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Abstract: To effectively prevent patients from nosocomial cross-infection and secondary infections,
buffer wards for screening infectious patients who cannot be detected due to the incubation period
are established in public hospitals in addition to isolation wards and general wards. In this paper,
we consider two control mechanisms for three types of wards and patients: one is the dynamic bed
allocation to balance the resource utilization among isolation, buffer, and general wards; the other
is to effectively control the admission of arriving patients according to the evolution process of the
epidemic to reduce mortality for COVID-19, emergency, and elective patients. Taking the COVID-19
pandemic as an example, we first develop a mixed-integer programming (MIP) model to study the
joint optimization problem for dynamic bed allocation and patient admission control. Then, we
propose a biogeography-based optimization for dynamic bed and patient admission (BBO-DBPA)
algorithm to obtain the optimal decision scheme. Furthermore, some numerical experiments are
presented to discuss the optimal decision scheme and provide some sensitivity analysis. Finally,
the performance of the proposed optimal policy is discussed in comparison with the other different
benchmark policies. The results show that adopting the dynamic bed allocation and admission
control policy could significantly reduce the total operating cost during an epidemic. The findings can
give some decision support for hospital managers in avoiding nosocomial cross-infection, improving
bed utilization, and overall patient survival during an epidemic.

Keywords: buffer wards; mixed-integer programming; dynamic bed allocation; patient admission
control; COVID-19 pandemic
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1. Introduction

In recent years, the outbreaks of major infectious diseases have posed a significant
threat to human health, life security, and economic development worldwide. For example,
coronavirus disease 2019 (COVID-19) is sweeping the world rapidly, with over 500 million
confirmed cases and over 6 million deaths globally reported by the World Health Orga-
nization as of 17 April 2022 (https://covid19.who.int/ (accessed on 17 April 2022)). The
U.S. Department of Health and Human Services report showed that the average daily
admissions peaked at 145,000 during the week in mid-January 2022 due to the impact of the
Omicron variant (https://protect-public.hhs.gov/pages/hospital-utilization (accessed on
1 April 2022)). The extreme shortage of hospital beds has resulted in COVID-19 patients not
being rationally scheduled and non-COVID-19 patients not receiving urgent care, which
significantly increases the risk of virus transmission and patient death.

As we all know, inpatient beds are one of the critical resources in the daily operation
of hospitals, and their effective dispatch directly affects the operation efficiency and service
level of the whole hospital [1]. Rapid and reasonable decision-making in limited bed alloca-
tion is crucial for preventing and controlling epidemics. Hospitals must simultaneously
face the following challenges: (1) First, hospitals must urgently allocate a certain number
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of isolation beds at negative pressure for the treatment of COVID-19 patients. (2) Then,
hospitals must guarantee necessary daily medical needs and provide essential medical ser-
vices for non-COVID-19 patients with different degrees of emergency, especially those with
high emergency health conditions (The U.S. Centers for Disease Control and Prevention,
2020; https://www.cdc.gov/coronavirus/2019-ncov/hcp/relief-healthcare-facilities.html
(accessed on 1 April 2022)). (3) Last, to avoid cross-infection within the hospitals and to
ensure the normal operation of medical facilities simultaneously, hospitals must develop
relevant screening policies to screen newly arrived inpatients, especially those who have
the risk of the incubation period of COVID-19 but are excluded temporarily (which we
call “at-risk-of-COVID-19” patients) [2,3]. Therefore, it is an urgent problem to make a rea-
sonable decision on bed allocation and patient admission control under limited resources
during an epidemic.

At present, research on cross-infection prevention in hospitalization for infectious
diseases mainly focuses on three classes: (1) Put at-risk-of-COVID-19 patients into isolation
beds for separating inpatient management, for example, in Singapore and Italy [4,5]. (2) The
hospitals provide each inpatient with the necessary personal protective equipment and
then place them in the general wards [6]. (3) Many hospitals have set up buffer wards
in emergency rooms, operating rooms, or general wards to pay close attention to new
inpatients at a certain period to screen COVID-19 patients, just as in Egypt and China [3,7].
However, the first way can cause an extreme shortage of isolation beds, and in the second
way, nosocomial infections may still appear despite the provision of additional personal
protective equipment for inpatients. In contrast, inpatient observation in the buffer wards
(a separate area for a single person in a single room) can effectively identify asymptomatic
and incubated COVID-19 patients. Additionally, patients requiring acute or emergency
treatment are attended to promptly in buffer wards even when nucleic acid test results
are unknown, thus relieving the pressure of medical treatment for non-COVID-19 patients
during a pandemic.

Our work is motivated by the need for hospital managers to rationalize bed allocation
and patient admissions during the evolution of the COVID-19 pandemic so hospitals can
take on the dual obligation of admitting patients and screening for latent COVID-19 patients
to prevent cross-infection and improve overall patient survival. At the same time, hospital
administrators face the challenge of balancing limited resources in different types of wards
and patients caused by the time-varying nature and high uncertainty of hospital resource
requirements. In this paper, we study the problem of dynamic bed allocation and patient
admission control in a hospital with three types of wards in the COVID-19 epidemic. The
bed manager faces trade-offs: (1) From the perspective of dynamic bed allocation, the
arrival rate of COVID-19 patients directly leads the isolation beds to be insufficient or
empty due to the fluctuations of the epidemic. In this context, balancing the allocation
of beds among different types of wards is critical to improving bed utilization. (2) From
the perspective of patient admission control, admitting too many elective patients will
delay the treatment of emergency and COVID-19 patients in the future while admitting
too few elective patients may result in a waste of medical resources. To solve the above
problems, we propose an MIP model to jointly optimize bed resource allocation and patient
admission. Specifically, the bed manager should make the bed allocation decisions on the
isolation, buffer, and general wards and how many elective patients should be admitted
in each period. Considering the stochastic arrivals, the uncertainty of the length of stay,
and the preference of hospital administrators, we propose a dynamic bed allocation and
patient admission control problem with the objective of minimizing the total operating cost
reflecting multiple criteria. The total operating cost is composed of the bed retrofitting cost,
the empty cost, the waiting cost, the rejection cost, and the delayed transfer cost.

Based on the above analysis, the main contributions to this study are:
(1) Considering buffer wards established to prevent cross-infection and secondary

infection of COVID-19 inside the hospital, we study the dynamic bed allocation and patient
admission control problem with three different types of wards during an epidemic, isolation
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wards for admission of COVID-19 patients, buffer wards to screen the incubation risk of
COVID-19, and general wards to admit emergency and elective patients who have excluded
the risk of the incubation period of COVID-19.

(2) We formulate a MIP model that considers three different types of wards and
patients for dynamic joint optimization of bed allocation and patient admission decisions.
In addition, we propose a BBO-DBPA algorithm to solve this joint optimization problem and
obtain an optimal decision scheme that minimizes the total operating cost of the hospital.

(3) Numerical experiments are conducted to investigate how the optimal decision
scheme depends on some key parameters. Furthermore, we evaluate the performance of
the optimal decision scheme by comparing it with some benchmark policies which are
executable and have significant practical implications.

The remainder of this paper is organized as follows. In Section 2, we briefly review
the relevant literature. Section 3 presents the problem description and symbol introduction.
Section 4 gives the basic optimization formula for the programming problems. Section 5
describes the proposed BBO-DBPA algorithm. In Section 6, we analyze the numerical results
and evaluate the performance of the optimal policy with benchmark policies. Section 7
makes conclusions and presents future research.

2. Literature Review

This paper focuses on the impact of dynamic bed allocation and patient admission
control policies during the COVID-19 pandemic. So, the following three streams of literature
contribute to this research: the inpatient management of epidemics, bed planning, and
patient admission scheduling.

For the inpatient management of epidemics, hospitals tend to adopt three ways
of admission to arrange newly arrived patients during the pandemic. The first is to
place both confirmed, and unconfirmed patients in isolation wards [5,8]. Heins et al. [9]
forecasted the short-term bed occupancy of patients with confirmed and suspected COVID-
19 by Monte Carlo simulation and used the predictions to guide bed allocation. The
second way for hospitals is to admit patients who cannot be confirmed for COVID-19
to the general wards with additional personal protection [6]. A cross-sectional study
by Liu et al. [10] found that this could somewhat free up isolation beds. Unfortunately,
unexpected infections still occur. In order to prevent and control the epidemic more strictly,
the last method is to set up buffer wards to provide timely treatment to critically ill patients
in some hospitals [3,7,11,12]. In terms of the operation management of hospitals with
buffer wards during a pandemic, Liu et al. [13] built the infinite- and finite-horizon Markov
decision process (MDP) models and proposed various iteration algorithms to obtain the
optimal policy.

The bed planning problem concerns how many beds should be allocated among mul-
tiple patient classes. From the perspective of bed types, scholars have studied single and
multiple types of beds. For the single type of beds, some researchers have focused on
solving different specific problems and developed integer programming models. Pishna-
mazzadeh et al. [14] studied the bed planning problem by considering elastic management,
developed an integer planning model and solved it using a simulated annealing algorithm.
Lei et al. [15] considered the bed planning problem for both deterministic and stochastic
length of stay and constructed an integer planning model by solving it using the CPLEX
solver. Research on the multi-type bed planning problem mainly focuses on two classes:
how to assign beds with specific features to a set of patients with specific requirements
and how many beds are configured in the various departments considering different goals.
Most papers construct integer programming models for the first class and solve them using
heuristic algorithms [16,17]. For the second class, Mathematical programming models and
simulation models are the most commonly used methods to deal with this problem [18–21].
In terms of dynamic bed management in a pandemic, Ma et al. [22] developed a dynamic
programming model to study the allocation of two types of beds (isolation beds and ordi-
nary beds) and the effect of the subsidy policy on serving three types of patients (COVID-19,
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emergency, and elective patients). The study shows that the dynamic allocation between
isolation and ordinary beds can provide better utilization of bed resources.

The patient admission scheduling problem (PAS problem) is first studied by Demeester
et al. [23]. It refers to assigning patients to appropriate beds within the planning horizon to
maximize treatment efficiency, patient comfort, and medical resource utilization while con-
sidering patients’ preferences and meeting necessary medical restrictions. From a strategic
point of view, patient admission scheduling is a kind of resource planning. To solve this
kind of problem, scholars have built integer programming optimization models and put
forward effective search algorithms to solve the specific problem. Relevant studies can be
divided into two streams according to whether the research needs are random or not. Some
scholars have studied the needs of deterministic patients and constructed integer program-
ming models, which have solved these models using a tabu search algorithm [24], general
low-level heuristics algorithm [25], column generation algorithm [26], biogeography-based
optimization algorithm [27,28], Fix-and-Relax and fix-and-optimization method [29], ex-
act solution method [30] and so on. Another kind of literature has studied the dynamic
situation of the PAS problem, that is, the patient demand is random. They built the integer
programming models and solved them by using the simulated annealing algorithm [31],
late acceptance hill-climbing algorithm [32], and column generation algorithm [33].

Although the current research on optimizing bed allocation and patient admission
control has achieved initial results, it still faces challenges. In terms of the research on bed
allocation decisions, most researchers have studied the problems of hospital bed configura-
tion in different departments [34,35]. Specifically, Broek d’Obrenan et al. [36] considered
the bed allocation for multi-types of patient flow among different departments. How-
ever, the above study only considered the allocation of hospital beds for ordinary patients
and ignored the allocation of isolation beds for infectious patients during the COVID-19
pandemic. Studies on patient admission scheduling have considered the problem that
different types of patients are assigned to different types of wards according to their prefer-
ences [22,30]. However, few studies consider bed retrofitting between different types of
wards. For the optimal decision under the pandemic, some papers noted the optimization
of inpatient admission only in buffer wards (e.g., Liu et al. [13]) but did not consider the
reality that different types of patient flows need to be placed in different types of wards.
To our knowledge, almost no one has studied the dynamic bed allocation and patient
admission control problem considering the buffer wards during the pandemic. In this
study, we study the dynamic bed allocation and patient admission control problem in a
hospital with three different types of wards during an epidemic. Furthermore, we propose
a mix-integer programming approach to obtain optimal dynamic bed allocation and patient
admission control policies.

3. Problem Statement

In this section, we describe the problem of dynamic bed allocation and patient admis-
sion control, considering three different types of wards in a hospital during a pandemic.
Additionally, we present the system structure and mathematical notations.

3.1. Problem Description

To illustrate our problem more clearly, Figure 1 illustrates this problem of dynamic
bed allocation and patient admission decisions for one hospital. Inpatients are divided
into three types after the initial screening at the triage table: confirmed COVID-19 patients,
at-risk-of-COVID-19 emergency patients, and at-risk-of-COVID-19 elective patients. To
ease analysis, patients with positive COVID-19 nucleic acid we considered are unvaccinated
and are infected for the first time. Additionally, at-risk-of-COVID-19 patients refer to those
who have not confirmed COVID-19 temporarily but have the incubation risk of COVID-19.
For simplicity, we define these three types of patients as COVID-19, emergency, and elective
patients in the remainder of the paper. During the regular management of the COVID-19
epidemic, the hospital has three types of wards: isolation wards, buffer wards, and general
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wards. If there are empty beds in the isolation wards, COVID-19 patients are admitted and
occupy an empty bed directly upon arrival. As introduced above, emergency and elective
patients should be sent to the buffer wards for COVID-19 screening. Similar to COVID-19
patients, emergency patients are directly admitted once they arrive. Unlike the first two,
the bed managers perform admission control for elective patients: admit them to the buffer
wards directly or let them join the waiting queue. In the buffer wards, once an inpatient has
been diagnosed with COVID-19, this patient should be immediately moved to the isolation
wards; otherwise, the patient will be excluded from COVID-19 risk and discharged or
transferred to the general wards. The maximum duration of patient observation in the
buffer wards is usually between 3 and 6 days. To make reasonable and efficient use of
bed resources, hospitals adopt a dynamic bed allocation policy, that is, retrofitting some
empty beds in one type of ward into beds in other types of wards. Note that the number of
empty beds reserved in different types of wards differs at the beginning of the planning
horizon. Based on the process described above, bed managers need to decide the number
of retrofitted beds among different types of wards and the number of elective patients
admitted to buffer wards in each planning period.

Isolation 

wards

Buffer 

wards

General 

wards

Empty 

isolation  

beds for 

retrofitting

Empty 

buffer  

beds for 

retrofitting

Empty 

general  

beds for 

retrofitting

COVID-19 patients

Emergency patients

Elective patients 

Diagnosed as confirmed COVID-19 patients

Excluded from the COVID-19 risk

Empty beds are used when 
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Beds become empty 

when patients leave
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patients are transferred from 

buffer wards to general wards

Beds become empty 
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Retrofit beds

Retrofit beds

Triage
Patient arrives

Figure 1. The illustration of patient flow and bed allocation considering buffer wards.

According to the epidemiological characteristics, the epidemic shows a fluctuating
trend. To cover the entire epidemic trend, we assume that the arrival process of COVID-19
patients shows the characteristics of first increasing and then decreasing. Additionally,
we assume that inpatients are not allowed direct access to the general wards during an
epidemic to prevent nosocomial infections, which is in line with the literature, for example,
He et al. [7]. For ease of understanding, we give the sequence of events in any period
as follows.

1. At the beginning of period t, the hospital manager ascertains the number of beds
occupied by different types of patients and the total number of beds in each type of
ward, respectively. In addition, the number of elective patients in the waiting queue
is obtained.

2. The hospital manager retrofits some beds in each type of ward.
3. Patients in buffer wards are transferred to isolation wards or general wards. The

hospital manager obtains the number of patients requiring to be transferred and
actually transferred from buffer wards to other types of wards according to the bed
information of the wards, respectively.

4. Newly arrived patients are admitted. The COVID-19 patients must be admitted
immediately using the reserved empty isolation beds. Additionally, the hospital
should admit emergency patients upon arrival to the buffer wards due to the greater
urgency level than elective patients. Moreover, new incoming elective patients join
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the waiting list if they are not admitted. Elective patients who cannot be admitted in
this period will be evaluated as to whether they will be admitted in the later periods.

5. At the end of period t, the cured patients are discharged from the designated inpatient
wards. At the same time, empty beds are cleaned following cleaning and disinfecting
procedures before admitting new patients or retrofitting other types of wards. This is
a common setting in the literature, e.g., Liu et al. [13] and Ma et al. [22].

3.2. Definition of Parameters and Variables

We introduce a summary of the notations defined and additional parameters and vari-
ables in Table 1. Note that, for notational and model simplicity, the bed retrofit between the
general and isolation beds can be carried out with the intermediate medium of buffer beds.

Table 1. Notations of the model.

Sets Definitions

I The set of patient types, indexed by i. i ∈ I = {1, 2, 3}, where type 1, type 2, and
type 3 represent the COVID-19 patients, the emergency patients, and elective
patients, respectively

J The set of ward types, indexed by j. j ∈ J = {1, 2, 3}, where type 1, type 2, and type
3 denote the isolation wards, buffer wards, and general wards, respectively

L The set of bed retrofit policies, indexed by l. The bed retrofit policies includes
four types: l = 1 represents the retrofit from buffer beds to isolation beds and l = 3
for reverse conversion; l = 2 represents the retrofit from general beds to buffer beds
and l = 4 for reverse conversion

T The set of time periods, indexed by t

Parameters Definitions

N The total number of beds in the hospital
λi,j,t The number of patient arrivals in type i ∈ I in ward type j ∈ J in period t ∈ T
di,j,t The number of type i ∈ I patients who need to transfer from buffer wards to ward

type j ∈ J in period t ∈ T
µi,j,t The number of patients’ discharge in type i ∈ I in ward type j ∈ J in period t ∈ T
cl The unit retrofitting cost of adopting the bed retrofit policy l ∈ L
δj The opportunity cost of an empty bed in ward type j ∈ J
σ The waiting cost of an elective patient in the waiting queue per unit time
hi The rejection cost of a type i ∈ I patient
σi,j The delaying cost of a type i ∈ I patient that needs to be transferred but is delayed

Variables Definitions

nl,t The number of beds retrofitted by policies l ∈ L in period t ∈ T
xt The number of elective patients admitted to the buffer wards in period t ∈ T
Xi,j,t The number of inpatients in type i ∈ I in ward type j ∈ J in period t ∈ T + 1
Yj,t The number of beds in ward type j ∈ J in period t ∈ T + 1, including occupied and

empty beds
Di,j,t The number of patients in type i ∈ I transferred from the buffer wards to ward type

j ∈ J in period t ∈ T
Wt The number of patients in the waiting queue in period t ∈ T + 1 (i.e., the length of

waiting queue)

4. Mathematical Formulation

In this section, we consider a finite planning horizon of T periods and give a mathe-
matical formulation of the dynamic bed allocation and patient admission control problem
by developing a MIP model. The objective of our problem is to minimize the total operating
cost, including the bed retrofitting cost, the empty cost, the waiting cost of elective patients,
the rejection cost of COVID-19 patients and emergency patients, and the delayed transfer
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cost of patients who should be transferred but were not. The decision variables are ni,t and
xt. Based on the above analysis, this problem can be formulated as follows:

min Z = ∑
t∈T

∑
l∈L

nl,tcl + ∑
t∈T

wWt + ∑
t∈T

∑
j∈J

δj(Yj,t+1 −∑
i∈I

(Xi,j,t+1 + µi,j,t))+

∑
t∈T

∑
j∈J

∑
i∈I

σi,j(di,j,t − Di,j,t) + ∑
t∈T

h1[λ1,1,t − (Y1,t+1 −∑
i∈I

Xi,1,t−

∑
i∈I

Di,1,t)] + h2[λ2,1,t − (Y2,t+1 −∑
i∈I

Xi,2,t + ∑
j∈J

∑
i∈I

Di,1,t)]

(1)

Subject to
n1,t ≤ Y2,t −∑

i∈I
Xi,2,t ∀t ∈ T (2)

n2,t ≤ Y3,t −∑
i∈I

Xi,3,t ∀t ∈ T (3)

n3,t ≤ Y1,t −∑
i∈I

Xi,1,t ∀t ∈ T (4)

n4,t ≤ Y2,t −∑
i∈I

Xi,2,t − n1,t ∀t ∈ T (5)

n1,tn3,t = 0 ∀t ∈ T (6)

n2,tn4,t = 0 ∀t ∈ T (7)

Y1,t+1 = Y1,t + n1,t − n3,t ∀t ∈ T (8)

Y2,t+1 = Y2,t + n2,t + n3,t − n1,t − n4,t ∀t ∈ T (9)

Y3,t+1 = Y3,t + n4,t − n2,t ∀t ∈ T (10)

D2,j,t = min{Yj,t+1 −∑
i∈I

Xi,j,t, d2,j,t} ∀j ∈ J, ∀t ∈ T (11)

D3,j,t = min{Yj,t+1 −∑
i∈I

Xi,j,t − D2,j,t, d3,j,t} ∀j ∈ J, ∀t ∈ T (12)

xt ≤ λ3,2,t + Wt ∀t ∈ T (13)

xt ≤ max{Y2,t+1 −∑
i∈I

Xi,2,t + ∑
i∈I

Di,1,t + ∑
i∈I

Di,3,t − λ2,2,t, 0} ∀t ∈ T (14)

Xi,1,t+1 =Xi,1,t + Di,1,t + min{λi,1,t, Y1,t+1 −∑
i∈I

(Xi,1,t + Di,1,t)}−

µi,1,t ∀t ∈ T
(15)

X2,2,t+1 =X2,2,t − D2,1,t − D2,3,t + min{λ2,2,t, Y2,t+1−
∑
i∈I

(Xi,2,t − Di,1,t − Di,3,t)} − µ2,2,t ∀t ∈ T (16)

X3,2,t+1 = X3,2,t − D3,1,t − D3,3,t + xt − µ3,2,t ∀t ∈ T (17)

Wt+1 = Wt + λ3,2,t − xt ∀t ∈ T (18)

Xi,3,t+1 = Xi,3,t + Di,3,t−µi,3,t ∀i ∈ I, ∀t ∈ T (19)

Equation (1) is the objective function by minimizing hospital operating costs, including
five parts. The first term refers to the bed retrofitting cost. The second term is associated
with the waiting cost. The third term indicates the empty cost of the bed, where ∑

i∈I
(Xi,j,t+1 +

µi,j,t) represents the maximum number of patients before discharge in wards j at period t.
The fourth term represents the delayed transfer cost. The last two items express the rejection
costs of COVID-19 patients and emergency patients, where Y1,t+1 − ∑

i∈I
Xi,1,t − ∑

i∈I
Di,1,t
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represents the number of beds that can receive COVID-19 patients, and Y2,t+1 − ∑
i∈I

Xi,2,t +

∑
j∈J

∑
i∈I

Di,1,t represents the number of beds that can receive emergency patients.

Constraints (2)–(5) ensure that the number of retrofitted beds is no more than the
number of empty beds in different types of wards. Note that the empty beds in the
buffer wards should be the first ones retrofitted to isolation beds and then the general
beds, considering the pandemic control. Constraints (6) and (7) guarantee that no bed is
repeatedly retrofitted between any two types of beds in any period t. Constraints (8)–(10)
are bed conservation. Constraints (11)–(12) represent the patient transfer relationship,
where Yj,t+1 − ∑

i∈I
Xi,j,t and Yj,t+1 − ∑

i∈I
Xi,j,t − D2,j,t show the number of empty beds in

type 2 and type 3 wards before the patients were transferred, respectively. Constraint (13)
ensures that the number of elective patients admitted to buffer wards does not exceed the
sum of newly arrived patients and patients waiting in the queue in period t. Constraint (14)
ensures that the number of elective patients admitted is no more than the number of empty
beds in the buffer wards after admitting emergency patients. Constraints (15)–(19) are
the patient flow conservation where a and b represent the number of empty beds before
patients are admitted to type 1 and type 2 wards, respectively.

5. The Solution Method

In this section, we propose a BBO-DBPA algorithm to solve the dynamic bed allocation
and patient admission control problem. Biogeography-based optimization (BBO) is a new
effective evolutionary algorithm that is often used for solving NP-hard problems, and it is
proven to have a better performance compared to some other evolutionary algorithms [37].
To ensure that all solutions in the operation of the BBO-DBPA algorithm meet the model
constraints, we first provide the solution representation in the following.

5.1. Solution Representation and Decoding

In this research, we consider some constraints when representing the solutions so
that the solutions will always be feasible in the following optimization operations. In
order to represent all decision variables conveniently, we present each feasible solution
in a three-part vector. The first part, rd_n1,3,t, shows the retrofitting between buffer wards
and isolation wards. The second part, rd_n2,4,t, represents the retrofitting between buffer
wards and general wards. The third part, rd_xt, indicates the number of elective patients
admitted. These three parts have T cells, and each cell is a real number between 0 and 1.

Equations (20) and (21) describe the decoding process for rd_na,a+2,t, a = 1, 2.

tmpa,t = drd_na,a+2,t( f reebeda,t + f reebeda+1,t)− 0.5e − f reebeda+1,t (20){
na,t = −tmpa,t if tmpa,t < 0
na+2,t = tmpa,t if tmpa,t ≥ 0

(21)

where tmpa,t is an intermediate variable, f reebedj,t represents the number of empty beds in
wards j in period t, and

f reebedj,t = Yj,t −∑
i∈I

Xi,j,t (22)

Equation (23) describes the decoding process rd_xt.

xt =

{
rd_xt( f reebed2,t − λ2,2,t) if 0 ≤ f reebed2,t − λ2,2,t) < λ3,2,t + Wt
rd_xt(λ3,2,t + Wt) if λ3,2,t + Wt ≤ f reebed2,t − λ2,2,t)

(23)

This solution representation method can ensure that the solution in the optimization
operation always meets constraints (2)–(7) and (13)–(14).
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5.2. Creating Initial Solutions

In the BBO-DBPA algorithm, the diversity of initially generated solutions can signif-
icantly affect the effectiveness of the optimization process. We use generating solutions
twice to increase the diversity of the initial generation solutions. In the first step, some
solutions are randomly generated. In the second step, if there are duplicates among these
solutions, this number of solutions is randomly generated to replace these duplicates. This
operation ensures that the generated solutions are likely to be different.

5.3. Migration

The BBO-DBPA algorithm uses migration operation to share the features from good
solutions to poor solutions effectively. The migration operation can preserve good solutions
and further expand the search scope of the solutions. Each solution will be migrated in
the algorithm based on the value of the immigration rate (λ(s)) and the emigration rate
(µs), which is calculated as in Equations (24) and (25), respectively. According to (24) and
(25), the good solution has a larger emigration rate and a lower immigration rate than the
poor solution.

λ(s) = I(1−HSIs/HSImax), (24)

µ(s) = EHSIs/HSImax, (25)

where I is the maximum immigration rate; E is the maximum emigration rate; HSIs is the
fitness value of solution s. The better the solution, the smaller the total cost and the larger
the fitness value. HSImax is the maximum fitness value. Algorithm 1 shows the migration
operation of the BBO-DBPA algorithm.

Algorithm 1 The pseudo-code of the migration operation.

1: s⇐ the solution s
2: length (s)⇐ the size of the solution
3: λ(s)⇐ calculate the migration rate of all solutions according to Equation (24)
4: µ(s)⇐ calculate the migration rate of all solutions according to Equation (25)
5: For i from 1 to length(s) do
6: NOC⇐ the number of codes, the value of NOC is 3T
7: For j from 1 to NOC do
8: r1 ⇐ random value between 0 and I
9: If r1 < λ(s) then

10: sk⇐ random solution with a probability proportional to µ(s)
11: si(j) = sk(j)
12: End if
13: End for
14: End for

5.4. Mutation

In the BBO-DBPA algorithm, a mutation operation is performed to increase the variety
of solutions and to escape from the local optimality trap. Different solutions have different
mutation rates. The mutation rate of the solution s is related to the prior probability of
existence s (Ps). In general, high and low HSI solutions are less likely to exist than medium
HSI solutions. The relationship between Ps and HSI is shown in Figure 2.

The mutation rate m(s) is calculated as in Equation (26).

m(s) = mmax(1− Ps/Psk ), (26)

where mmax is the maximum mutation probability; Psk is the maximum prior probability
of existence.

If only the mutation operation described above is performed, the mutation probability
of the good solutions and the poor solutions is relatively large. This way allows the poor
solutions to improve but also makes the good solutions likely to worsen. To keep the good
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solutions, we add the elite strategy to the mutation operation of the BBO-DBPA algorithm.
We only perform the mutation operation on the poor half of all solutions. Algorithm 2
shows the mutation operation of the BBO-DBPA algorithm.

Figure 2. The relationship between Ps and HSI.

Algorithm 2 The pseudo-code of the migration operation.

1: s⇐ the solution s
2: For i from 1 to length(s)/2 do
3: m(s)⇐ the mutation probability of solution s
4: For j from 1 to NOC do
5: r2 ⇐ random value between 0 and E
6: If r2 < m(s) then
7: si(j) = s

′
i(j)random solution with a probability proportional

8: to µ(s)
9: End if

10: End for
11: End for

5.5. The Structure of the BBO-DBPA Algorithm

The general framework of the BBO-DBPA algorithm is shown in Figure 3. Specifically,
the experiment is conducted in the following steps:

Step 1: Setting the parameters of the algorithm, including the maximum number of
iterations (maxGeneration), the size of the initially generated solutions (N), the maximum
immigration rate (I), the maximum emigration rate (E), and the maximum prior probability
of existence (Psk ), the maximum mutation probability (mmax).

Step 2: Initiating solutions. The BBO-DBPA algorithm generates the initial solutions
as described in Section 5.2 and starts the improvement loop after generating the initial
solutions.

Step 3: Sorting of solutions. The costs of the decision options represented by those
solutions are calculated as described in Section 5.1, and the fitness values are given to these
solutions. Based on it, all solutions are sorted from largest to smallest.

Step 4: Migration operation. Execute the migration operation as described in Section 5.3.
Step 5: Mutation operation. Execute the mutation operation as described in Section 5.4.
Step 6: If the number of iterations is greater than maxGeneration, stop the iteration

and output the optimal solution; otherwise, proceed to Step 3.
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Initiating solutions

Begin

Sorting of solutions

Migration operation

Mutation operation

No

Parameter setting

End condition 

satisfied?

End and output 

results
Yes

Figure 3. The flow chart of the BBO-DBPA algorithm.

6. Computational Experiments

In this section, we first analyze the base case by implementing the BBO-DBPA algo-
rithm with a large finite iteration to find the optimal policy. Then, we present a sensitivity
analysis to discuss how the optimal policy depends on some key parameters. Finally, the
performance advantages are examined by comparison with some benchmark policies. All
the experiments are performed in MATLAB R2019b software. The experiments were run
on a computer with Windows 10 and an Intel Core i5-11400H processor with a 2.70 GHz
frequency and 16 GB of RAM.

6.1. Data Setting

The main data source is obtained from the public data website, which provides relevant
hospitalization data for the benchmark example in Demeester et al. [24] (https://people.cs.
kuleuven.be/wim.vancroonenburg/pas/, accessed on 17 April 2022). Specifically, we set N
= 286, T = 14, X2,3,1 = 15, X3,3,1 = 168. In addition, the information on arrival and discharge
for ED and elective patients is given in Appendix A1. Because there is no benchmark
dataset available for the problem formulated in this study, we refer to the real data of
reported COVID-19 from March 1 to March 7 and 27 April to 3 May 2022, in Jilin province
in China. It has raised the government’s concerns due to the sudden outbreak of the regional
epidemic (please see Appendix A2 for specific data). This number of reported COVID-19
was chosen as a benchmark for simulating the volatility of the pandemic and effectively
operating our proposed model at a given scale (i.e., 286 total beds). According to Pollock
and Lancaster [38], for the patient transfer in the buffer wards, we consider that 80% of the
number of reported COVID-19 (as type i = 1 patient) enter the isolation wards directly, and
20% of the number of reported COVID-19 (as type i = 2 or 3 patients) enter the buffer wards
to spend the observation period. We assume that COVID-19 patients in the incubation
period will be detected during the observation period in the buffer wards. Thus, we set the
observation period as three days based on COVID-19 evolution characteristics [39,40]. The
computer randomly generates the detection time of confirmed COVID-19 patients in the
buffer wards. In addition, the computer randomly generates the discharge times based on
the average length of stay of 7 days for COVID-19 patients [41]. To ease understanding,
we show all the hospitalization information of the three types of patients in the base case

https://people.cs.kuleuven.be/wim.vancroonenburg/pas/
https://people.cs.kuleuven.be/wim.vancroonenburg/pas/
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in Appendix A3. Based on Ma et al. [22] and communication with medical staff in real
hospitals, we set the unit retrofitting cost: cl = 10 for ∀l ∈ L; the opportunity cost of an
empty bed: δ1 = 3; δ2 = δ3 = 2; the waiting cost of an elective patient in the waiting queue
per unit time: w = 11; the rejection cost: h1 = 500, h2 = 150, h3 = 0; and the delaying cost of a
type-i patient that requires to be transferred but is delayed: σi,j = 1, ∀i ∈ I, ∀j ∈ I.

Furthermore, we modify the values of some parameters to investigate their impact
on the sensitivity analysis. Table 2 shows the sensitivity analysis numerical cases we
considered. About the parameters of the BBO-DBPA algorithm, we set the number of initial
solutions at 2000, the number of iterations at 150, the maximum immigration rate at 1, the
maximum emigration rate at 1, and the maximum mutation rate at 0.02.

Table 2. Information on sensitivity analysis of numerical cases.

Case Modified Parameter Values

1 The total number of beds (N) 206, 246, 286 1 , 326, 366
2 The number of COVID-19 patients’ Multiple 0.5, 0.75, 1, 1.25, 1.5 of base case’s

arrival (λ1,1,t) arrival rate of COVID-19 patients
3 The number of COVID-19 patients’ Multiple 0.8, 0.9, 1, 1.1, and 1.2 of base case’s

arrival (λ3,2,t) arrival rate of elective patients
1 The bolded numbers are the same as the values in the base case.

6.2. Base Case Study

We use the BBO-DBPA algorithm with a large finite space. After 992 s of running time
and 150 iterations, we obtain the optimal policy with the minimum total operating cost
of 22,672 in this hospital system. We present the results in Table 3. The results show that
the number of buffer beds retrofitted to isolation beds first increases and then decreases.
That is because the demand for isolation beds increases as more and more new COVID-19
patients arrive, then decreases in the planning horizon. Intuitively, there is no retrofit of
buffer beds to general beds because the demand for isolation beds is higher than that for
buffer beds or general beds during the pandemic.

Table 3. Hospital optimal decision scheme for dynamic bed allocation and admission control.

Decision t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14

n1,t 4 0 13 20 14 35 46 48 35 15 15 13 2 0
n2,t 56 51 53 12 11 7 0 22 19 29 2 3 0 2
n3,t 0 1 0 0 0 0 0 0 0 0 0 0 3 0
n4,t 0 0 0 0 0 0 0 0 0 0 0 0 0 0
xt 60 51 50 25 28 20 8 8 20 28 15 6 9 11

The number of general beds retrofitted to buffer beds shows two peaks respectively
on days 1–3 and days 8–10, and the number is higher during days 1–3 than days 8–10. That
is because buffer beds are in short supply when faced with a demand from non-COVID-19
patients in the early periods. After the incubation period (3 days), the number of general
beds retrofitted to buffer beds decreases to ensure the needs of the general wards as patients
in the buffer wards start to move to the general wards. The reason for the peak on days
8–10 is that the decrease in the number of patients admitted to the buffer wards on days
4–7 leads to the decrease in the number of patients transferred to the general wards on
days 8–10, which leads to more empty beds to retrofit. In addition, three isolation beds
are retrofitted to buffer beds on day 13. The reason is that with fewer COVID-19 patients
arriving in the latter periods, the empty isolation beds can be retrofitted into buffer beds to
admit more non-COVID-19 patients.

Figures 4 and 5 give the total number of beds in different types of wards and the
number of patients in the waiting queue. In Figure 4, the blue line indicates the number of
beds in the isolation wards, the red line represents the number of beds in the buffer wards,
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and the green line shows the number of beds in the general wards. Figure 4 shows that the
number of isolation beds increases rapidly in the first seven days, then the increasing trends
are moderate in the latter periods. Moreover, the number of buffer beds increases rapidly
from day 1 to 4 and decreases gradually after day 5. Furthermore, the number of general
beds shows an overall downward trend. The reason for the above trend corresponds to
the decision variables, which are shown in Table 3. Figure 5 shows that the number of
patients in the waiting queue gradually increases over time. Intuitively, as the number of
COVID-19 arrivals increases, some buffer beds are retrofitted to isolation beds, the buffer
beds are in short supply, and more and more elective patients are joining the waiting queue
to wait for inpatient services. The optimized results can provide decision support for
hospital administrators. During a pandemic, hospitals should make some beds empty
to admit future arrivals of COVID-19 patients and emergency patients by controlling the
admission of elective patients and retrofitting beds, which can help improve bed utilization
and overall patient survival.
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Figure 4. The number of beds in different types of wards.
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Figure 5. The number of patients in the waiting queue in base case.
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6.3. Sensitivity Analysis

In this section, a sensitivity analysis is used to verify the effectiveness of the proposed
model in dealing with different situations. We first conduct the experiments with some
variations in the total number of beds, the arrival rate of COVID-19 patients, and the
arrival rate of elective patients to explore the impact of the pandemic outbreak on hospital
operations. Then, we compare our optimal policy with some benchmarks. Note that all the
other parameters we do not mention are the same as the baseline values.

6.3.1. Impact of the Total Number of Beds

We first consider the impact of the total number of beds by varying N from 206 to
366 with a difference of 40. Table 4 shows the execution time of the BBO-DBPA algorithm
in seconds and the total operating cost depending on the number of beds. Moreover, we
investigate the impact of the total number of beds on the optimal dynamic policy in Table 5.
We can see that the trend of each decision variable is roughly the same as the base case
when we change the total number of beds. The larger the number of beds, the larger the
number of general beds retrofitted to buffer beds, the larger the number of buffer beds
retrofitted to isolation beds, and the larger the number of elective patients admitted.

Table 4. The execution time and optimization results in case 1.

N 206 246 286 326 366

The execution time 1013 996 992 991 1004
The total operating cost 48,958 28,546 22,672 18,603 14,946

In the first periods, the number of general beds retrofitted to buffer beds and the number
of elective patients admitted when N = 206 and 246 are smaller than those when N = 286, 326,
and 366. The reason is that the empty beds are insufficient to retrofit from general wards to
buffer wards. On days 9 to 14, the number of admitted elective patients when N = 326 and
366 is more than when N = 206, 246, and 286. The reason is that the supply of buffer beds
when N = 326 and 366 is more abundant than when N = 206, 246, and 286, so more elective
patients can be admitted.

Figures 6–9 show the number of beds in each type of ward and the number of patients in
the waiting queue under the different total numbers of beds, respectively. In Figures 6–9, the
blue, red, green, black, and mauve lines indicate the corresponding indicator values when the
total number of beds is 206, 246, 286, 326, and 366, respectively. As the total number of beds
increases, the number of beds in each type of ward increases, and the number of patients in
the waiting queue decreases. The reason is that different types of beds are in short supply for
admitting all patients requiring hospitalization. When N = 326 and 366, the number of patients
in the waiting queue decreases from day 13 to 14. The reason is that there is a sufficient supply
of buffer beds to allow elective patients to be admitted.
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Figure 6. The number of beds in isolation wards in case 1.
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Table 5. Comparison of optimal decision schemes in case 1.

Decision Variable N t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14

206 0 0 13 21 16 18 47 22 24 12 12 9 0 0
246 3 0 12 27 11 33 58 25 31 12 12 9 0 0

n1,t 286 4 0 13 20 14 35 46 48 35 15 15 13 2 0
326 0 0 11 36 9 29 49 45 46 17 15 13 0 0
366 0 4 2 29 24 26 48 46 46 17 15 13 0 0

206 3 41 36 13 16 5 15 32 16 0 9 0 0 0
246 27 57 36 20 5 5 12 34 19 1 10 0 0 1

n2,t 286 56 51 53 12 11 7 0 22 19 29 2 3 0 2
326 58 50 61 45 11 0 0 13 19 22 17 3 0 0
366 75 34 48 78 27 0 0 8 16 22 17 11 0 1

206 0 0 0 0 0 0 0 0 0 0 0 0 3 0
246 0 0 0 0 0 0 0 0 0 0 0 0 5 0

n3,t 286 0 1 0 0 0 0 0 0 0 0 0 0 3 0
326 0 0 0 0 0 0 0 0 0 0 0 0 0 5
366 0 0 0 0 0 0 0 0 0 0 0 0 3 7

206 0 0 0 0 0 0 0 0 0 0 0 0 0 0
246 0 0 0 0 0 0 0 0 0 0 0 0 1 0

n4,t 286 0 0 0 0 0 0 0 0 0 0 0 0 0 0
326 0 0 0 0 0 0 0 0 0 0 0 0 2 0
366 0 0 0 0 0 0 1 0 0 0 0 0 1 0

206 13 37 34 28 53 27 12 6 12 11 9 0 1 1
246 34 54 34 27 25 22 12 6 12 11 10 0 3 4

xt 286 60 51 50 25 28 20 8 8 20 28 15 6 9 11
326 61 50 55 54 30 19 1 9 25 34 27 20 27 33
366 61 50 55 76 43 18 1 9 31 34 27 33 33 39
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Figure 7. The number of beds in buffer wards in case 1.
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Figure 8. The number of beds in general wards in case 1.
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Figure 9. The number of patients in the waiting queue in case 1.

6.3.2. Impact of the Arrival Rate of COVID-19 Patients

We now consider the impact of the arrival rate of COVID-19 patients by varying
λ1,1,t from 0.5 to 1.5 times the base case’s value with a difference of 0.25. Table 6 shows
the execution time of the BBO-DBPA algorithm in seconds and the total operating cost
depending on the arrival rate of COVID-19 patients.

Table 6. The execution time and optimization results in case 2.

Multiple of Base Case’s λ1,1,t 0.5 0.75 1 1.25 1.5

The execution time 982 970 980 985 963
The total operating cost 8125 17982 26142 49188 79268

We investigate the impact of the arrival rate of COVID-19 patients on the optimal
dynamic policy in Table 7. We can see that the trend of each decision variable is roughly the
same as the base case when we change the arrival rate of COVID-19 patients. Moreover, the
larger the arrival rate of COVID-19 patients, the larger the number of buffer beds retrofitted
to isolation beds, and the smaller the number of elective patients admitted. It suggests that
hospitals should admit fewer elective patients, thus freeing up beds to admit more new
arriving COVID-19 patients to reduce the total operating cost.

Table 7. Comparison of optimal decision schemes in case 2.

Decision Variable
Multiple
of Base
Case’s
λ1,1,t

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14

0.5 4 0 0 8 10 22 27 25 27 14 9 0 0 0
0.75 4 0 2 7 15 36 36 36 35 17 13 5 0 0

n1,t 1 4 0 3 16 19 45 45 48 38 17 13 10 0 0
1.25 4 0 8 15 20 60 69 20 29 10 13 12 0 0
1.5 4 0 2 22 25 58 64 20 25 11 14 12 0 0

0.5 57 51 54 47 3 0 0 0 9 21 7 1 0 4
0.75 58 54 57 34 7 0 0 3 9 20 11 5 0 4

n2,t 1 58 54 61 32 6 1 0 18 18 7 6 4 0 0
1.25 57 59 57 19 8 5 7 26 7 0 11 5 0 0
1.5 58 53 62 24 9 0 5 25 7 2 11 5 0 0

0.5 0 0 0 0 0 0 0 0 0 0 0 2 2 9
0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 4

n3,t 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0
1.25 0 0 0 0 0 0 0 0 0 0 0 0 6 1
1.5 0 0 0 0 0 0 0 0 0 0 0 0 5 0

0.5 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0.75 0 0 0 0 0 0 0 0 0 0 0 0 1 0

n4,t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 60 49 55 45 43 26 13 26 37 37 40 32 36 38
0.75 62 50 55 30 28 16 7 17 32 39 33 25 29 30

xt 1 62 50 49 19 19 10 9 11 16 17 12 6 6 5
1.25 62 49 36 12 3 0 13 6 13 12 12 2 6 7
1.5 62 50 38 10 2 0 13 6 13 12 12 2 6 5
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Figures 10–13 show the number of beds in each type of ward and the number of pa-
tients in the waiting queue under different arrival rates of COVID-19 patients, respectively.
In Figures 10–13, the blue, red, green, black, and mauve lines represent the corresponding
indicator values when the number of COVID-19 patients (λ1,1,t) is 0.5, 0.75, 1, 1.25, and
1.5 multiples of the value of λ1,1,t in the base case, respectively. As the arrival rate of
COVID-19 patients increases, the number of beds in isolation wards increases, the number
of beds in buffer wards increases, the number of beds in general wards remains roughly the
same, and the number of patients in the waiting queue increases. The reason is that different
types of beds are in short supply for receiving all patients requiring hospitalization.

The number of the three types of beds is almost the same from day 1 to 4. The reason
is that the isolation beds are in adequate supply due to the small number of arriving
COVID-19 patients, and the buffer beds are in short supply because of the large number of
non-COVID-19 patients. Thus, the empty beds in the general wards are mainly retrofitted
to buffer beds to serve non-COVID-19 patients. When the arrival rate of COVID-19 patients
is at 1.25 and 1.5 times the base case, the number of beds in all three different types is almost
the same from day 10 to day 14. The reason is that hospital beds are almost already occupied
by many COVID-19 patients, so there are no beds available to retrofit into isolation beds.
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Figure 10. The number of beds in isolation wards in case 2.
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Figure 11. The number of beds in buffer wards in case 2.
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Figure 12. The number of beds in general wards in case 2.
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Figure 13. The number of patients in the waiting queue in case 2.

6.3.3. Impact of the Arrival Rate of Elective Patients

We now consider the impact of the arrival rate of elective patients by varying λ3,2,t from
0.8 to 1.2 times the base case’s value with a difference of 0.1. Table 8 shows the execution
time of the BBO-DBPA algorithm in seconds and the total operating cost depending on the
arrival rate of elective patients.

Table 8. The execution time and optimization results in case 3.

Multiple of Base Case’s λ3,2,t 0.8 0.9 1 1.1 1.2

The execution time 972 980 965 975 973
The total operating cost 20,937 21,602 22,605 23,611 24,833

Furthermore, we investigate the impact of the arrival rate of elective patients on the
optimal dynamic policy in Table 9. We can see that the trend of each decision variable is
roughly the same as the base case when we change the arrival rate of elective patients.
Moreover, the larger the arrival rate of elective patients, the larger the number of general
beds retrofitted to buffer beds, and the larger the number of elective patients admitted.
That is because the bigger the arrival rate of elective patients, the higher the demand for
buffer beds.

Figures 14–17 show the number of beds in each type of ward and the number of
patients in the waiting queue under different arrival rates of elective patients, respectively.
In Figures 14–17, the blue, red, green, black, and mauve lines show the corresponding indi-
cator values when the number of elective patients (λ3,2,t) is 0.8, 0.9, 1, 1.1, and 1.2 multiples
of the value of λ3,2,t in the base case, respectively. As the arrival rate of elective patients
increases, the number of beds in isolation wards remains roughly the same, the number of
beds in buffer wards increases, the number of beds in general wards decreases, and the
number of patients in the waiting queue increases. This is because the bed demand for
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COVID-19 patients has been met, and empty isolation beds are retrofitted to buffer beds to
receive arriving elective patients.

Table 9. Comparison of optimal decision schemes in case 3.

Decision Variable
Multiple
of Base
Case’s
λ3,2,t

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14

0.8 1 0 8 24 14 40 44 48 31 16 12 13 0 0
0.9 2 0 12 22 15 34 46 48 31 17 13 13 0 0

n1,t 1 3 0 13 23 16 31 46 48 36 13 15 13 1 0
1.1 5 0 14 25 12 29 46 48 39 12 15 13 0 0
1.2 6 0 15 27 11 26 46 48 44 9 15 13 1 0

0.8 44 40 46 25 8 15 4 22 16 26 16 2 0 0
0.9 49 47 52 17 13 4 2 22 17 29 7 6 0 2

n2,t 1 54 52 55 15 13 2 1 21 19 28 1 3 0 3
1.1 62 58 46 18 9 3 0 22 21 19 5 1 0 3
1.2 67 62 46 19 8 3 0 20 23 8 8 1 0 2

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0 0 0 1 1

n3,t 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.8 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0.9 0 0 0 0 0 0 0 0 0 0 0 0 5 0

n4,t 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0
1.1 0 0 0 0 0 0 0 0 0 0 0 0 3 0
1.2 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0.8 48 41 44 27 17 6 1 0 10 20 20 10 17 16
0.9 53 47 49 27 23 11 4 4 14 22 21 9 14 18

xt 1 59 52 52 25 30 18 5 7 21 28 14 9 9 13
1.1 66 56 45 32 37 27 9 8 24 30 12 8 9 12
1.2 70 60 44 34 44 38 8 13 28 28 16 5 8 10
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Figure 14. The number of beds in isolation wards in case 3.
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Figure 15. The number of beds in buffer wards in case 3.
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Figure 16. The number of beds in general wards in case 3.
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Figure 17. The number of patients in the waiting queue in case 3.

6.3.4. Performance Evaluation with Benchmark Policies

We explore the performance evaluation of the optimal dynamic policy by comparing it
with some benchmark policies. Inspired by the different hospital operational management,
we propose the following three benchmark policies from the perspective of bed retrofit
policy and patient admission control policy: (1) only adopting bed retrofit policy (dynamic
bed allocation), (2) only adopting patient admission control policy, and (3) neither adopting
bed retrofit policy nor patient admission control policy. For simplicity, we denote the three
benchmark policies above as BR policy, AC policy, and nBR–nAC policy, respectively. We
define the optimal dynamic policy proposed in this paper (i.e., simultaneously adopting
bed retrofit policy and patient admission control policy) as BR–AC policy.

These benchmark policies have data settings that are consistent with the base case to
guarantee fairness. Obviously, some parameters are not available under a specific policy.
Our objective is to measure the total operating cost in four different dynamic policies.

Figure 18 shows the total operating cost under the four different policies. We can
see that the BR–AC policy and BR policy are always better than the AC policy and the
nBR–nAC policy. The reason is that the surge of COVID-19 patients and those requiring
observation leads to an elevated demand for isolation beds and buffer beds. Thus adopting
the bed retrofit policy can significantly reduce the total rejection cost for COVID-19 patients
and the total waiting cost for elective patients, thereby significantly reducing the total
operating cost of the hospital.

It also shows that the BR–AC policy always performs better than the BR policy. The
reason is that based on using the bed retrofit policy and adopting the patient admission
control policy can delay some treatment of elective patients and reserve some empty beds
for emergency and COVID-19 patients who arrive in the future through the bed retrofit
policy. Intuitively, the difference in the total operating cost between the AC policy and the
nBR–nAC policy is slight as the total number of beds increases.
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Figure 18. The total operating cost under four different policies.

We also find that the total operating cost under the AC policy and the nBR–nAC policy
increase as N increases. In contrast, the total operating cost under the BR–AC policy and
BR policy decreases as N increases. That is because our experimental setup is to add beds
to the general wards. Thus the more general beds there are, the higher the empty cost the
hospital has, thereby increasing the total operating cost. However, the BR–AC and BR
policies can significantly reduce the total rejection cost for COVID-19 patients and the total
waiting cost for elective patients. Moreover, the more general beds there are, the lower the
hospital’s total operating cost.

7. Conclusions and Future Research

We introduce a new problem of dynamic bed allocation and patient admission con-
trol for hospitals with three different types of wards and three kinds of patients during
pandemics. In addition to isolation wards for COVID-19 patients and general wards for
non-COVID-19 patients, we consider buffer wards for at-risk-of-COVID-19 patients to
prevent nosocomial virus transmission further. To solve this problem, we formulate a
MIP model to minimize the total operating cost of the hospital. By using the proposed
BBO-DBPA algorithm, we find the approximate optimal solution. Through the analysis
of numerical experiments, we discuss how the dynamic bed policy and patient admission
control can effectively reduce the total operating cost of hospitals during the pandemic. In
addition, we evaluate the performance of the optimal policy by comparing it with some
benchmark policies. We conclude that when the admission control policy is used together
with the dynamic bed policy, the total operating cost of the hospital is significantly reduced.
Although our work is motivated by healthcare operations management under pandemics,
our method and insights can also be applied to other service operations requiring screening
and being assigned to different designated departments.

In future research, the proposed method could be extended to consider resource
extension by adding additional medical staff and critical equipment or providing new
suitable beds for hospitals and resource exchange among different hospitals. We can further
study hospital resource allocation and patient admission control optimization by using the
data-driven response to COVID-19. Note that intelligent medical care with the application
of AI technology is an important direction for healthcare operations. Our future study will
discuss the dynamic allocation of medical resources in hospitals with buffer wards based
on machine learning technology.
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