100%. In conclusion, the ε4 allele has a significant effect on the risk and clinical parameters of cognitive impairment and AD in the Greek population, while the ε4/ε4 genotype may be highly indicative of the (co)existence of AD in cognitively impaired patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

13 pages, 935 KiB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 (registering DOI) - 31 Jul 2025
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

29 pages, 3958 KiB  
Article
Impact of Manganese on Neuronal Function: An Exploratory Multi-Omics Study on Ferroalloy Workers in Brescia, Italy
by Somaiyeh Azmoun, Freeman C. Lewis, Daniel Shoieb, Yan Jin, Elena Colicino, Isha Mhatre-Winters, Haiwei Gu, Hari Krishnamurthy, Jason R. Richardson, Donatella Placidi, Luca Lambertini and Roberto G. Lucchini
Brain Sci. 2025, 15(8), 829; https://doi.org/10.3390/brainsci15080829 (registering DOI) - 31 Jul 2025
Abstract
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on [...] Read more.
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on cognitive function through β-amyloid (Aβ) deposition and multi-omics profiling. We evaluated six male Mn-exposed workers (median age 63, exposure duration 31 years) and five historical controls (median age: 60 years), all of whom had undergone brain PET scans. Exposed individuals showed significantly higher Aβ deposition in exposed individuals (p < 0.05). The average annual cumulative respirable Mn was 329.23 ± 516.39 µg/m3 (geometric mean 118.59), and plasma Mn levels were significantly elevated in the exposed group (0.704 ± 0.2 ng/mL) compared to controls (0.397 ± 0.18 in controls). Results: LC-MS/MS-based pathway analyses revealed disruptions in olfactory signaling, mitochondrial fatty acid β-oxidation, biogenic amine synthesis, transmembrane transport, and choline metabolism. Simoa analysis showed notable alterations in ADRD-related plasma biomarkers. Protein microarray revealed significant differences (p < 0.05) in antibodies targeting neuronal and autoimmune proteins, including Aβ (25–35), GFAP, serotonin, NOVA1, and Siglec-1/CD169. Conclusion: These findings suggest Mn exposure is associated with neurodegenerative biomarker alterations and disrupted biological pathways relevant to cognitive decline. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor–Cognitive Interactions—2nd Edition)
Show Figures

Figure 1

20 pages, 573 KiB  
Article
Dietary Habits and Obesity in Middle-Aged and Elderly Europeans—The Survey of Health, Ageing, and Retirement in Europe (SHARE)
by Manuela Maltarić, Jasenka Gajdoš Kljusurić, Mirela Kolak, Šime Smolić, Branko Kolarić and Darija Vranešić Bender
Nutrients 2025, 17(15), 2525; https://doi.org/10.3390/nu17152525 - 31 Jul 2025
Abstract
Background/Objectives: Understanding the impact of dietary habits in terms of obesity, health outcomes, and functional decline is critical in Europe’s growing elderly population. This study analyzed trends in Mediterranean diet (MD) adherence, obesity prevalence, and grip strength among middle-aged and elderly Europeans [...] Read more.
Background/Objectives: Understanding the impact of dietary habits in terms of obesity, health outcomes, and functional decline is critical in Europe’s growing elderly population. This study analyzed trends in Mediterranean diet (MD) adherence, obesity prevalence, and grip strength among middle-aged and elderly Europeans using data from the Survey of Health, Ageing and Retirement in Europe (SHARE). Methods: Data from four SHARE waves (2015–2022) across 28 countries were analyzed. Dietary patterns were assessed through food frequency questionnaires classifying participants as MD-adherent or non-adherent where adherent implies daily consumption of fruits and vegetables and occasional (3–6 times/week) intake of eggs, beans, legumes, meat, fish, or poultry (an unvalidated definition of the MD pattern). Handgrip strength, a biomarker of functional capacity, was categorized into low, medium, and high groups. Body mass index (BMI), self-perceived health (SPHUS), chronic disease prevalence, and CASP-12 scores (control, autonomy, self-realization, and pleasure evaluated on the 12-item version) were also evaluated. Statistical analyses included descriptive methods, logistic regressions, and multiple imputations to address missing data. Results: A significant majority (74–77%) consumed fruits and vegetables daily, which is consistent with MD principles; however, the high daily intake of dairy products (>50%) indicates limited adherence to the MD, which advocates for moderate consumption of dairy products. Logistic regression indicated that individuals with two or more chronic diseases were more likely to follow the MD (odds ratio [OR] = 1.21, confidence interval [CI] = 1.11–1.32), as were those individuals who rated their SPHUS as very good/excellent ([OR] = 1.42, [CI] = 1.20–1.69). Medium and high maximal handgrip were also strongly and consistently associated with higher odds of MD adherence (Medium: [OR] = 1.44, [CI] = 1.18–1.74; High: [OR] = 1.27, [CI] = 1.10–1.48). Conclusions: The findings suggest that middle-aged and older adults are more likely to adhere to the MD dietary pattern if they have more than two chronic diseases, are physically active, and have a medium or high handgrip. Although an unvalidated definition of the MD dietary pattern was used, the results highlight the importance of implementing targeted dietary strategies for middle-aged and elderly adults. Full article
(This article belongs to the Special Issue Food Insecurity, Nutritional Status, and Human Health)
Show Figures

Figure 1

Back to TopTop