Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi
Abstract
:1. Introduction
2. Results
2.1. Extraction of Plant Material
2.2. Preliminary Phytochemical Screening of the Methanolic Extracts
2.3. Chromatographic Separation
2.4. Bioguided Assay
2.5. Analysis of Active Fractions
2.6. Identification of Compounds Present in the Active Fractions
2.7. Evaluation of the Trypanocidal Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. Phytochemical Screening
4.4. Chromatographic Separation
4.5. Bioguided Assay: Detection, Isolation, and Identification of Active Compounds
4.6. Preparative Thin-Layer Chromatography (PTLC)
4.7. Identification of Isolated Compounds Using FT-IR and UHPLC–MS Analyses
4.8. Evaluation of the Trypanocidal Activity of Extracts and Isolated Fractions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAM/INPI. Atlas de las Plantas de la Medicina Tradicional Mexicana. Biblioteca Digital de la Medicina Tradicional Mexicana. 2009. Available online: http://www.medicinatradicionalmexicana.unam.mx/apmtm/index.html (accessed on 25 June 2024).
- Xu, Y.M.; Wijeratne, E.K.; Calderon-Rivera, A.; Loya-López, S.; Perez-Miller, S.; Khanna, R.; Gunatilaka, A.L. Argentatin C Analogues with Potential Antinociceptive Activity and Other Triterpenoid Constituents from the Aerial Parts of Parthenium incanum. ACS Omega 2023, 8, 20085–20095. [Google Scholar] [CrossRef]
- Kaur, L.; Malhi, D.S.; Cooper, R.; Kaur, M.; Sohal, H.S.; Mutreja, V.; Sharma, A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. J. Ethnopharmacol. 2021, 281, 114525. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Masłowiec, D. Antimicrobial activity of lactones. Antibiotics 2022, 11, 1327. [Google Scholar] [CrossRef]
- Taljaard, L.; Haynes, R.K.; Van Der Kooy, F. Artemisia Species and Their Active Constituents for Treating Schistosomiasis. Rev. Bras. Farmacogn. 2023, 33, 875–885. [Google Scholar] [CrossRef]
- Laurella, L.C.; Cerny, N.; Bivona, A.E.; Sanchez Alberti, A.; Giberti, G.; Malchiodi, E.L.; Martino, V.S.; Catalan, C.A.; Alonso, M.R.; Cazorla, S.I.; et al. Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. PLoS Neglected Trop. Dis. 2017, 11, e0005929. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Domínguez, F.; Ruiz-Padilla, A.J.; Campos-Xolalpa, N.; Zapata-Morales, J.R.; Carranza-Alvarez, C.; Maldonado-Miranda, J.J. Medicinal plants from North and Central America and the Caribbean considered toxic for humans: The other side of the coin. Evid.-Based Complement. Altern. Med. 2017, 2017, 9439868. [Google Scholar] [CrossRef]
- Hernández-Marín, D.A.; Guevara-Lara, F.; Rivas-Morales, C.; Verduzco-Martínez, J.A.; Galindo-Rodriguez, S.A.; Sánchez-García, E. Biological Activity of Nothoscordum bivalve (L.) Britton and Parthenium incanum Kunth Extracts. 2018. Available online: http://nopr.niscpr.res.in/handle/123456789/45064 (accessed on 25 June 2024).
- Acosta, N.; Yaluff, G.; López, E.; Bobadilla, C.; Ramírez, A.; Fernández, I.; Escobar, P. In vitro susceptibility to benznidazole, nifurtimox and posaconazole of Trypanosoma cruzi isolates from Paraguay. Biomédica 2020, 40, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Peña-Callejas, G.; González, J.; Jiménez-Cortés, J.G.; Fuentes-Vicente, J.A.D.; Salazar-Schettino, P.M.; Bucio-Torres, M.I.; Cabrera-Bravo, M.; Flores-Villegas, A.L. Enfermedad de Chagas: Biología y transmisión de Trypanosoma cruzi. TIP Rev. Espec. Cienc. Quím.-Biol. 2022, 25, 1–19. [Google Scholar] [CrossRef]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol. 2021, 11, 586548. [Google Scholar] [CrossRef]
- Ghenabzia, I.; Hemmami, H.; Amor, I.B.; Zeghoud, S.; Seghir, B.B.; Hammoudi, R. Different methods of extraction of bioactive compounds and their effect on biological activity: A review. Int. J. Second. Metab. 2023, 10, 469–494. [Google Scholar] [CrossRef]
- Al-Saman, M.; Hamouda, R.; Abdella, A.; El-Sabbagh, S.; El-Seoud, G. TLC Bioautographic Detection and Characterization of Antibacterial Compound from the Cyanobacterium Anabaena oryzae. Asian J. Biotechnol. Bioresour. Technol. 2018, 3, 1–13. [Google Scholar] [CrossRef]
- Jesionek, W.; Móricz, Á.M.; Alberti, Á.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-direct bioautography as a bioassay guided method for investigation of antibacterial compounds in Hypericum perforatum L. J. AOAC Int. 2015, 98, 1013–1020. [Google Scholar] [CrossRef]
- Torres-León, C.; Ramírez, F.R.; Aguirre-Joya, J.A.; Ramírez-Moreno, A.; Chávez-González, M.L.; Aguillón-Gutierrez, D.R.; Camacho-Guerra, L.; Ramírez-Guzmán, N.; Vélez, S.H.; Aguilar, C.N. Medicinal plants used by rural communities in the arid zone of Viesca and Parras Coahuila in northeast Mexico. Saudi Pharm. J. 2023, 31, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Reyes, C.; Granados-Sánchez, D.; Uribe-Gómez, M.; Rodríguez-Trejo, D.A.; Granados Victorino, R.L. Ordenación de la vegetación de las sierras y llanuras occidentales municipio de Catorce, San Luis Potosí. Rev. Mex. Cienc. Agrícolas 2020, 11, 713–725. [Google Scholar] [CrossRef]
- Pandey, A.; Tripathi, S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem. 2014, 2, 115–119. [Google Scholar]
- Bashar, H.K.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Uddin, M.K.; Asib, N.; Anwar, M.P.; Rahaman, F.; Karim, S.R.; Haque, M.A.; Berahim, Z. Determination and Quantification of Phytochemicals from the Leaf Extract of Parthenium hysterophorus L. and Their Physio-Biochemical Responses to Several Crop and Weed Species. Plants 2022, 11, 3209. [Google Scholar] [CrossRef] [PubMed]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.M.; Ahmad-Hamdani, M.S.; Hasan, M. Phytochemical constituents and allelopathic potential of Parthenium hysterophorus L. in comparison to commercial herbicides to control weeds. Plants 2021, 10, 1445. [Google Scholar] [CrossRef]
- Frey, M.; Vahabi, K.; Cankar, K.; Lackus, N.D.; Padilla-Gonzalez, F.; Ro, D.K.; Rieseberg, L.; Spring, O.; Tissier, A. Sesquiterpene Lactones–Insights into Biosynthesis, Regulation and Signalling Roles. Crit. Rev. Plant Sci. 2024, 43, 131–157. [Google Scholar] [CrossRef]
- Stojanović, M.; Savić, S.; Delcourt, A.; Hilbert, J.L.; Hance, P.; Dragišić Maksimović, J.; Maksimović, V. Phenolics and sesquiterpene lactones profile of red and green lettuce: Combined effect of cultivar, microbiological fertilizer, and season. Plants 2023, 12, 2616. [Google Scholar] [CrossRef]
- Sinha, S.N.; Paul, D. Antioxidant potentials of Parthenium hysterophorus L. leaf extracts. Sci. Res. J. India 2014, 3, 80–86. [Google Scholar]
- Deshpande, B.; Sharma, D.; Pandey, B. Phytochemicals and antibacterial screening of Parthenium hysterophorus. Indian J. Sci. Res. 2017, 13, 199–202. Available online: https://www.researchgate.net/publication/318310736 (accessed on 25 June 2024).
- Manyawi, M.; Mozirandi, W.Y.; Tagwireyi, D.; Mukanganyama, S. Fractionation and Antibacterial Evaluation of the Surface Compounds from the Leaves of Combretum zeyheri on Selected Pathogenic Bacteria. Sci. World J. 2023, 2023, 2322068. [Google Scholar] [CrossRef] [PubMed]
- Rajput, J.M.; Nandre, D.S.; Pawar, B.G. A comprehensive review on advanced chromatographic techniques and spectroscopic techniques in pharmaceutical analysis. Int. J. Pharm. Res. Appl. 2022, 7, 53–62. [Google Scholar] [CrossRef]
- Kolli, D.; Amperyani, K.R.; Parimi, U. Phytochemical analysis and in vitro genotoxicity, cytotoxicity, antioxidant, antimicrobial, antiobesity activity of Morinda tinctoria Roxb. Indian Drugs 2022, 59, 31. [Google Scholar] [CrossRef]
- Hernandez, Y.S.; Sanchez, L.B.; Bedia, M.M.G.; Gomez, L.T.; Rodríguez, E.J.; San Miguel, H.M.G.; Mosquera, D.G.; García, L.P.; Dhooghe, L.; Theunis, M. Determination of parthenin in Parthenium hysterophorus L. by means of HPLC-UV: Method development and validation. Phytochem. Lett. 2011, 4, 134–137. [Google Scholar] [CrossRef]
- Al Bimani, B.M.H.; Hossain, M.A. A new antimicrobial compound from the leaves of Dodonaea viscosa for infectious diseases. Bioact. Mater. 2020, 5, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Basarkar, U.G.; Saoji, A.A. Isolation, characterization of sesquiterpene parthenin and its estimation from Parthenium hysterophorus pollen. Int. J. Emerg. Technol. Comput. Appl. Sci. 2013, 5, 364–368. [Google Scholar]
- Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Fourier transform-infrared spectroscopy and Gas chromatography–mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, R.; Ramaswamy, M. Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian Medicinal plants. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 395–406. [Google Scholar]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Lomniczi de Upton, I.M.; de la Fuente, J.R.; Esteve-Romero, J.S.; García-Alvarez-Coque, M.C.; Carda-Broch, S. Chromatographic detection of sesquiterpene lactones in parthenium plants from northwest Argentina. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 909–921. [Google Scholar] [CrossRef]
- Roy, D.C.; Shaik, M.M. Toxicology, phytochemistry, bioactive compounds and pharmacology of Parthenium hysterophorus. J. Med. Plants Stud. 2013, 1, 126–141. [Google Scholar]
- Niranjan, A.; Mishra, S.; Lehri, A.; Amla, D.V.; Upadhyay, R.S.; Nautiyal, C.S. Identification and quantification of heterologous compounds parthenin and organic acids in Parthenium hysterophorus L. using HPLC-PDA-MS-MS. Anal. Lett. 2013, 46, 48–59. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, S.; Jandrotia, R.; Singh, H.P.; Batish, D.R.; Kohli, R.K.; Rana, V.S.; Shakil, N.A. Parthenin—A Sesquiterpene lactone with multifaceted biological activities: Insights and prospects. Molecules 2021, 26, 5347. [Google Scholar] [CrossRef] [PubMed]
- Brent, L.C.; Reiner, J.L.; Dickerson, R.R.; Sander, L.C. Method for characterization of low molecular weight organic acids in atmospheric aerosols using ion chromatography mass spectrometry. Anal. Chem. 2014, 86, 7328–7336. [Google Scholar] [CrossRef]
- Schlemper, B.R., Jr.; Chiari, E.; Brener, Z. Growth-Inhibition Drug Test with Trypanosoma cruzi Culture Forms. J. Protozool. 1977, 24, 544–547. [Google Scholar] [CrossRef]
- Ohashi, M.; Amoa-Bosompem, M.; Kwofie, K.D.; Agyapong, J.; Adegle, R.; Sakyiamah, M.M.; Ayertey, F.; Owusu, K.B.; Tuffour, I.; Atchoglo, P. In vitro antiprotozoan activity and mechanisms of action of selected G hanaian medicinal plants against trypanosoma, leishmania, and plasmodium parasites. Phytother. Res. 2018, 32, 1617–1630. [Google Scholar] [CrossRef]
- Torres-Barajas, A.L.; Salas-Baéz, K.D.; Chávez-Gómez, R.I.; Carrasco-Esparza, N.A.; Muñoz-Ortega, M.H.; Sánchez-García, E.; Hernández-Marín, D.A. Actividad tripanocida de cinco plantas latinoamericanas. Rev. Biol. Trop. 2024, 72, e54026. [Google Scholar] [CrossRef]
- Muñoz-Calderón, A.; Santaniello, A.; Pereira, A.; Yannuzzi, J.; Díaz-Bello, Z.; Alarcón de Noya, B. Susceptibilidad in vitro a Nifurtimox y Benznidazol de aislados de Trypanosoma cruzi obtenidos de pacientes venezolanos con enfermedad de Chagas infectados por mecanismos de transmisión oral y vectorial. Rev. Ibero-Latinoam. Parasitol. 2012, 71, 14–22. [Google Scholar]
- Sosa Estani, S.; Altcheh, J.; Riarte, A.; Freilij, H.; Fernandez, M.; Lloveras, S.; Pereiro, A.; Castellano, L.G.; Salvatella, R.; Nicholls, R.S. Lineamientos básicos del tratamiento etiológico de enfermedad de Chagas. Medicina 2015, 75, 270–272. [Google Scholar]
- Sousa, L.R.D.; Amparo, T.R.; Souza, G.H.B.D.; Ferraz, A.T.; Fonseca, K.D.S.; Azevedo, A.S.D.; Nascimento, A.M.; Andrade, Â.L.; Seibert, J.B.; Valverde, T.M. Anti-Trypanosoma cruzi Potential of Vestitol Isolated from Lyophilized Red Propolis. Molecules 2023, 28, 7812. [Google Scholar] [CrossRef] [PubMed]
- Bethencourt-Estrella, C.J.; Nocchi, N.; López-Arencibia, A.; San Nicolás-Hernández, D.; Souto, M.L.; Suárez-Gómez, B.; Díaz-Marrero, A.R.; Fernández, J.J.; Lorenzo-Morales, J.; Piñero, J.E. Antikinetoplastid activity of sesquiterpenes isolated from the zoanthid Palythoa aff. clavata. Pharmaceuticals 2021, 14, 1095. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Rivas Morales, C.; Castillo, S.; Leos-Rivas, C.; García-Becerra, L.; Ortiz Martínez, D.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evid.-Based Complement. Altern. Med. 2016, 2016, 1572697. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef]
- Khurm, M.; Chaudhry, B.A.; Uzair, M.; Janbaz, K.H. Antimicrobial, Cytotoxic, Phytotoxic and Antioxidant Potential of Heliotropium strigosum Willd. Medicines 2016, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Zeouk, I.; Ouedrhiri, W.; Sifaoui, I.; Bazzocchi, I.L.; Piñero, J.E.; Jiménez, I.A.; Lorenzo-Morales, J.; Bekhti, K. Bioguided isolation of active compounds from Rhamnus alaternus against methicillin-resistant Staphylococcus aureus (MRSA) and panton-valentine leucocidin positive strains (MSSA-PVL). Molecules 2021, 26, 4352. [Google Scholar] [CrossRef]
- Kowalska, T.; Sajewicz, M. Thin-layer chromatography (TLC) in the screening of botanicals–its versatile potential and selected applications. Molecules 2022, 27, 6607. [Google Scholar] [CrossRef] [PubMed]
- Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Fourier transform mass spectrometry. Mol. Cell. Proteom. 2011, 10, M111.009431. [Google Scholar] [CrossRef]
- Puente, V.; Demaria, A.; Frank, F.M.; Batlle, A.; Lombardo, M.E. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Neglected Trop. Dis. 2018, 12, e0006764. [Google Scholar] [CrossRef]
- Rodríguez Garza, N.E.; Molina Garza, Z.J.; Galaviz Silva, L.; Quintanilla Licea, R. Evaluación In Vitro de Extractos de Plantas Medicinales Contra Trypanosoma cruzi, Agente Causal de la Enfermedad de Chagas. 2019. Available online: https://revistatediq.azc.uam.mx/Docs/revista_tendencias_2019.pdf (accessed on 25 June 2024).
Test | Maceration | Soxhlet |
---|---|---|
Flavonoids | + | + |
Alkaloids | − | + |
Tannins | + | + |
Sesquiterpene lactones | + | + |
Coumarins | + | + |
Carbohydrates | + | + |
Sterols | − | + |
Terpenes | − | + |
Saponins | − | − |
Quinones | + | − |
Carboxyl groups | − | − |
Compound | Precursor Ion (m/z) | Product Ions (m/z) |
---|---|---|
Parthenin | 263 | 245, 227, 217, 209, 199, 181 |
Coronopilin | 265 | 247, 229, 219, 211, 205, 201,187, 183, 147 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Marín, D.A.; Castro-Rios, R.; Chávez-Montes, A.; Castillo-Hernández, S.L.; Elizondo-Luevano, J.H.; Muñoz-Ortega, M.H.; Sánchez-García, E. Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi. Antibiotics 2024, 13, 622. https://doi.org/10.3390/antibiotics13070622
Hernández-Marín DA, Castro-Rios R, Chávez-Montes A, Castillo-Hernández SL, Elizondo-Luevano JH, Muñoz-Ortega MH, Sánchez-García E. Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi. Antibiotics. 2024; 13(7):622. https://doi.org/10.3390/antibiotics13070622
Chicago/Turabian StyleHernández-Marín, David Alejandro, Rocio Castro-Rios, Abelardo Chávez-Montes, Sandra L. Castillo-Hernández, Joel Horacio Elizondo-Luevano, Martín Humberto Muñoz-Ortega, and Eduardo Sánchez-García. 2024. "Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi" Antibiotics 13, no. 7: 622. https://doi.org/10.3390/antibiotics13070622
APA StyleHernández-Marín, D. A., Castro-Rios, R., Chávez-Montes, A., Castillo-Hernández, S. L., Elizondo-Luevano, J. H., Muñoz-Ortega, M. H., & Sánchez-García, E. (2024). Antiparasitic Activity of Isolated Fractions from Parthenium incanum Kunth against the Hemoflagellate Protozoan Trypanosoma cruzi. Antibiotics, 13(7), 622. https://doi.org/10.3390/antibiotics13070622