Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = biogeography-based optimization (BBO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2804 KiB  
Article
Adaptive Network-Based Fuzzy Inference System Training Using Nine Different Metaheuristic Optimization Algorithms for Time-Series Analysis of Brent Oil Price and Detailed Performance Analysis
by Ebubekir Kaya, Ahmet Kaya and Ceren Baştemur Kaya
Symmetry 2025, 17(5), 786; https://doi.org/10.3390/sym17050786 - 19 May 2025
Viewed by 508
Abstract
Brent oil holds a significant position in the global energy market, as oil prices in many regions are indexed to it. Therefore, forecasting the future price of Brent oil is of great importance. In recent years, artificial intelligence techniques have been widely applied [...] Read more.
Brent oil holds a significant position in the global energy market, as oil prices in many regions are indexed to it. Therefore, forecasting the future price of Brent oil is of great importance. In recent years, artificial intelligence techniques have been widely applied in modeling and prediction tasks. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS), a well-established AI approach, was employed for the time-series forecasting of Brent oil prices. To ensure effective learning and improve prediction accuracy, ANFIS was trained using nine different metaheuristic algorithms: Artificial Bee Colony (ABC), Selfish Herd Optimizer (SHO), Biogeography-Based Optimization (BBO), Multi-Verse Optimizer (MVO), Teaching–Learning-Based Optimization (TLBO), Cuckoo Search (CS), Moth Flame Optimization (MFO), Marine Predator Algorithm (MPA), and Flower Pollination Algorithm (FPA). Symmetric training procedures were applied across all algorithms to ensure fair and consistent evaluation. The analyses were conducted on the lowest and highest daily, weekly, and monthly Brent oil prices. Mean squared error (MSE) was used as the primary performance metric. The results showed that all algorithms achieved effective prediction performance. Among them, BBO and TLBO demonstrated superior accuracy and stability, particularly in handling the complexities of Brent oil forecasting. This study contributes to the literature by combining ANFIS and metaheuristics within a symmetric framework of experimentation and evaluation. Full article
Show Figures

Figure 1

30 pages, 7595 KiB  
Article
Memetic-Based Biogeography Optimization Model for the Optimal Design of Mechanical Systems
by Arcílio Carlos Ferreira Peixoto and Carlos A. Conceição António
Mathematics 2025, 13(3), 492; https://doi.org/10.3390/math13030492 - 31 Jan 2025
Viewed by 647
Abstract
The science of biogeography was described through mathematical equations in 1967 by Robert MacArthur and Edward Wilson. In 2008, Dan Simon presented an algorithm called biogeography-based optimization, or BBO, which used some of the principles and definitions described in MacArthur and Wilson’s book. [...] Read more.
The science of biogeography was described through mathematical equations in 1967 by Robert MacArthur and Edward Wilson. In 2008, Dan Simon presented an algorithm called biogeography-based optimization, or BBO, which used some of the principles and definitions described in MacArthur and Wilson’s book. The objectives of this work were to study the behavior of the BBO method when it is hybridized with other evolutionary search methods and to analyze the effect of its application to some examples of mechanical engineering systems. The operators considered in the hybridization study are genetic recombination (crossover) and local search, aiming to overcome the limitations and difficulties that arise when using the original BBO. The results of the original BBO were promising in the context of a global search. However, there is a diversity problem that does not allow for good quality increments in the final phase of the evolutionary process. The additional modifications included, such as the concept of blending in migration, the cycle of mutations and the replacement of the worst solutions by injection of new ones, all show positive effects on the method’s performance. However, the biggest increase happened with the implementation of the hybridization processes. Crossover improved the speed and diversity of the population in some cases, while local search helped the algorithm in later generations, allowing it to quickly reach the optimum point. With this mentioned, it is important to note that the best results were all obtained with the fully modified algorithm. Statistical tests were implemented to validate the significance of changes due to modifications included in the original proposal of BBO. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

35 pages, 3767 KiB  
Article
A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems
by Chenyang Gao, Teng Li, Yuelin Gao and Ziyu Zhang
Mathematics 2024, 12(3), 435; https://doi.org/10.3390/math12030435 - 29 Jan 2024
Cited by 1 | Viewed by 2265
Abstract
The biogeography-based optimization (BBO) algorithm is known for its simplicity and low computational overhead, but it often struggles with falling into local optima and slow convergence speed. Against this background, this work presents a multi-strategy enhanced BBO variant, named MSBBO. Firstly, the example [...] Read more.
The biogeography-based optimization (BBO) algorithm is known for its simplicity and low computational overhead, but it often struggles with falling into local optima and slow convergence speed. Against this background, this work presents a multi-strategy enhanced BBO variant, named MSBBO. Firstly, the example chasing strategy is proposed to eliminate the destruction of the inferior solutions to superior solutions. Secondly, the heuristic crossover strategy is designed to enhance the search ability of the population. Finally, the prey search–attack strategy is used to balance the exploration and exploitation. To verify the performance of MSBBO, we compare it with standard BBO, seven BBO variants (PRBBO, BBOSB, HGBBO, FABBO, BLEHO, MPBBO and BBOIMAM) and seven meta-heuristic algorithms (GWO, WOA, SSA, ChOA, MPA, GJO and BWO) on multiple dimensions of 24 benchmark functions. It concludes that MSBBO significantly outperforms all competitors both on convergence accuracy, speed and stability, and MSBBO basically converges to the same results on 10,000 dimensions as on 1000 dimensions. Further, MSBBO is applied to six real-world engineering design problems. The experimental results show that our work is still more competitive than other latest optimization techniques (COA, EDO, OMA, SHO and SCSO) on constrained optimization problems. Full article
(This article belongs to the Special Issue Smart Computing, Optimization and Operations Research)
Show Figures

Figure 1

24 pages, 8519 KiB  
Article
Fractional-Order Fuzzy PID Controller with Evolutionary Computation for an Effective Synchronized Gantry System
by Wei-Lung Mao, Sung-Hua Chen and Chun-Yu Kao
Algorithms 2024, 17(2), 58; https://doi.org/10.3390/a17020058 - 29 Jan 2024
Cited by 5 | Viewed by 2238
Abstract
Gantry-type dual-axis platforms can be used to move heavy loads or perform precision CNC work. Such gantry systems drive a single axis with two linear motors, and under heavy loads, a high driving force is required. This can generate a pulling force between [...] Read more.
Gantry-type dual-axis platforms can be used to move heavy loads or perform precision CNC work. Such gantry systems drive a single axis with two linear motors, and under heavy loads, a high driving force is required. This can generate a pulling force between the drive shafts in the coupling mechanism. In these situations, when a synchronization error becomes too large, mechanisms can become deformed or damaged, leading to damaged equipment, or in industrial settings, an additional power consumption. Effectively and accurately acquiring the synchronized movement of the platform is important to reduce energy consumption and optimize the system. In this study, a fractional-order fuzzy PID controller (FOFPID) using Oustaloup’s recursive filter is used to control a synchronous X–Y gantry-type platform. The optimized controller parameters are obtained by the measurement of control errors in a simulated environment. Four optimization methods are tested and compared: particle swarm optimization, invasive weed optimization, a gray wolf optimizer, and biogeography-based optimization. The systems were tested and compared in order to optimize the control parameters. Each of the four algorithms is simulated on four contour shapes: a circle, bow, heart, and star. The simulations and control scheme of the experiments are implemented using MATLAB, and the reference paths were planned using non-uniform rational B-splines (NURBS). After running the simulations to determine the optimal control parameters, each set of acquired control parameters is also tested and compared in the experiments and the results are recorded. Both the simulations and experiments show good results, and the tracking of the X–Y platform showed improved performance. Two performance indices are used to determine and validate the relative performance of the models and results. Full article
(This article belongs to the Special Issue Algorithms for PID Controller 2024)
Show Figures

Figure 1

15 pages, 483 KiB  
Article
A Feature Selection Algorithm Based on Differential Evolution for English Speech Emotion Recognition
by Liya Yue, Pei Hu, Shu-Chuan Chu and Jeng-Shyang Pan
Appl. Sci. 2023, 13(22), 12410; https://doi.org/10.3390/app132212410 - 16 Nov 2023
Cited by 2 | Viewed by 2001
Abstract
The automatic identification of emotions from speech holds significance in facilitating interactions between humans and machines. To improve the recognition accuracy of speech emotion, we extract mel-frequency cepstral coefficients (MFCCs) and pitch features from raw signals, and an improved differential evolution (DE) algorithm [...] Read more.
The automatic identification of emotions from speech holds significance in facilitating interactions between humans and machines. To improve the recognition accuracy of speech emotion, we extract mel-frequency cepstral coefficients (MFCCs) and pitch features from raw signals, and an improved differential evolution (DE) algorithm is utilized for feature selection based on K-nearest neighbor (KNN) and random forest (RF) classifiers. The proposed multivariate DE (MDE) adopts three mutation strategies to solve the slow convergence of the classical DE and maintain population diversity, and employs a jumping method to avoid falling into local traps. The simulations are conducted on four public English speech emotion datasets: eNTERFACE05, Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Surrey Audio-Visual Expressed Emotion (SAEE), and Toronto Emotional Speech Set (TESS), and they cover a diverse range of emotions. The MDE algorithm is compared with PSO-assisted biogeography-based optimization (BBO_PSO), DE, and the sine cosine algorithm (SCA) on emotion recognition error, number of selected features, and running time. From the results obtained, MDE obtains the errors of 0.5270, 0.5044, 0.4490, and 0.0420 in eNTERFACE05, RAVDESS, SAVEE, and TESS based on the KNN classifier, and the errors of 0.4721, 0.4264, 0.3283 and 0.0114 based on the RF classifier. The proposed algorithm demonstrates excellent performance in emotion recognition accuracy, and it finds meaningful acoustic features from MFCCs and pitch. Full article
(This article belongs to the Special Issue Recent Applications of Explainable AI (XAI))
Show Figures

Figure 1

24 pages, 6634 KiB  
Article
Modified Model of Polarized Bidirectional Reflectance Distribution Function Used for Light Detection and Ranging (LiDAR)
by Chenglong Luan, Yingchun Li, Huichao Guo, Houpeng Sun, Laixian Zhang, Haijing Zheng and Xiaoyu Zhang
Photonics 2023, 10(10), 1119; https://doi.org/10.3390/photonics10101119 - 4 Oct 2023
Viewed by 1467
Abstract
In order to analyze the performance of a light detection and ranging system based on polarization modulation, it is necessary to theoretically analyze and model the polarization scattering characteristics of common target materials. In this paper, the shortcomings of the classical Hyde pBRDF [...] Read more.
In order to analyze the performance of a light detection and ranging system based on polarization modulation, it is necessary to theoretically analyze and model the polarization scattering characteristics of common target materials. In this paper, the shortcomings of the classical Hyde pBRDF (polarization bidirectional reflectance distribution function) model are analyzed. Based on the research results of many researchers in recent years, a new six-parameter pBRDF model is proposed. To verify the accuracy of the proposed model, this paper builds a measurement system for the polarization scattering characteristics of the target surface in the laser active imaging scene, and the polarization scattering characteristics of two common materials, namely a white paint coating and an aluminum plate, are measured. Based on the measurement results of the DOP (degree of polarization) of the scattered light of the target material and the BBO-FA (biogeography-based optimization-Firefly algorithm) algorithm, we performed inversion calculations on the key parameters of the target material. Using the parameters of the target material obtained via inversion, we use the model to simulate the Stokes vectors of the target and compare the simulated values of Stokes vectors with the measured values to verify the accuracy of the model. The verification results show that the simulation results of Stokes vectors are in good agreement with the measurement results for these two materials, and the introduction of various improvements to the model can effectively improve the accuracy of the model, which provides a tool for studying the performance parameters of a laser three-dimensional imaging system based on polarization modulation. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 3399 KiB  
Article
State of Charge Estimation for Power Battery Using Improved Extended Kalman Filter Method Based on Neural Network
by Xiaoyu Liu and Xiang Zhang
Appl. Sci. 2023, 13(18), 10547; https://doi.org/10.3390/app131810547 - 21 Sep 2023
Cited by 3 | Viewed by 1619
Abstract
In order to enhance the accuracy of the traditional extended Kalman filter (EKF) algorithm in the estimation of the state of charge (SoC) of power batteries, we first derived the state space equation and measurement equation of lithium power batteries based on the [...] Read more.
In order to enhance the accuracy of the traditional extended Kalman filter (EKF) algorithm in the estimation of the state of charge (SoC) of power batteries, we first derived the state space equation and measurement equation of lithium power batteries based on the Thevenin battery model and the modified Ampere-Hour integral algorithm. Then, the basic principles of EKF, backpropagation neural networks (BPNNs), and a biogeography-based optimization (BBO) algorithm were analyzed, and the arc curve mobility model was used to improve the global search ability of the BBO algorithm. By combining these three algorithms, this paper proposes a BP neural network method based on the BBO algorithm. This method uses the BBO algorithm to optimize the incipient weight and threshold of the BP neural network and uses this improved neural network to modify the estimated value of the extended Kalman filter algorithm (BBOBP-EKF). Finally, the BBOBP-EKF algorithm, the extended Kalman filter algorithm based on the BP neural network (BP-EKF), and the EKF algorithm are used to estimate the error value of the SOC of a power battery, and according to the experimental data, it was confirmed that the proposed BBOBP-EKF algorithm has been improved compared to other algorithms with respect to each error index term, in which the maximum error is 1% less than that of the BP-EKF algorithm and 2.4% less than that of the EKF algorithm, the minimum error is also the smallest, and the estimation accuracy is improved compared to the traditional algorithms. Full article
Show Figures

Figure 1

19 pages, 5009 KiB  
Article
A Hybrid Algorithm for Multi-Objective Optimization—Combining a Biogeography-Based Optimization and Symbiotic Organisms Search
by Jun Li, Xinxin Guo, Yongchao Yang and Qiwen Zhang
Symmetry 2023, 15(8), 1481; https://doi.org/10.3390/sym15081481 - 26 Jul 2023
Cited by 3 | Viewed by 1692
Abstract
To solve the multi-objective, flexible job-shop scheduling problem, the biogeography-based optimization (BBO) algorithm can easily fall into premature convergence, local optimum and destroy the optimal solution. Furthermore, the symbiotic organisms search (SOS) strategy can be introduced, which integrates the mutualism strategy and commensalism [...] Read more.
To solve the multi-objective, flexible job-shop scheduling problem, the biogeography-based optimization (BBO) algorithm can easily fall into premature convergence, local optimum and destroy the optimal solution. Furthermore, the symbiotic organisms search (SOS) strategy can be introduced, which integrates the mutualism strategy and commensalism strategy to propose a new migration operator. To address the problem that the optimal solution is easily destroyed, a parasitic natural enemy insect mechanism is introduced, and predator mutation and parasitic mutation strategies with symmetry are defined, which can be guided according to the iterative characteristics of the population. By comparing with eight multi-objective benchmark test functions with four multi-objective algorithms, the results show that the algorithm outperforms other comparative algorithms in terms of the convergence of the solution set and the uniformity of distribution. Finally, the algorithm is applied to multi-objective, flexible job-shop scheduling (FJSP) to test its practical application value, and it is shown through experiments that the algorithm is effective in solving the multi-objective FJSP problem. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 4627 KiB  
Article
A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional Neural Network to Improve the Detection Performance of Backscatter Communication Systems
by Sina Aghakhani, Ata Larijani, Fatemeh Sadeghi, Diego Martín and Ali Ahmadi Shahrakht
Electronics 2023, 12(10), 2263; https://doi.org/10.3390/electronics12102263 - 16 May 2023
Cited by 23 | Viewed by 2626
Abstract
Backscatter communication (BC) is a promising technology for low-power and low-data-rate applications, though the signal detection performance is limited since the backscattered signal is usually much weaker than the original signal. When the detection performance is poor, the backscatter device (BD) may not [...] Read more.
Backscatter communication (BC) is a promising technology for low-power and low-data-rate applications, though the signal detection performance is limited since the backscattered signal is usually much weaker than the original signal. When the detection performance is poor, the backscatter device (BD) may not be able to accurately detect and interpret the incoming signal, leading to errors and degraded communication quality. This can result in data loss, slow data transfer rates, and reduced reliability of the communication link. This paper proposes a novel approach to improve the detection performance of backscatter communication systems using evolutionary deep learning. In particular, we focus on training deep convolutional neural networks (DCNNs) to improve the detection performance of BC. We first develop a novel hybrid algorithm based on artificial bee colony (ABC), biogeography-based optimization (BBO), and particle swarm optimization (PSO) to optimize the architecture of the DCNN, followed by training using a large set of benchmark datasets. To develop the hybrid ABC, the migration operator of the BBO is used to improve the exploitation. Moving towards the global best of PSO is also proposed to improve the exploration of the ABC. Then, we take advantage of the proposed deep architecture to improve the bit-error rate (BER) performance of the studied BC system. The simulation results demonstrate that the proposed algorithm has the best performance in training the benchmark datasets. The results also show that the proposed approach significantly improves the detection performance of backscattered signals compared to existing works. Full article
(This article belongs to the Special Issue Deep Learning for Next-Generation Wireless Networks)
Show Figures

Figure 1

21 pages, 98313 KiB  
Article
Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping
by Duc Anh Hoang, Hung Van Le, Dong Van Pham, Pham Viet Hoa and Dieu Tien Bui
Remote Sens. 2023, 15(8), 2187; https://doi.org/10.3390/rs15082187 - 20 Apr 2023
Cited by 3 | Viewed by 2351
Abstract
This paper presents a new hybrid ensemble modeling method called BBO-DE-STreeEns for land-slide susceptibility mapping in Than Uyen district, Vietnam. The method uses subbagging and random subspacing to generate subdatasets for constituent classifiers of the ensemble model, and a split-point and attribute reduced [...] Read more.
This paper presents a new hybrid ensemble modeling method called BBO-DE-STreeEns for land-slide susceptibility mapping in Than Uyen district, Vietnam. The method uses subbagging and random subspacing to generate subdatasets for constituent classifiers of the ensemble model, and a split-point and attribute reduced classifier (SPAARC) decision tree algorithm to build each classifier. To optimize hyperparameters of the ensemble model, a hybridization of biogeography-based optimization (BBO) and differential evolution (DE) algorithms is adopted. The land-slide database for the study area includes 114 landslide locations, 114 non-landslide locations, and ten influencing factors: elevation, slope, curvature, aspect, relief amplitude, soil type, geology, distance to faults, distance to roads, and distance to rivers. The database was used to build and verify the BBO-DE-StreeEns model, and standard statistical metrics, namely, positive predictive value (PPV), negative predictive value (NPV), sensitivity (Sen), specificity (Spe), accuracy (Acc), Fscore, Cohen’s Kappa, and the area under the ROC curve (AUC), were calculated to evaluate prediction power. Logistic regression, multi-layer perceptron neural network, support vector machine, and SPAARC were used as benchmark models. The results show that the proposed model outperforms the benchmarks with a high prediction power (PPV = 90.3%, NPV = 83.8%, Sen = 82.4%, Spe = 91.2%, Acc = 86.8%, Fscore = 0.862, Kappa = 0.735, and AUC = 0.940). Therefore, the BBO-DE-StreeEns method is a promising tool for landslide susceptibility mapping. Full article
Show Figures

Figure 1

30 pages, 5928 KiB  
Article
Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module
by Nawal Rai, Amel Abbadi, Fethia Hamidia, Nadia Douifi, Bdereddin Abdul Samad and Khalid Yahya
Mathematics 2023, 11(8), 1861; https://doi.org/10.3390/math11081861 - 14 Apr 2023
Cited by 18 | Viewed by 2119
Abstract
This article handles the challenging problem of identifying the unknown parameters of solar cell three models on one hand and of photovoltaic module three models on the other hand. This challenge serves as the basis for fault detection, control, and modelling of PV [...] Read more.
This article handles the challenging problem of identifying the unknown parameters of solar cell three models on one hand and of photovoltaic module three models on the other hand. This challenge serves as the basis for fault detection, control, and modelling of PV systems. An accurate model of PV is essential for the simulation research of PV systems, where it has a significant role in the dynamic study of these systems. The mathematical models of the PV cell and module have nonlinear I-V and P-V characteristics with many undefined parameters. In this paper, this identification problem is solved as an optimization problem based on metaheuristic optimization algorithms. These algorithms use root mean square error (RMSE) between the calculated and the measured current as an objective function. A new metaheuristic amalgamation algorithm, namely biogeography-based teaching learning-based optimization (BB-TLBO) is proposed. This algorithm is a hybridization of two algorithms, the first one is called BBO (biogeography-based optimization) and the second is TLBO (teaching learning-based optimization). The BB-TLBO is proposed to identify the unknown parameters of one, two and three-diode models of the RTC France silicon solar cell and of the commercial photovoltaic solar module monocrystalline STM6-40/36, taking into account the performance indices: high precision, more reliability, short execution time and high convergence speed. This identification is carried out using experimental data from the RTC France silicon solar cell and the STM6-40/36 photovoltaic module. The efficiency of BB-TLBO is checked by comparing its identification results with its own single algorithm BBO, TLBO and newly introduced hybrid algorithms such as DOLADE, LAPSO and others. The results reveal that the suggested approach surpasses all compared algorithms in terms of RMSE (RMSE min, RMSE mean and RMSE max), standard deviation of RMSE values (STD), CPU (execution time), and convergence speed. Full article
(This article belongs to the Special Issue Advanced Optimization Methods and Applications, 2nd Edition)
Show Figures

Figure 1

26 pages, 17979 KiB  
Article
A Hybrid Time Series Model for Predicting the Displacement of High Slope in the Loess Plateau Region
by Xinchang Liu and Bolong Liu
Sustainability 2023, 15(6), 5423; https://doi.org/10.3390/su15065423 - 19 Mar 2023
Cited by 3 | Viewed by 1886
Abstract
The physical and mechanical properties of the loess differ from other kinds of soil due to its collapsibility, which has resulted in the complex displacement development law of the loess slope. Therefore, the accurate estimation of the displacement of high slopes in a [...] Read more.
The physical and mechanical properties of the loess differ from other kinds of soil due to its collapsibility, which has resulted in the complex displacement development law of the loess slope. Therefore, the accurate estimation of the displacement of high slopes in a loess gully region is critical for the safety of people and in construction activities. In the present study, to improve the accuracy of traditional methods, the original cumulative displacement curve was decomposed into trend and fluctuation terms using Empirical Mode Decomposition (EMD) and Wavelet Decomposition (WD). Subsequently, the results were estimated using the Support Vector Machine (SVR) and Long Short-Term Memory Network (LSTM) optimized by Biogeography-based Optimization (BBO), respectively. To select the most appropriate model, SVR, LSTM, EMD-SVR-LSTM, EMD-BBO-SVR-LSTM, and WD-BBO-SVR-LSTM were employed to predict the deformation of a loess slope in the Loess Plateau of China. According to the results, the displacement increases rapidly at the starting stage, and then gradually stabilizes, which is the same as the trend in reality. On comparing the predicted results with field data, it was found that the models with decomposition algorithms achieved higher accuracy. Particularly, the determination coefficient of the EMD-BBO-SVR-LSTM model reaches 0.928, which has better algorithm stability and prediction accuracy than other models. In this study, the decomposition algorithm was applied to the loess slope displacement innovatively, and the appropriate machine learning algorithm adopted for the displacement components. The method improves the accuracy of prediction and provides a new idea for instability warning of loess excavation slopes. The research has implications for urban construction and sustainable development in loess mountainous areas. Full article
Show Figures

Graphical abstract

14 pages, 1106 KiB  
Article
A Biogeography-Based Optimization with a Greedy Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem
by Cheng-Hsiung Tsai, Yu-Da Lin, Cheng-Hong Yang, Chien-Kun Wang, Li-Chun Chiang and Po-Jui Chiang
Sustainability 2023, 15(6), 5111; https://doi.org/10.3390/su15065111 - 14 Mar 2023
Cited by 20 | Viewed by 3026
Abstract
We develop a novel method to improve biogeography-based optimization (BBO) for solving the traveling salesman problem (TSP). The improved method is comprised of a greedy randomized adaptive search procedure, the 2-opt algorithm, and G2BBO. The G2BBO formulation is derived and the process flowchart [...] Read more.
We develop a novel method to improve biogeography-based optimization (BBO) for solving the traveling salesman problem (TSP). The improved method is comprised of a greedy randomized adaptive search procedure, the 2-opt algorithm, and G2BBO. The G2BBO formulation is derived and the process flowchart is shown in this article. For solving TSP, G2BBO effectively avoids the local minimum problem and accelerates convergence by optimizing the initial values. To demonstrate, we adopt three public datasets (eil51, eil76, and kroa100) from TSPLIB and compare them with various well-known algorithms. The results of G2BBO as well as the other algorithms perform close enough to the optimal solutions in eil51 and eil76 where simple TSP coordinates are considered. In the case of kroa100, with more complicated coordinates, G2BBO shows greater performance over other methods. Full article
(This article belongs to the Special Issue Application of Green Energy Technology in Sustainable Environment)
Show Figures

Figure 1

23 pages, 981 KiB  
Article
Optimal Decision of Dynamic Bed Allocation and Patient Admission with Buffer Wards during an Epidemic
by Chengliang Wang, Feifei Yang and Quan-Lin Li
Mathematics 2023, 11(3), 687; https://doi.org/10.3390/math11030687 - 29 Jan 2023
Cited by 8 | Viewed by 2843
Abstract
To effectively prevent patients from nosocomial cross-infection and secondary infections, buffer wards for screening infectious patients who cannot be detected due to the incubation period are established in public hospitals in addition to isolation wards and general wards. In this paper, we consider [...] Read more.
To effectively prevent patients from nosocomial cross-infection and secondary infections, buffer wards for screening infectious patients who cannot be detected due to the incubation period are established in public hospitals in addition to isolation wards and general wards. In this paper, we consider two control mechanisms for three types of wards and patients: one is the dynamic bed allocation to balance the resource utilization among isolation, buffer, and general wards; the other is to effectively control the admission of arriving patients according to the evolution process of the epidemic to reduce mortality for COVID-19, emergency, and elective patients. Taking the COVID-19 pandemic as an example, we first develop a mixed-integer programming (MIP) model to study the joint optimization problem for dynamic bed allocation and patient admission control. Then, we propose a biogeography-based optimization for dynamic bed and patient admission (BBO-DBPA) algorithm to obtain the optimal decision scheme. Furthermore, some numerical experiments are presented to discuss the optimal decision scheme and provide some sensitivity analysis. Finally, the performance of the proposed optimal policy is discussed in comparison with the other different benchmark policies. The results show that adopting the dynamic bed allocation and admission control policy could significantly reduce the total operating cost during an epidemic. The findings can give some decision support for hospital managers in avoiding nosocomial cross-infection, improving bed utilization, and overall patient survival during an epidemic. Full article
Show Figures

Figure 1

25 pages, 9451 KiB  
Article
Multilayer Perceptron and Their Comparison with Two Nature-Inspired Hybrid Techniques of Biogeography-Based Optimization (BBO) and Backtracking Search Algorithm (BSA) for Assessment of Landslide Susceptibility
by Hossein Moayedi, Peren Jerfi Canatalay, Atefeh Ahmadi Dehrashid, Mehmet Akif Cifci, Marjan Salari and Binh Nguyen Le
Land 2023, 12(1), 242; https://doi.org/10.3390/land12010242 - 12 Jan 2023
Cited by 25 | Viewed by 3348
Abstract
Regarding evaluating disaster risks in Iran’s West Kurdistan area, the multi-layer perceptron (MLP) neural network was upgraded with two novel techniques: backtracking search algorithm (BSA) and biogeography-based optimization (BBO). Utilizing 16 landslide conditioning elements such as elevation (aspect), plan (curve), profile (curvature), geology, [...] Read more.
Regarding evaluating disaster risks in Iran’s West Kurdistan area, the multi-layer perceptron (MLP) neural network was upgraded with two novel techniques: backtracking search algorithm (BSA) and biogeography-based optimization (BBO). Utilizing 16 landslide conditioning elements such as elevation (aspect), plan (curve), profile (curvature), geology, NDVI (land use), slope (degree), stream power index (SPI), topographic wetness index (TWI), rainfall, and sediment transport index (STI), and 504 landslides as target variables, a large geographic database is constructed. Applying the techniques mentioned above to the synthesis of the MLP results in the suggested BBO-MLP and BSA-MLP ensembles. As accuracy standards, we benefit from mean absolute error, mean square error, and area under the receiving operating characteristic curve to assess the utilized models, we have also designed a scoring system. The MLP’s accuracy increases thanks to the application of the BBO and BSA algorithms. Comparing the BBO with the BSA, we find that the former achieves higher average MLP optimization ranks (20, 15, and 14). A further finding showed that the BBO is superior to the BSA at maximizing the MLP. Full article
(This article belongs to the Special Issue Remote Sensing Application in Landslide Detection and Assessment)
Show Figures

Figure 1

Back to TopTop