Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = biological bandage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 29254 KiB  
Article
Biochemical Evaluation and Structural Characteristics of Copper Coating Cellulose Nonwovens Prepared by Magnetron Sputtering Technology
by Małgorzata Świerczyńska, Zdzisława Mrozińska, Agnieszka Lisiak-Kucińska, Anetta Walawska and Marcin H. Kudzin
Coatings 2024, 14(7), 843; https://doi.org/10.3390/coatings14070843 - 5 Jul 2024
Cited by 2 | Viewed by 1289
Abstract
The research aimed to enhance the aqua-jet/spunlace cellulose nonwoven fabric by deposition of copper coating by magnetron sputtering technology. Plasma technology facilitated the efficient distribution of copper particles on the surface of the cellulose nonwoven fabric, while maintaining free airflow and eliminating the [...] Read more.
The research aimed to enhance the aqua-jet/spunlace cellulose nonwoven fabric by deposition of copper coating by magnetron sputtering technology. Plasma technology facilitated the efficient distribution of copper particles on the surface of the cellulose nonwoven fabric, while maintaining free airflow and eliminating the need for additional layers. New cellulose-copper composites exhibit potential in biomedical applications, while minimizing their impact on biological processes such as blood plasma coagulation. Consequently, they can be utilized in the production of dressings, bandages, and other medical products requiring effective protection against bacterial infections. The cellulose-copper composite material was subjected to the physiochemical and biological investigations. The physiochemical analysis included the elemental analysis of composites, their microscopic analysis and the surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of biochemical-hematological tests including the evaluation of the activated partial thromboplastin time and pro-thrombin time. Biodegradable materials based on cellulose nonwoven fabrics with the addition of copper offer a promising alternative to conventional materials. Their innovative properties, coupled with environmental friendliness and minimal impact on biological processes, offer vast application possibilities in healthcare and the production of hygiene products. Full article
(This article belongs to the Special Issue Advances in Functional Bio-Coatings)
Show Figures

Figure 1

12 pages, 1492 KiB  
Article
Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi
by David Alejandro Hernández-Marín, Rocio Castro-Rios, Abelardo Chávez-Montes, Sandra L. Castillo-Hernández, Joel Horacio Elizondo-Luevano, Martín Humberto Muñoz-Ortega and Eduardo Sánchez-García
Antibiotics 2024, 13(7), 622; https://doi.org/10.3390/antibiotics13070622 - 4 Jul 2024
Cited by 3 | Viewed by 1562
Abstract
This study focused on isolating, identifying, and evaluating the trypanocidal potential against the hemoflagellate protozoan Trypanosoma cruzi of compounds from Parthenium incanum (Mariola), a plant used in traditional Mexican medicine to treat stomach and liver disorders. P. incanum has a wide distribution in [...] Read more.
This study focused on isolating, identifying, and evaluating the trypanocidal potential against the hemoflagellate protozoan Trypanosoma cruzi of compounds from Parthenium incanum (Mariola), a plant used in traditional Mexican medicine to treat stomach and liver disorders. P. incanum has a wide distribution in Mexico. This study found that methanolic extracts of P. incanum, obtained by static maceration and successive reflux, had promising results. The fractions were compared using thin-layer chromatography (TLC) and those that showed similarities were mixed. A bioguided assay was performed with Staphylococcus aureus ATCC 25923, using agar diffusion and bioautography techniques to determine the preliminary biological activity. The fractions with antimicrobial activity were purified using a preparative thin-layer chromatography (PTLC) plate, obtaining the bioactive bandages that were subjected to a trypanocidal evaluation against the Ninoa strain of T. cruzi in its epimastigote stage. This revealed an IC50 of up to 45 ± 2.5 µg/mL, in contrast to the values obtained from the crude extracts of less than 100 µg/mL. The TLC, Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS) techniques were used to identify the compounds, demonstrating the presence of sesquiterpene lactones, parthenin, and coronopolin. We concluded that these compounds have the potential to inhibit T. cruzi growth. Full article
(This article belongs to the Special Issue Antiprotozoal Activity of Natural Products: 2nd Edition)
Show Figures

Figure 1

17 pages, 6221 KiB  
Article
Polycaprolactone Electrospun Nanofiber Membrane with Skin Graft Containing Collagen and Bandage Containing MgO Nanoparticles for Wound Healing Applications
by Sadegh Nikfarjam, Yaqeen Aldubaisi, Vivek Swami, Vinay Swami, Gang Xu, Melville B. Vaughan, Roman F. Wolf and Morshed Khandaker
Polymers 2023, 15(9), 2014; https://doi.org/10.3390/polym15092014 - 24 Apr 2023
Cited by 11 | Viewed by 3075
Abstract
The objective of this study was to create a nanofiber-based skin graft with an antimicrobial bandage that could accelerate the healing of an open wound while minimizing infection. To this end, we prepared a bi-layer construct where the top layer acts as bandage, [...] Read more.
The objective of this study was to create a nanofiber-based skin graft with an antimicrobial bandage that could accelerate the healing of an open wound while minimizing infection. To this end, we prepared a bi-layer construct where the top layer acts as bandage, and the bottom layer acts as a dermal equivalent graft. A collagen (CG) gel was combined without and with an electrospun polycaprolactone (PCL) membrane to prepare CG and CG-PCL dermal equivalent constructs. The antibacterial properties of PCL with and without an antibacterial agent (MgO nanoparticles) against Staphylococcus aureus (ATCC 6538) was also examined. Human dermal fibroblasts were cultured in each construct to make the dermal equivalent grafts. After culturing, keratinocytes were plated on top of the tissues to allow growth of an epidermis. Rheological and durability tests were conducted on in vitro dermal and skin equivalent cultures, and we found that PCL significantly affects CG-PCL graft biological and mechanical strength (rheology and durability). PCL presence in the dermal equivalent allowed sufficient tension generation to activate fibroblasts and myofibroblasts in the presence of transforming growth factor-beta. During culture of the skin equivalents, optical coherence tomography (OCT) showed layers corresponding to dermal and epidermal compartments in the presence or absence of PCL; this was confirmed after fixed specimens were histologically sectioned and stained. MgO added to PCL showed antibacterial activity against S. aureus. In vivo animal studies using a rat skin model showed that a polycaprolactone nanofiber bandage containing a type I collagen skin graft has potential for wound healing applications. Full article
(This article belongs to the Special Issue Protein-Based Biopolymers)
Show Figures

Figure 1

16 pages, 3217 KiB  
Communication
Polyacrylamide Hydrogel Containing Calendula Extract as a Wound Healing Bandage: In Vivo Test
by Lindalva Maria de Meneses Costa Ferreira, Elanne de Sousa Bandeira, Maurício Ferreira Gomes, Desireé Gyles Lynch, Gilmara Nazareth Tavares Bastos, José Otávio Carréra Silva-Júnior and Roseane Maria Ribeiro-Costa
Int. J. Mol. Sci. 2023, 24(4), 3806; https://doi.org/10.3390/ijms24043806 - 14 Feb 2023
Cited by 18 | Viewed by 4276
Abstract
Hydrogel is a biomaterial widely used in several areas of industry due to its great biocompatibility and adaptability to biological tissues. In Brazil, the Calendula plant is approved by the Ministry of Health as a medicinal herb. It was chosen to be incorporated [...] Read more.
Hydrogel is a biomaterial widely used in several areas of industry due to its great biocompatibility and adaptability to biological tissues. In Brazil, the Calendula plant is approved by the Ministry of Health as a medicinal herb. It was chosen to be incorporated in the hydrogel formulation because of its anti-inflammatory, antiseptic and healing effects. This study synthesized polyacrylamide hydrogel containing calendula extract and evaluated its efficiency as a bandage for wound healing. The hydrogels were prepared using free radical polymerization and characterized by Scanning Electron Microscopy, swelling analysis and mechanical properties by texturometer. The morphology of the matrices showed large pores and foliaceous structure. In vivo testing, as well as the evaluation of acute dermal toxicity, was conducted using male Wistar rats. The tests indicated efficient collagen fiber production, improved skin repair and no signs of dermal toxicity. Thus, the hydrogel presents compatible properties for the controlled release of calendula extract used as a bandage to promote cicatrization. Full article
Show Figures

Figure 1

27 pages, 5716 KiB  
Article
Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties
by Yogesh Dutt, Ramendra Pati Pandey, Mamta Dutt, Archana Gupta, Arpana Vibhuti, V. Samuel Raj, Chung-Ming Chang and Anjali Priyadarshini
Antibiotics 2023, 12(1), 121; https://doi.org/10.3390/antibiotics12010121 - 9 Jan 2023
Cited by 35 | Viewed by 6637
Abstract
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, [...] Read more.
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Figure 1

25 pages, 2885 KiB  
Article
Retrospectives on Three Decades of Safe Clinical Experience with Allogeneic Dermal Progenitor Fibroblasts: High Versatility in Topical Cytotherapeutic Care
by Alexis Laurent, Marina Rey, Corinne Scaletta, Philippe Abdel-Sayed, Murielle Michetti, Marjorie Flahaut, Wassim Raffoul, Anthony de Buys Roessingh, Nathalie Hirt-Burri and Lee Ann Applegate
Pharmaceutics 2023, 15(1), 184; https://doi.org/10.3390/pharmaceutics15010184 - 4 Jan 2023
Cited by 7 | Viewed by 1907
Abstract
Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate [...] Read more.
Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care. Full article
Show Figures

Figure 1

23 pages, 7398 KiB  
Article
The Comparative Performance of Phytochemicals, Green Synthesised Silver Nanoparticles, and Green Synthesised Copper Nanoparticles-Loaded Textiles to Avoid Nosocomial Infections
by Muhammad Farrukh Tahir, Muhammad Zaman Khan, Safira Attacha, Noreen Asim, Muhammad Tayyab, Azam Ali, Jiri Militky and Blanka Tomková
Nanomaterials 2022, 12(20), 3629; https://doi.org/10.3390/nano12203629 - 16 Oct 2022
Cited by 11 | Viewed by 2617
Abstract
In the current study, a sustainable approach was adopted for the green synthesis of silver nanoparticles, green synthesis of copper nanoparticles, and the investigation of the phytochemical and biological screening of bark, leaves, and fruits of Ehretia acuminata (belongs to the family Boraginaceae). [...] Read more.
In the current study, a sustainable approach was adopted for the green synthesis of silver nanoparticles, green synthesis of copper nanoparticles, and the investigation of the phytochemical and biological screening of bark, leaves, and fruits of Ehretia acuminata (belongs to the family Boraginaceae). Subsequently, the prepared nanoparticles and extracted phytochemicals were loaded on cotton fibres. Surface morphology, size, and the presence of antimicrobial agents (phytochemicals and particles) were analysed by scanning electron microscopy, dynamic light scattering, and energy-dispersive X-ray spectroscopy. The functional groups and the presence of particles (copper and silver) were found by FTIR and XRD analyses. The coated cotton fibres were further investigated for antibacterial (qualitative and quantitative), antiviral, and antifungal analysis. The study revealed that the herb-encapsulated nanoparticles can be used in numerous applications in the field of medical textiles. Furthermore, the utility of hygienic and pathogenic developed cotton bandages was analysed for the comfort properties regarding air permeability and water vapour permeability. Finally, the durability of the coating was confirmed by measuring the antibacterial properties after severe washing. Full article
(This article belongs to the Special Issue Functional Nanoparticles for Biomedical and Nanomedicine Application)
Show Figures

Figure 1

18 pages, 4676 KiB  
Article
Amelioration of Full-Thickness Wound Using Hesperidin Loaded Dendrimer-Based Hydrogel Bandages
by Praveen Gupta, Afsana Sheikh, Mohammed A. S. Abourehab and Prashant Kesharwani
Biosensors 2022, 12(7), 462; https://doi.org/10.3390/bios12070462 - 27 Jun 2022
Cited by 38 | Viewed by 4206
Abstract
Wound healing is a complex biological phenomenon, having different but overlapping stages to obtained complete re-epithelization. The aim of the current study was to develop a dendrimer-based hydrogel bandage, to ameliorate full-thickness wounds. Hesperidin, a bioflavonoid found in vegetables and citrus fruits, is [...] Read more.
Wound healing is a complex biological phenomenon, having different but overlapping stages to obtained complete re-epithelization. The aim of the current study was to develop a dendrimer-based hydrogel bandage, to ameliorate full-thickness wounds. Hesperidin, a bioflavonoid found in vegetables and citrus fruits, is used for treatment of wounds; however, its therapeutic use is limited, due to poor water solubility and poor bioavailability. This issue was overcome by incorporating hesperidin in the inner core of a dendrimer. Hence, a dendrimer-based hydrogel bandage was prepared, and the wound healing activity was determined. A hemolysis study indicated that the hesperidin-loaded dendrimer was biocompatible and can be used for wound healing. The therapeutic efficacy of the prepared formulation was evaluated on a full-thickness wound, using an animal model. H&E staining of the control group showed degenerated neutrophils and eosinophils, while 10% of the formulation showed wound closure, formation of the epidermal layer, and remodeling. The MT staining of the 10% formulation showed better collagen synthesis compared to the control group. In vivo results showed that the preparation had better wound contraction activity compared to the control group; after 14 days, the control group had 79 ± 1.41, while the 10% of formulation had 98.9 ± 0.42. In a nutshell, Hsp-P-Hyd 10% showed the best overall performance in amelioration of full-thickness wounds. Full article
(This article belongs to the Special Issue Advances in Nanomedicines for Disease Diagnosis and Therapeutics)
Show Figures

Figure 1

14 pages, 1148 KiB  
Review
Modern Dressings in Prevention and Therapy of Acute and Chronic Radiation Dermatitis—A Literature Review
by Konrad Zasadziński, Mateusz Jacek Spałek and Piotr Rutkowski
Pharmaceutics 2022, 14(6), 1204; https://doi.org/10.3390/pharmaceutics14061204 - 6 Jun 2022
Cited by 28 | Viewed by 7855
Abstract
Radiotherapy is an integral part of modern oncology, applied to more than half of all patients diagnosed with cancer. It can be used alone or in combination with surgery or chemotherapy. However, despite the high precision of radiation delivery, irradiation may affect surrounding [...] Read more.
Radiotherapy is an integral part of modern oncology, applied to more than half of all patients diagnosed with cancer. It can be used alone or in combination with surgery or chemotherapy. However, despite the high precision of radiation delivery, irradiation may affect surrounding healthy tissues leading to the development of toxicity. The most common and clinically significant toxicity of radiotherapy is acute and chronic radiation dermatitis, which could result in desquamation, wounds, nonhealing ulcers, and radionecrosis. Moreover, preoperative radiotherapy impairs wound healing after surgery and may lead to severe wound complications. In this review, we comprehensively discuss available types of dressings used in the management of acute and chronic radiation dermatitis and address their efficacy. The most effective ways of preventing acute radiation dermatitis are film dressings, whereas foam dressings were found effective in its treatment. Data regarding dressings in chronic radiation dermatitis are scarce. This manuscript also contains authors’ consensus. Full article
(This article belongs to the Special Issue Biomaterials in Skin Wound Healing and Tissue Regenerations Volume II)
Show Figures

Figure 1

34 pages, 10203 KiB  
Article
Optimized Manufacture of Lyophilized Dermal Fibroblasts for Next-Generation Off-the-Shelf Progenitor Biological Bandages in Topical Post-Burn Regenerative Medicine
by Alexis Laurent, Corinne Scaletta, Philippe Abdel-Sayed, Murielle Michetti, Marjorie Flahaut, Jeanne-Pascale Simon, Anthony de Buys Roessingh, Wassim Raffoul, Nathalie Hirt-Burri and Lee Ann Applegate
Biomedicines 2021, 9(8), 1072; https://doi.org/10.3390/biomedicines9081072 - 23 Aug 2021
Cited by 9 | Viewed by 3642
Abstract
Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential [...] Read more.
Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential for effective repair stimulation of wounded tissues. Major technical bottlenecks in cell therapy development comprise sustainability, stability, and logistics of biological material sources. Herein, we report stringently optimized and up-scaled processing (i.e., cell biobanking and stabilization by lyophilization) of dermal FPCs, with the objective of addressing potential cell source sustainability and stability issues with regard to active substance manufacturing in cutaneous regenerative medicine. Firstly, multi-tiered FPC banking was optimized in terms of overall quality and efficiency by benchmarking key reagents (e.g., medium supplement source, dissociation reagent), consumables (e.g., culture vessels), and technical specifications. Therein, fetal bovine serum batch identity and culture vessel surface were confirmed, among other parameters, to largely impact harvest cell yields. Secondly, FPC stabilization by lyophilization was undertaken and shown to maintain critical functions for devitalized cells in vitro, potentially enabling high logistical gains. Overall, this study provides the technical basis for the elaboration of next-generation off-the-shelf topical regenerative medicine therapeutic products for wound healing and post-burn care. Full article
(This article belongs to the Special Issue New Insights in Gene and Cell Therapy)
Show Figures

Figure 1

18 pages, 4012 KiB  
Article
Antimicrobial Peptide Dendrimers and Quorum-Sensing Inhibitors in Formulating Next-Generation Anti-Infection Cell Therapy Dressings for Burns
by Paris Jafari, Alexandre Luscher, Thissa Siriwardena, Murielle Michetti, Yok-Ai Que, Laurence G. Rahme, Jean-Louis Reymond, Wassim Raffoul, Christian Van Delden, Lee Ann Applegate and Thilo Köhler
Molecules 2021, 26(13), 3839; https://doi.org/10.3390/molecules26133839 - 24 Jun 2021
Cited by 6 | Viewed by 6278
Abstract
Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy [...] Read more.
Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy loss. In this article, we report the development of a new generation of cell therapy formulations with the capacity to resist infections through the bactericidal effect of antimicrobial peptide dendrimers and the anti-virulence effect of anti-quorum sensing MvfR (PqsR) system compounds, which are incorporated into their formulation. Anti-quorum sensing compounds limit the pathogenicity and antibiotic tolerance of pathogenic bacteria involved in the burn wound infections, by inhibiting their virulence pathways. For the first time, we report a biological cell therapy dressing incorporating live progenitor cells, antimicrobial peptide dendrimers, and anti-MvfR compounds, which exhibit bactericidal and anti-virulence properties without compromising the viability of the progenitor cells. Full article
(This article belongs to the Special Issue Dendrimers for Biomedical Applications)
Show Figures

Graphical abstract

28 pages, 3263 KiB  
Article
Retrospective Evaluation of Progenitor Biological Bandage Use: A Complementary and Safe Therapeutic Management Option for Prevention of Hypertrophic Scarring in Pediatric Burn Care
by Karim Al-Dourobi, Alexis Laurent, Lina Deghayli, Marjorie Flahaut, Philippe Abdel-Sayed, Corinne Scaletta, Murielle Michetti, Laurent Waselle, Jeanne-Pascale Simon, Oumama El Ezzi, Wassim Raffoul, Lee Ann Applegate, Nathalie Hirt-Burri and Anthony S de Buys Roessingh
Pharmaceuticals 2021, 14(3), 201; https://doi.org/10.3390/ph14030201 - 28 Feb 2021
Cited by 17 | Viewed by 3931
Abstract
Progenitor Biological Bandages (PBB) have been continuously applied clinically in the Lausanne Burn Center for over two decades. Vast translational experience and hindsight have been gathered, specifically for cutaneous healing promotion of donor-site grafts and second-degree pediatric burns. PBBs constitute combined Advanced Therapy [...] Read more.
Progenitor Biological Bandages (PBB) have been continuously applied clinically in the Lausanne Burn Center for over two decades. Vast translational experience and hindsight have been gathered, specifically for cutaneous healing promotion of donor-site grafts and second-degree pediatric burns. PBBs constitute combined Advanced Therapy Medicinal Products, containing viable cultured allogeneic fetal dermal progenitor fibroblasts. Such constructs may partly favor repair and regeneration of functional cutaneous tissues by releasing cytokines and growth factors, potentially negating the need for subsequent skin grafting, while reducing the formation of hypertrophic scar tissues. This retrospective case-control study (2010–2018) of pediatric second-degree burn patients comprehensively compared two initial wound treatment options (i.e., PBBs versus Aquacel® Ag, applied during ten to twelve days post-trauma). Results confirmed clinical safety of PBBs with regard to morbidity, mortality, and overall complications. No difference was detected between groups for length of hospitalization or initial relative burn surface decreasing rates. Nevertheless, a trend was observed in younger patients treated with PBBs, requiring fewer corrective interventions or subsequent skin grafting. Importantly, significant improvements were observed in the PBB group regarding hypertrophic scarring (i.e., reduced number of scar complications and related corrective interventions). Such results establish evidence of clinical benefits yielded by the Swiss fetal progenitor cell transplantation program and favor further implementation of specific cell therapies in highly specialized regenerative medicine. Full article
(This article belongs to the Special Issue Formulations for Wound Healing)
Show Figures

Figure 1

30 pages, 1471 KiB  
Review
Chitosan and Cellulose-Based Hydrogels for Wound Management
by Sibusiso Alven and Blessing Atim Aderibigbe
Int. J. Mol. Sci. 2020, 21(24), 9656; https://doi.org/10.3390/ijms21249656 - 18 Dec 2020
Cited by 264 | Viewed by 21078
Abstract
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels [...] Read more.
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers—chitosan and cellulose—for improved wound management. Full article
(This article belongs to the Special Issue Hydrogels in Regenerative Medicine and Other Biomedical Applications)
Show Figures

Graphical abstract

19 pages, 13369 KiB  
Article
Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida)
by Mario Schubert, Björn Binnewerg, Alona Voronkina, Lyubov Muzychka, Marcin Wysokowski, Iaroslav Petrenko, Valentine Kovalchuk, Mikhail Tsurkan, Rajko Martinovic, Nicole Bechmann, Viatcheslav N. Ivanenko, Andriy Fursov, Oleg B. Smolii, Jane Fromont, Yvonne Joseph, Stefan R. Bornstein, Marco Giovine, Dirk Erpenbeck, Kaomei Guan and Hermann Ehrlich
Int. J. Mol. Sci. 2019, 20(20), 5105; https://doi.org/10.3390/ijms20205105 - 15 Oct 2019
Cited by 46 | Viewed by 4858
Abstract
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we [...] Read more.
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics. Full article
(This article belongs to the Special Issue Marine Biomaterials: Discovery, Analysis and Application)
Show Figures

Figure 1

16 pages, 853 KiB  
Review
Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers
by Irene S. Kurtz and Jessica D. Schiffman
Materials 2018, 11(7), 1059; https://doi.org/10.3390/ma11071059 - 22 Jun 2018
Cited by 74 | Viewed by 7352
Abstract
From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, [...] Read more.
From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications. Full article
(This article belongs to the Special Issue Electrospun Materials 2018)
Show Figures

Graphical abstract

Back to TopTop