Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = biological underpinnings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 435 KiB  
Review
Molecular and Glycosylation Pathways in Osteosarcoma: Tumor Microenvironment and Emerging Strategies Toward Personalized Oncology
by Georgian Longin Iacobescu, Antonio-Daniel Corlatescu, Horia Petre Costin, Razvan Spiridonica, Mihnea-Ioan-Gabriel Popa and Catalin Cirstoiu
Curr. Issues Mol. Biol. 2025, 47(8), 629; https://doi.org/10.3390/cimb47080629 - 7 Aug 2025
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical [...] Read more.
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical and chemotherapeutic approaches, the presence of metastatic or recurrent disease is still detrimental to the patient’s outcome. Major advances in understanding the molecular mechanisms of OS are needed to substantially improve outcomes for patients being treated for OS. This review integrates new data on the molecular biology, pathophysiology, and immune landscape of OS, as well as introducing salient areas of tumorigenesis underpinning these findings, such as chromothripsis; kataegis; cancer stem cell dynamics; and updated genetic, epigenetic, and glycosylation modifiers. In addition, we review promising biomarkers, diagnostic platforms, and treatments, including immunotherapy, targeted small molecule inhibitors, and nanomedicine. Using genomic techniques, we have defined OS for its significant genomic instability due to TP53 and RB1 mutations, chromosomal rearrangements, and aberrant glycosylation. The TME is also characterized as immunosuppressive and populated by tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, ultimately inhibiting immune checkpoint inhibitors. Emerging fields such as glycomics and epigenetics, as well as stem cell biology, have defined promising biomarkers and targets. Preclinical studies have identified that glycan-directed CAR therapies could be possible, as well as metabolic inhibitors and 3D tumor models, which presented some preclinical success and could allow for tumoral specificity and enhanced efficacy. OS is a biologically and clinically complex disease; however, advances in exploring the molecular and immunologic landscape of OS present new opportunities in biomarkers and the development of new treatment options with adjunctive care. Successful treatments in the future will require personalized, multi-targeted approaches to account for tumor heterogeneity and immune evasion. This will help us turn the corner in providing improved outcomes for patients with this resilient malignancy. Full article
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

10 pages, 220 KiB  
Perspective
Reframing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Biological Basis of Disease and Recommendations for Supporting Patients
by Priya Agarwal and Kenneth J. Friedman
Healthcare 2025, 13(15), 1917; https://doi.org/10.3390/healthcare13151917 - 5 Aug 2025
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a worldwide challenge. There are an estimated 17–24 million patients worldwide, with an estimated 60 percent or more who have not been diagnosed. Without a known cure, no specific curative medication, disability lasting years to being life-long, [...] Read more.
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a worldwide challenge. There are an estimated 17–24 million patients worldwide, with an estimated 60 percent or more who have not been diagnosed. Without a known cure, no specific curative medication, disability lasting years to being life-long, and disagreement among healthcare providers as to how to most appropriately treat these patients, ME/CFS patients are in need of assistance. Appropriate healthcare provider education would increase the percentage of patients diagnosed and treated; however, in-school healthcare provider education is limited. To address the latter issue, the New Jersey Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Association (NJME/CFSA) has developed an independent, incentive-driven, learning program for students of the health professions. NJME/CFSA offers a yearly scholarship program in which applicants write a scholarly paper on an ME/CFS-related topic. The efficacy of the program is demonstrated by the 2024–2025 first place scholarship winner’s essay, which addresses the biological basis of ME/CFS and how the healthcare provider can improve the quality of life of ME/CFS patients. For the reader, the essay provides an update on what is known regarding the biological underpinnings of ME/CFS, as well as a medical student’s perspective as to how the clinician can provide care and support for ME/CFS patients. The original essay has been slightly modified to demonstrate that ME/CFS is a worldwide problem and for publication. Full article
9 pages, 220 KiB  
Communication
Characterisation of the Ovine KRTAP36-1 Gene in Chinese Tan Lambs and Its Impact on Selected Wool Traits
by Lingrong Bai, Huitong Zhou, Jinzhong Tao, Guo Yang and Jon G. H. Hickford
Animals 2025, 15(15), 2265; https://doi.org/10.3390/ani15152265 - 1 Aug 2025
Viewed by 155
Abstract
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that [...] Read more.
Wool has distinctive biological, physical, and chemical properties that contribute to its value both for the sheep and in global fibre and textile markets. Its fibres are primarily composed of proteins, principally keratin and keratin-associated proteins (KAPs). To better comprehend the genes that underpin key wool traits, this study examined the keratin-associated protein 36-1 gene (KRTAP36-1) in Chinese Tan lambs. We identified three previously reported alleles of the gene (named A, B and C) that were present in the lambs studied, with genotype frequencies as follows: 2.0% (n = 5; AA), 6.9% (n = 17; AB), 13.8% (n = 34; AC), 8.9% (n = 22; BB), 33.4% (n = 82; BC) and 35.0% (n = 86; CC). The frequencies of the individual alleles in the Chinese Tan lambs were 12.4%, 29.1% and 58.5% for alleles A, B and C, respectively. The three alleles were in Hardy–Weinberg Equilibrium. In an association analysis, it was revealed that allele C was associated with variation in the mean fibre curvature of the fine wool of the Chinese Tan lambs, but this association was not observed in their heterotypic hair fibres. This finding suggests that KRTAP36-1 might be differentially expressed in the wool follicles that produce the two fibre types, and that along with other KRTAP genes, it may be involved in determining fibre curvature and the distinctive curly coat of the lambs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
20 pages, 3332 KiB  
Review
Nafion in Biomedicine and Healthcare
by Antonios Kelarakis
Polymers 2025, 17(15), 2054; https://doi.org/10.3390/polym17152054 - 28 Jul 2025
Viewed by 370
Abstract
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited [...] Read more.
Nafion has long been recognized as the gold standard for proton exchange membranes, due to its exceptional ion exchange capacity and its advanced performance in chemically aggressive environments. In recent years, a growing body of evidence has demonstrated that Nafion is equally well-suited in complex biological conditions owing to its structural robustness, responsive functionality and intrinsic biocompatibility. These characteristics have enabled its transition into the biomedical and healthcare sectors, where it is currently being explored for a diverse and expanding range of applications. To that end, Nafion has been systematically investigated as a key component in bioelectronic systems for energy harvest, sensors, wearable electronics, tissue engineering, lab-on-a-chip platforms, implants, controlled drug delivery systems and antimicrobial surface coatings. This review examines the distinctive structural and electrochemical characteristics that underpin Nafion’s performance in these biomedical contexts, provides an overview of recent advancements, emphasizes critical performance metrics and highlights the material’s growing potential to shape the future of biomedical technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 729
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

28 pages, 1210 KiB  
Review
Metformin Beyond Diabetes: A Precision Gerotherapeutic and Immunometabolic Adjuvant for Aging and Cancer
by Abdul Rehman, Shakta Mani Satyam, Mohamed El-Tanani, Sainath Prabhakar, Rashmi Kumari, Prakashchandra Shetty, Sara S. N. Mohammed, Zaina Nafees and Basma Alomar
Cancers 2025, 17(15), 2466; https://doi.org/10.3390/cancers17152466 - 25 Jul 2025
Viewed by 401
Abstract
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical [...] Read more.
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical data now demonstrate its ability to reduce cancer incidence, enhance immunotherapy outcomes, delay multimorbidity, and reverse biological age markers. Landmark trials such as UKPDS, CAMERA, and the ongoing TAME study illustrate its broad clinical impact on metabolic health, cardiovascular risk, and age-related disease trajectories. In oncology, trials such as MA.32 and METTEN evaluate its influence on progression-free survival and tumor response, highlighting its evolving role in cancer therapy. This review critically synthesizes the molecular underpinnings of metformin’s polypharmacology, examines results from pivotal clinical trials, and compares its effectiveness with emerging gerotherapeutics and senolytics. We explore future directions, including optimized dosing, biomarker-driven personalization, rational combination therapies, and regulatory pathways, to expand indications for aging and oncology. Metformin stands poised to play a pivotal role in precision strategies that target the shared roots of aging and cancer, offering scalable global benefits across health systems. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 1130
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 442
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

45 pages, 6622 KiB  
Review
Evolutionary Trajectories of Consciousness: From Biological Foundations to Technological Horizons
by Evgenii Gusev, Alexey Sarapultsev and Maria Komelkova
Brain Sci. 2025, 15(7), 734; https://doi.org/10.3390/brainsci15070734 - 9 Jul 2025
Viewed by 1076
Abstract
Consciousness remains one of the most critical yet least understood functions of the brain, not only in humans but also in certain highly organized animal species. In this review, we propose treating consciousness as an emergent, goal-directed informational system organized by the subjective [...] Read more.
Consciousness remains one of the most critical yet least understood functions of the brain, not only in humans but also in certain highly organized animal species. In this review, we propose treating consciousness as an emergent, goal-directed informational system organized by the subjective “self” as an active system-forming factor. We present an integrative theoretical–systems framework in which subjectivity functions as system-forming factor of consciousness (SFF) throughout biological evolution. Beginning with proto-conscious invertebrates, we trace progressive elaborations of working and long-term memory, the refinement of behavioral programs, and the emergence of an internal arbiter capable of resolving competing drives. In endothermic vertebrates, subjectivity acquires distinct functional features—sensory filtering, causal reasoning, and adaptive arbitration—underpinned by increasingly complex neural architectures. This evolutionary trajectory culminates in humans, where subjectivity attains its highest level of organization through culturally mediated networks. Although the framework does not assume any specific neural substrate, it provides a testable roadmap linking evolutionary biology, information theory, and quantitative modeling. By clarifying why consciousness arose and how subjectivity shapes complex networks, this perspective also lays the groundwork for exploring possible nonbiological extensions of subjectivity. Full article
(This article belongs to the Special Issue Understanding the Functioning of Brain Networks in Health and Disease)
Show Figures

Figure 1

29 pages, 647 KiB  
Review
Recent Advances in Optimization Methods for Machine Learning: A Systematic Review
by Xiaodong Liu, Huaizhou Qi, Suisui Jia, Yongjing Guo and Yang Liu
Mathematics 2025, 13(13), 2210; https://doi.org/10.3390/math13132210 - 7 Jul 2025
Viewed by 1184
Abstract
This systematic review explores modern optimization methods for machine learning, distinguishing between gradient-based techniques using derivative information and population-based approaches employing stochastic search. Key innovations focus on enhanced regularization, adaptive control mechanisms, and biologically inspired strategies to address challenges like scaling to large [...] Read more.
This systematic review explores modern optimization methods for machine learning, distinguishing between gradient-based techniques using derivative information and population-based approaches employing stochastic search. Key innovations focus on enhanced regularization, adaptive control mechanisms, and biologically inspired strategies to address challenges like scaling to large models, navigating complex non-convex landscapes, and adapting to dynamic constraints. These methods underpin core ML tasks including model training, hyperparameter tuning, and feature selection. While significant progress is evident, limitations in scalability and theoretical guarantees persist, directing future work toward more robust and adaptive frameworks to advance AI applications in areas like autonomous systems and scientific discovery. Full article
Show Figures

Figure 1

21 pages, 2655 KiB  
Article
Integrative Modeling of Urinary Metabolomics and Metal Exposure Reveals Systemic Impacts of Electronic Waste in Exposed Populations
by Fiona Hui, Zhiqiang Pang, Charles Viau, Gerd U. Balcke, Julius N. Fobil, Niladri Basu and Jianguo Xia
Metabolites 2025, 15(7), 456; https://doi.org/10.3390/metabo15070456 - 5 Jul 2025
Viewed by 694
Abstract
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this [...] Read more.
Background: Informal electronic waste (e-waste) recycling practices release a complex mixture of pollutants, particularly heavy metals, into the environment. Chronic exposure to these contaminants has been linked to a range of health risks, but the molecular underpinnings remain poorly understood. In this study, we investigated the alterations in metabolic profiles due to e-waste exposure and linked these metabolites to systemic biological effects. Methods: We applied untargeted high-resolution metabolomics using dual-column LC-MS/MS and a multi-step analysis workflow combining MS1 feature detection, MS2 annotation, and chemical ontology classification, to characterize urinary metabolic alterations in 91 e-waste workers and 51 community controls associated with the Agbogbloshie site (Accra, Ghana). The impacts of heavy metal exposure in e-waste workers were assessed by establishing linear regression and four-parameter logistic (4PL) models between heavy metal levels and metabolite concentrations. Results: Significant metal-associated metabolomic changes were identified. Both linear and nonlinear models revealed distinct sets of exposure-responsive compounds, highlighting diverse biological responses. Ontology-informed annotation revealed systemic effects on lipid metabolism, oxidative stress pathways, and xenobiotic biotransformation. This study demonstrates how integrating chemical ontology and nonlinear modeling facilitates exposome interpretation in complex environments and provides a scalable template for environmental biomarker discovery. Conclusions: Integrating dose–response modeling and chemical ontology analysis enables robust interpretation of exposomics datasets when direct compound identification is limited. Our findings indicate that e-waste exposure induces systemic metabolic alterations that can underlie health risks and diseases. Full article
(This article belongs to the Special Issue Method Development in Metabolomics and Exposomics)
Show Figures

Graphical abstract

26 pages, 6233 KiB  
Review
Colonic Aging and Colorectal Cancer: An Unignorable Interplay and Its Translational Implications
by Qiyan Yin, Fen Qin, Fangliu Gan, Guangxi Zhao, Ronghua Chen, Yue Wen, Xueyang Hua, Fugui Zeng, Yuezheng Zhang, Yuliang Xiao, Wenbing Xie and Yong Tao
Biology 2025, 14(7), 805; https://doi.org/10.3390/biology14070805 - 3 Jul 2025
Viewed by 552
Abstract
Colorectal cancer (CRC) incidence increases markedly with age, yet chronological age is an inadequate proxy for the complex biological processes involved. Colon aging, the intrinsic biological aging of the colonic tissue, is emerging as a crucial, active driver of CRC development. This review [...] Read more.
Colorectal cancer (CRC) incidence increases markedly with age, yet chronological age is an inadequate proxy for the complex biological processes involved. Colon aging, the intrinsic biological aging of the colonic tissue, is emerging as a crucial, active driver of CRC development. This review comprehensively analyzes the interplay between colon aging and CRC pathogenesis by examining fundamental hallmarks of aging—such as altered tissue homeostasis, epigenetic dysregulation, and microenvironmental shifts including chronic inflammation (inflammaging), gut microbiome dysbiosis, and extracellular matrix remodeling—manifest specifically within the aging colon to synergistically foster a pro-tumorigenic environment. Key findings synthesized from the literature highlight the critical roles of impaired colonic stem cell function, epithelial barrier disruption (“leaky gut”), persistent low-grade inflammation, and altered microbial communities and their metabolites in promoting CRC initiation and progression. Translating this mechanistic understanding holds significant promise: insights from colon aging research can inform novel biomarkers for improved early detection and risk stratification, guide the development of personalized preventative strategies and therapeutic interventions targeting aging pathways, and underpin public health initiatives focused on healthy colon aging. Ultimately, recognizing colon aging as a modifiable contributor to CRC offers a powerful avenue to potentially reduce CRC incidence and enhance patient outcomes, particularly in the vulnerable aging population. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

26 pages, 1044 KiB  
Review
Immunomodulatory Mechanisms Underlying Neurological Manifestations in Long COVID: Implications for Immune-Mediated Neurodegeneration
by Zaw Myo Hein, Thazin, Suresh Kumar, Muhammad Danial Che Ramli and Che Mohd Nasril Che Mohd Nassir
Int. J. Mol. Sci. 2025, 26(13), 6214; https://doi.org/10.3390/ijms26136214 - 27 Jun 2025
Viewed by 2169
Abstract
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. [...] Read more.
The COVID-19 pandemic has revealed the profound and lasting impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the nervous system. Beyond acute infection, SARS-CoV-2 acts as a potent immunomodulatory agent, disrupting immune homeostasis and contributing to persistent inflammation, autoimmunity, and neurodegeneration. Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), is characterized by a spectrum of neurological symptoms, including cognitive dysfunction, fatigue, neuropathy, and mood disturbances. These are linked to immune dysregulation involving cytokine imbalance, blood–brain barrier (BBB) disruption, glial activation, and T-cell exhaustion. Key biomarkers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NFL) correlate with disease severity and chronicity. This narrative review examines the immunopathological mechanisms underpinning the neurological sequelae of long COVID, focusing on neuroinflammation, endothelial dysfunction, and molecular mimicry. We also assess the role of viral variants in shaping neuroimmune outcomes and explore emerging diagnostic and therapeutic strategies, including biomarker-guided and immune-targeted interventions. By delineating how SARS-CoV-2 reshapes neuroimmune interactions, this review aims to support the development of precision-based diagnostics and targeted therapies for long COVID-related neurological dysfunction. Emerging approaches include immune-modulatory agents (e.g., anti-IL-6), neuroprotective drugs, and strategies for repurposing antiviral or anti-inflammatory compounds in neuro-COVID. Given the high prevalence of comorbidities, personalized therapies guided by biomarkers and patient-specific immune profiles may be essential. Advancements in vaccine technologies and targeted biologics may also hold promise for prevention and disease modification. Finally, continued interdisciplinary research is needed to clarify the complex virus–immune–brain axis in long COVID and inform effective clinical management. Full article
Show Figures

Figure 1

14 pages, 668 KiB  
Systematic Review
Advances in Genetic Risk Scores for Alzheimer’s Disease and Dementia: A Systematic Review
by Stefanos N. Sampatakakis, Niki Mourtzi, Alex Hatzimanolis and Nikolaos Scarmeas
Neurol. Int. 2025, 17(7), 99; https://doi.org/10.3390/neurolint17070099 - 26 Jun 2025
Viewed by 617
Abstract
Background: Research concerning the genetic risk for dementia has recently been headed towards new directions. Novel findings from genome-wide association studies have highlighted the association of Alzheimer’s disease incidence with many gene polymorphisms, apart from the Apolipoprotein-E genotype. The identification of additional genetic [...] Read more.
Background: Research concerning the genetic risk for dementia has recently been headed towards new directions. Novel findings from genome-wide association studies have highlighted the association of Alzheimer’s disease incidence with many gene polymorphisms, apart from the Apolipoprotein-E genotype. The identification of additional genetic risk factors has led to the construction of specific genetic risk scores for dementia, considering many different genetic factors and specific biological pathways related to Alzheimer’s disease. Methods: We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis method, summarizing existing data regarding genetic risk scores for Alzheimer’s disease and dementia, in order to improve the current understanding of the genetic underpinnings of dementia. In specific, five databases (PubMed/MEDLINE, Embase, Scopus, Web of science, and Cochrane Central) were searched using the keywords “genetic risk score”, “Alzheimer’s disease”, and “dementia” with specific inclusion and exclusion criteria. Results: From the 552 articles identified, we finally included 20 studies for the qualitative analysis. These reports were classified in three different categories of genetic scores: “polygenic risk scores (PRSs)” (including 11 studies), “pathway specific polygenic risk scores (p-PRSs)” (5 studies), and “complex genetic risk scores” (4 studies). Conclusions: Existing genetic risk scores have contributed to better dementia prediction and a better understanding of the underlying pathology. Novel approaches integrating multiple polygenic risk scores might ameliorate the accuracy of genetic risk scores. The combination of polygenic risk scores that are specific to related biological pathways or relevant biomarkers is of utmost importance to achieve a better predictive ability. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Graphical abstract

Back to TopTop