Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential
Abstract
1. Introduction
1.1. Mechanism of Action of BoNT/A
1.2. Mechanisms of Photobiomodulation in Neuromuscular Regeneration
2. Results
3. Discussion
Limitations and Future Directions
4. Conclusions
Funding
Conflicts of Interest
References
- Dolly, O. Synaptic transmission: Inhibition of neurotransmitter release by botulinum toxins. Headache J. Head Face Pain 2003, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kuffler, D.P. Photobiomodulation in promoting wound healing: A review. Regen. Med. 2016, 11, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 2004, 75, 951–957. [Google Scholar] [CrossRef]
- Stanley, E.F.; Drachman, D.B. Botulinum toxin blocks quantal but not non-quantal release of ACh at the neuromuscular junction. Brain Res. 1983, 261, 172–175. [Google Scholar] [CrossRef]
- Baskaran, P.; Thyagarajan, B. Acute and chronic effects of botulinum neurotoxin a on the mammalian neuromuscular junction. Muscle Nerve 2014, 50, 206–215. [Google Scholar] [CrossRef]
- Nigam, P.K.; Nigam, A. Botulinum toxin. Indian J. Dermatol. 2010, 55, 8–14. [Google Scholar] [CrossRef]
- Nestor, M.S.; Han, H.; Gade, A.; Fischer, D.; Saban, Y.; Polselli, R. Botulinum toxin–induced blepharoptosis: Anatomy, etiology, prevention, and therapeutic options. J. Cosmet. Dermatol. 2021, 20, 3133–3146. [Google Scholar] [CrossRef]
- Satriyasa, B.K. Botulinum toxin (Botox) A for reducing the appearance of facial wrinkles: A literature review of clinical use and pharmacological aspect. Clin. Cosmet. Investig. Dermatol. 2019, 12, 223–228. [Google Scholar] [CrossRef]
- Carruthers, A.; Carruthers, J. Botulinum toxin type A: History and current cosmetic use in the upper face. Semin. Cutan. Med. Surg. 2001, 20, 71–84. [Google Scholar] [CrossRef]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 2015, 33, 183. [Google Scholar] [CrossRef] [PubMed]
- Anders, J.J.; Moges, H.; Wu, X.; Erbele, I.D.; Alberico, S.L.; Saidu, E.K.; Pryor, B.A. In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg. Med. 2014, 46, 34–45. [Google Scholar] [CrossRef]
- Fekrazad, R.; Asefi, S.; Allahdadi, M.; Kalhori, K.A. Effect of photobiomodulation on mesenchymal stem cells. Photomed. Laser Surg. 2016, 34, 533–542. [Google Scholar] [CrossRef]
- Witmanowski, H.; Błochowiak, K. The whole truth about botulinum toxin–A review. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2020, 37, 853–861. [Google Scholar] [CrossRef]
- Hayworth, C.R.; Rojas, J.C.; Padilla, E.; Holmes, G.M.; Sheridan, E.C.; Gonzalez-Lima, F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem. Photobiol. 2010, 86, 673–680. [Google Scholar] [CrossRef]
- Rojas, J.C.; Gonzalez-Lima, F. Low-level light therapy of the eye and brain. Eye Brain 2011, 3, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.D.S.; Serra, F.T.; Coimbra, N.C.; Gonzalez-Lima, F.; Gomes da Silva, S. Transcranial photobiomodulation changes neuronal morphology in the cerebral cortex of rats. Neurosci. Lett. 2022, 781, 136681. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.D.S.; Mansur, F.C.B.; Lopes-Martins, R.Á.B.; Gonzalez-Lima, F.; Gomes da Silva, S. Transcranial laser photobiomodulation improves intracellular signaling linked to cell survival, memory and glucose metabolism in the aged brain: A preliminary study. Front. Cell. Neurosci. 2021, 15, 683127. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.D.S.; de Souza Oliveira Tavares, C.; Araujo, B.H.S.; Mansur, F.; Lopes-Martins, R.A.B.; Gomes da Silva, S. Improved spatial memory and neuroinflammatory profile changes in aged rats submitted to photobiomodulation therapy. Cell. Mol. Neurobiol. 2022, 42, 1875–1886. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef]
- Dolly, J.O.; Aoki, K.R. The structure and mode of action of different botulinum toxins. Eur. J. Neurol. 2006, 13, 1–9. [Google Scholar] [CrossRef]
- Caleo, M.; Restani, L. Exploiting botulinum neurotoxins for the study of brain physiology and pathology. Toxins 2018, 10, 175. [Google Scholar] [CrossRef]
- Wang, C.Z.; Chen, Y.J.; Wang, Y.H.; Yeh, M.L.; Huang, M.H.; Ho, M.L.; Chen, C.H. Low-level laser irradiation improves functional recovery and nerve regeneration in sciatic nerve crush rat injury model. PLoS ONE 2014, 9, e103348. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, F.; Farajdokht, F.; Cassano, P.; Sadigh-Eteghad, S.; Erfani, M.; Hamblin, M.R.; Mahmoudi, J. Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: Reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res. Bull. 2019, 144, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.; Agrawal, T.; Huang, L.; Gupta, G.K.; Hamblin, M.R. Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis. J. Biophotonics 2015, 8, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Frankowski, D.W.; Ferrucci, L.; Arany, P.R.; Bowers, D.; Eells, J.T.; Gonzalez-Lima, F.; Lakatta, E.G. Light buckets and laser beams: Mechanisms and applications of photobiomodulation (PBM) therapy. GeroScience 2025, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, L.F.; Hamblin, M.R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef]
- Cardoso, F.D.S.; Barrett, D.W.; Wade, Z.; Gomes da Silva, S.; Gonzalez-Lima, F. Photobiomodulation of cytochrome c oxidase by chronic transcranial laser in young and aged brains. Front. Neurosci. 2022, 16, 818005. [Google Scholar] [CrossRef]
- Meng, C.; He, Z.; Xing, D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease. J. Neurosci. 2013, 33, 13505–13517. [Google Scholar] [CrossRef]
- Wang, X.; Tian, F.; Soni, S.S.; Gonzalez-Lima, F.; Liu, H. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci. Rep. 2016, 6, 30540. [Google Scholar] [CrossRef]
- Oron, A.; Oron, U.; Chen, J.; Eilam, A.; Zhang, C.; Sadeh, M.; Chopp, M. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 2006, 37, 2620–2624. [Google Scholar] [CrossRef]
- Medrado, A.R.; Pugliese, L.S.; Reis, S.R.A.; Andrade, Z.A. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 2003, 32, 239–244. [Google Scholar] [CrossRef]
- Lopes-Martins, R.Á.B.; Marcos, R.L.; Leonardo, P.S.; Prianti, A.C., Jr.; Muscará, M.N.; Aimbire, F.; Bjordal, J.M. Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J. Appl. Physiol. 2006, 101, 283–288. [Google Scholar] [CrossRef]
- Chen, K.H.; Hong, C.Z.; Kuo, F.C.; Hsu, H.C.; Hsieh, Y.L. Electrophysiologic effects of a therapeutic laser on myofascial trigger spots of rabbit skeletal muscles. Am. J. Phys. Med. Rehabil. 2008, 87, 1006–1014. [Google Scholar] [CrossRef]
- Doin-Silva, R.; Baranauskas, V.; Rodrigues-Simioni, L.; Da Cruz-Höfling, M.A. The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochem. Photobiol. 2009, 85, 63–69. [Google Scholar] [CrossRef]
- Iyomasa, D.M.; Garavelo, I.; Iyomasa, M.M.; Watanabe, I.S.; Issa, J.P.M. Ultrastructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 2009, 40, 413–418. [Google Scholar] [CrossRef]
- Hexsel, D.M.; De Almeida, A.T.; Rutowitsch, M.; De Castro, I.A.; Silveira, V.L.B.; Gobatto, D.O.; Zechmeister, D. Multicenter, double-blind study of the efficacy of injections with botulinum toxin type A reconstituted up to six consecutive weeks before application. Dermatol. Surg. 2003, 29, 523–529. [Google Scholar]
- Stausholm, M.B.; Naterstad, I.F.; Joensen, J.; Lopes-Martins, R.Á.B.; Sæbø, H.; Lund, H.; Bjordal, J.M. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: Systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open 2019, 9, e031142. [Google Scholar] [CrossRef]
- Truong, D.D.; Gollomp, S.M.; Jankovic, J.; LeWitt, P.A.; Marx, M.; Hanschmann, A.; Xeomin US Blepharospasm Study Group. Sustained efficacy and safety of repeated incobotulinumtoxinA (Xeomin®) injections in blepharospasm. J. Neural Transm. 2013, 120, 1345–1353. [Google Scholar] [CrossRef]
- Truong, D.; Duane, D.D.; Jankovic, J.; Singer, C.; Seeberger, L.C.; Comella, C.L.; Sheean, G.L. Efficacy and safety of botulinum type A toxin (Dysport) in cervical dystonia: Results of the first US randomized, double-blind, placebo-controlled study. Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 783–791. [Google Scholar] [CrossRef]
- Anandan, C.; Jankovic, J. Botulinum toxin in movement disorders: An update. Toxins 2021, 13, 42. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Experimental Model | Main Findings |
---|---|---|---|
[16] | 2022 | Rat cortical neurons | PBM altered neuronal morphology in the cerebral cortex, increasing dendritic branching and complexity. |
[28] | 2022 | Young and aged rat brains | Chronic PBM increased CCO expression in young and aged brains, enhancing metabolic and neuroprotective activity. |
[18] | 2022 | Aged rats | PBM improved spatial memory and reduced neuroinflammation in aged rats, suggesting cognitive and immunomodulatory benefits. |
[17] | 2021 | Aged rat model | Improved intracellular signaling related to cell survival, memory, and glucose metabolism in aged brain after transcranial PBM. |
[30] | 2016 | Human forearm (in vivo) | PBM increased CCO and oxygenated hemoglobin concentrations in muscle. |
[25] | 2015 | Mouse traumatic brain injury model | PBM increased BDNF expression and synaptogenesis in a traumatic brain injury model in mice. |
[23] | 2014 | Rat sciatic nerve injury model | Low-level laser irradiation enhanced functional recovery and nerve regeneration in a sciatic nerve crush model in rats. |
[29] | 2013 | APP/PS1 Alzheimer’s mouse model | PBM reversed dendritic atrophy and increased BDNF in Alzheimer’s disease model, improving neuronal integrity. |
[14] | 2010 | Rat superficial temporalis muscle of the face | PBM caused a dose-dependent increase in histochemical CCO activity in muscle fibers. |
[35] | 2009 | Rat nerve-muscle model | PBM can effectively mitigate venom-induced myonecrosis and neuromuscular blockade. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes-Martins, R.Á.B.; Gonzalez-Lima, F.; Gomes da Silva, S.; Leonardo, P.S.; Soncino, C.; Pacheco, R.F.; Oliveira, C.L.d.O.e.; Cardoso, F.d.S. Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential. Life 2025, 15, 1206. https://doi.org/10.3390/life15081206
Lopes-Martins RÁB, Gonzalez-Lima F, Gomes da Silva S, Leonardo PS, Soncino C, Pacheco RF, Oliveira CLdOe, Cardoso FdS. Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential. Life. 2025; 15(8):1206. https://doi.org/10.3390/life15081206
Chicago/Turabian StyleLopes-Martins, Rodrigo Álvaro Brandão, Francisco Gonzalez-Lima, Sérgio Gomes da Silva, Patrícia Sardinha Leonardo, Cristiane Soncino, Roberto Fernandes Pacheco, Carolina Lúcia de Oliveira e Oliveira, and Fabrizio dos Santos Cardoso. 2025. "Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential" Life 15, no. 8: 1206. https://doi.org/10.3390/life15081206
APA StyleLopes-Martins, R. Á. B., Gonzalez-Lima, F., Gomes da Silva, S., Leonardo, P. S., Soncino, C., Pacheco, R. F., Oliveira, C. L. d. O. e., & Cardoso, F. d. S. (2025). Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential. Life, 15(8), 1206. https://doi.org/10.3390/life15081206