Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (107)

Search Parameters:
Keywords = bio-nano interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 400
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

20 pages, 2485 KiB  
Article
Optimizing Sunscreen Safety: The Impact of TiO2 Particle Size on Toxicity and Biocompatibility
by Adriana S. Maddaleno, Clàudia Casellas, Elisabet Teixidó, Laia Guardia-Escote, Maria Pilar Vinardell and Montserrat Mitjans
Nanomaterials 2025, 15(12), 951; https://doi.org/10.3390/nano15120951 - 19 Jun 2025
Viewed by 724
Abstract
The use of UV filters is a well-established strategy for preventing skin cancer and photoaging. Among inorganic filters, titanium dioxide (TiO2) provides excellent protection against both UVA and UVB radiation. Moreover, the use of such inorganic filters at the nano-sized scale [...] Read more.
The use of UV filters is a well-established strategy for preventing skin cancer and photoaging. Among inorganic filters, titanium dioxide (TiO2) provides excellent protection against both UVA and UVB radiation. Moreover, the use of such inorganic filters at the nano-sized scale has increased their acceptability because it ensures the cosmetically desired transparency in sunscreens that consumers demand. However, concerns remain regarding the potential toxicity of TiO2 nanoparticles, and discussion about their use in pharmaceuticals and cosmetics is still in progress. Their increased (bio)reactivity compared to bulk materials may lead to DNA damage. Furthermore, their capacity to cross dermal, respiratory, and gastrointestinal membranes remains a subject of debate. This study is therefore designed to assess and contrast the toxicological characteristics of a pair of commercially available titanium (IV) oxide sunscreens differing in particle size—microscale versus nanoscale. First, the morphology and hydrodynamic diameter of the TiO2 nanoparticles were characterized. Then, potential interactions and/or interferences of these nanoparticles with the methods used to evaluate cytotoxic behavior were studied. Finally, the hemocompatibility, cytotoxicity, phototoxicity, and genotoxicity of both micro- and nano-sized TiO2 were evaluated using human keratinocytes. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

46 pages, 5055 KiB  
Review
Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions
by Diptikar Behera, Kuang-Yen Liu, Firmansyah Rachman and Aman Mola Worku
Buildings 2025, 15(12), 2113; https://doi.org/10.3390/buildings15122113 - 18 Jun 2025
Viewed by 1428
Abstract
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while [...] Read more.
Lightweight concrete (LWC) has emerged as a transformative material in sustainable and high-performance construction, driven by innovations in engineered lightweight aggregates, supplementary cementitious materials (SCMs), fiber reinforcements, and geopolymer binders. These advancements have enabled LWC to achieve compressive strengths surpassing 100 MPa while reducing density by up to 30% compared to conventional concrete. Fiber incorporation enhances flexural strength and fracture toughness by 20–40%, concurrently mitigating brittleness and improving ductility. The synergistic interaction between SCMs and lightweight aggregates optimizes matrix densification and interfacial transition zones, curtailing shrinkage and bolstering durability against chemical and environmental aggressors. Integration of recycled and bio-based aggregates substantially diminishes the embodied carbon footprint by approximately 40%—aligning LWC with circular economy principles. Nanomaterials such as nano-silica and carbon nanotubes augment early-age strength development by 25% and refine microstructural integrity. Thermal performance is markedly enhanced through advanced lightweight fillers, including expanded polystyrene and aerogels, achieving up to a 50% reduction in thermal conductivity, thereby facilitating energy-efficient building envelopes. Although challenges persist in cost and workability, the convergence of hybrid fiber systems, optimized mix designs, and sophisticated multi-scale modeling is expanding the applicability of LWC across demanding structural, marine, and prefabricated contexts. In essence, LWC’s holistic development embodies a paradigm shift toward resilient, low-carbon infrastructure, cementing its role as a pivotal material in the evolution of next-generation sustainable construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 2959 KiB  
Article
Luminous Upconverted Nanoparticles as High-Sensitivity Optical Probes for Visualizing Nano- and Microplastics in Caenorhabditis elegans
by Bushra Maryam, Yi Wang, Xiaoran Li, Muhammad Asim, Hamna Qayyum, Pingping Zhang and Xianhua Liu
Sensors 2025, 25(11), 3306; https://doi.org/10.3390/s25113306 - 24 May 2025
Viewed by 504
Abstract
With the increasing prevalence of plastic pollution, understanding its impact on soil nematodes is crucial for environmental sustainability and food security. Traditional fluorescence-based probes have the limitations of high background noise and interference from autofluorescence. In this study, the luminous upconverted NaYF4:Yb3+ [...] Read more.
With the increasing prevalence of plastic pollution, understanding its impact on soil nematodes is crucial for environmental sustainability and food security. Traditional fluorescence-based probes have the limitations of high background noise and interference from autofluorescence. In this study, the luminous upconverted NaYF4:Yb3+/Er3+ nanoparticles acted as high-sensitivity probes for real-time visualization of ingestion and biodistribution of polystyrene microplastics (PS-MPs) and nanoplastics (PS-NPs) in Caenorhabditis elegans. The novel probes enabled efficient near-infrared-to-visible light conversion. This approach improved the precision of nano- and microplastic detection in biological tissues. Microscopic imaging revealed that the probes effectively distinguished size-dependent plastic distribution patterns, with microplastics remaining in the digestive tract, whereas nanoparticles penetrated intestinal walls and entered systemic circulation. Quantitative fluorescence analysis confirmed that PS-NPs exhibited higher bioavailability and deeper tissue penetration, providing crucial insights into plastic behavior at the organismal level. The different toxicities of PS-NPs and PS-MPs were further confirmed by measurement of the locomotor impairments and the physiological disruptions. These findings emphasize the broader applications of upconverted nanoparticles as advanced bio-imaging probes, offering a sensitive and non-invasive tool for tracking pollutant interactions in environmental and biological systems. Full article
(This article belongs to the Special Issue Novel Biosensors Based on Nanomaterials)
Show Figures

Graphical abstract

13 pages, 20626 KiB  
Article
Sample Preparation Protocol for Laboratory Cryo-Soft X-Ray Microscopy for Studying Cellular Nanoparticle Uptake
by Komang G. Y. Arsana, Martin Svenda and Hans M. Hertz
Int. J. Mol. Sci. 2025, 26(4), 1657; https://doi.org/10.3390/ijms26041657 - 15 Feb 2025
Viewed by 989
Abstract
Soft X-ray microscopy (SXM) is a powerful technique for high-resolution biomedical imaging, enabling the observation of bio–nano interactions in near-native conditions without the need for heavy metal staining and fluorescence labeling. A laboratory soft X-ray microscope (LSXM) was developed to bridge the resolution [...] Read more.
Soft X-ray microscopy (SXM) is a powerful technique for high-resolution biomedical imaging, enabling the observation of bio–nano interactions in near-native conditions without the need for heavy metal staining and fluorescence labeling. A laboratory soft X-ray microscope (LSXM) was developed to bridge the resolution gap between light microscopy and electron microscopy in cellular imaging. However, LSXMs employ a lower-brightness X-ray source in comparison to those operated in synchrotron facilities, which can negatively affect the contrast of X-ray micrographs. Therefore, proper sample preparation is essential to achieve optimal imaging results. This paper details an LSXM sample preparation protocol for investigating cellular nanoparticle uptake. Samples are prepared using optimized parameters for both manual plunge-freezing and automated vitrification, ensuring the rapid transition of biological material into a solid state with controllable thickness in the 5–10 μm range, preserving cellular structures and enabling optimal X-ray transmission for cellular imaging. We demonstrate the effectiveness of this protocol in facilitating the observation of nanoparticle uptake in two different biological samples: murine macrophages and acanthamoeba. Controlling ice thickness improves X-ray transmission through the specimen, enhancing the contrast and image quality of SXM. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

12 pages, 2825 KiB  
Proceeding Paper
Electrostatic Surface Functionalization of Physical Transducers of (Bio)Chemical Sensors: Thiocyanate-Modified Gold Interface
by Borys A. Snopok, Arwa Laroussi, Tetyana V. Snopok and Shavkat Nizamov
Eng. Proc. 2024, 82(1), 70; https://doi.org/10.3390/ecsa-11-20385 - 25 Nov 2024
Viewed by 387
Abstract
The immobilization of functional nano-blocks by means of electrostatic interactions is a promising technology for creating sensitive layers of (bio)chemical sensors. This is due to the unique ability of electrostatic interactions for directional immobilization and the uniform distribution of charged objects over the [...] Read more.
The immobilization of functional nano-blocks by means of electrostatic interactions is a promising technology for creating sensitive layers of (bio)chemical sensors. This is due to the unique ability of electrostatic interactions for directional immobilization and the uniform distribution of charged objects over the surface. This report discusses methods for introducing an electrostatically active buffer layer onto a gold surface and studies its interaction with nanoparticles carrying charges of different signs on their surface. To study the adsorption capacity of the gold surface modified with thiocyanate, silver nanoparticles of 60 nm in size, stabilized by positively charged at pH 5–6 polymer (Ag-NP&BPEI) and negatively charged coatings (Ag-NP&CIT, Ag-NP&PEG, and Ag-NP&PVP), were used as an electrostatic probe. The analysis of SPR and UV-VIS spectroscopy results, electrochemical measurements, and wide-field surface plasmon resonance microscopy imaging indicate that the gold surface modified with thiocyanate behaves as a negatively charged object in processes driven by electrostatic interactions. Full article
Show Figures

Figure 1

16 pages, 3694 KiB  
Article
Investigating the Effect of Nano-Crystalline Cellulose in Nitrile Butadiene Rubber Matrix for Improved Thermo-Mechanical Properties
by Asra Nafees, Saud Hashmi and Rafiq Ahmed
Processes 2024, 12(11), 2350; https://doi.org/10.3390/pr12112350 - 26 Oct 2024
Cited by 1 | Viewed by 1547
Abstract
The escalating demand for sustainable rubber products has spurred research into alternative reinforcing fillers, driven by concerns regarding the detrimental effects of using conventional fillers like carbon black and silica. In this investigation, nano-crystalline cellulose (NCC), derived from micro crystalline cellulose (MCC), sourced [...] Read more.
The escalating demand for sustainable rubber products has spurred research into alternative reinforcing fillers, driven by concerns regarding the detrimental effects of using conventional fillers like carbon black and silica. In this investigation, nano-crystalline cellulose (NCC), derived from micro crystalline cellulose (MCC), sourced from sugarcane bagasse via acid hydrolysis, serves as a bio-filler to reinforce Nitrile Butadiene Rubber (NBR) matrices. NBR-NCC nano-composites were prepared using a two-roll mill, varying NCC from 1–5 parts per hundred rubber matrices, followed by hot press curing. NCC and NBR-NCC nano-composites were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), curing characteristics, thermo-mechanical testing, thermal aging and motor oil resistance. Chemical interactions between the NCC and NBR matrix were verified with FTIR. The SEM images of the NCC showed a combination of rod-like and spherical morphologies and a homogenous dispersion of NCC in NBR-NCC nano-composites with some agglomeration, notably at higher percentages of NCC. It is shown that the cure time decreases with increasing NCC loading which mimics a shorter industrial production cycle. The results also showed an increase in tensile strength, hardness, oil resistance and a rise in degradation temperature when compared to NBR at approximately 34%, 36%, 38% and 32 °C, respectively, at 3 phr NCC loading. Furthermore, NBR-NCC nano-composites showed a lower decrease in mechanical properties after aging when compared to NBR. The findings of this research suggest that the NBR-NCC nano-composites may find applications in high oil resistance seals and rubber gloves where higher thermal stability is strictly required. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Graphical abstract

21 pages, 2088 KiB  
Review
Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review
by Olusegun A. Afolabi and Ndivhuwo Ndou
Polymers 2024, 16(13), 1907; https://doi.org/10.3390/polym16131907 - 3 Jul 2024
Cited by 22 | Viewed by 3838
Abstract
Nanocomposites with polymer matrix provide tremendous opportunities to investigate new functions beyond those of traditional materials. The global community is gradually tending toward the use of composite and nanocomposite materials. This review is aimed at reporting the recent developments and understanding revolving around [...] Read more.
Nanocomposites with polymer matrix provide tremendous opportunities to investigate new functions beyond those of traditional materials. The global community is gradually tending toward the use of composite and nanocomposite materials. This review is aimed at reporting the recent developments and understanding revolving around hybridizing fillers for composite materials. The influence of various analyses, characterizations, and mechanical properties of the hybrid filler are considered. The introduction of hybrid fillers to polymer matrices enhances the macro and micro properties of the composites and nanocomposites resulting from the synergistic interactions between the hybrid fillers and the polymers. In this review, the synergistic impact of using hybrid fillers in the production of developing composite and nanocomposite materials is highlighted. The use of hybrid fillers offers a viable way to improve the mechanical, thermal, and electrical properties of these sophisticated materials. This study explains the many tactics and methodologies used to install hybrid fillers into composite and nanocomposite matrices by conducting a thorough analysis of recent research. Furthermore, the synergistic interactions of several types of fillers, including organic–inorganic, nano–micro, and bio-based fillers, are fully investigated. The performance benefits obtained from the synergistic combination of various fillers are examined, as well as their prospective applications in a variety of disciplines. Furthermore, the difficulties and opportunities related to the use of hybrid fillers are critically reviewed, presenting perspectives on future research paths in this rapidly expanding area of materials science. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 6744 KiB  
Article
Enhancing Efficiency of Dye Sensitized Solar Cells by Coinage Metal Doping of Cyanidin-Silver Trimer Hybrids at TiO2 Support Based on Theoretical Study
by Margarita Bužančić Milosavljević, Martina Perić Bakulić, Željka Sanader Maršić, Antonija Mravak and Vlasta Bonačić-Koutecký
Nanomaterials 2024, 14(12), 1034; https://doi.org/10.3390/nano14121034 - 15 Jun 2024
Cited by 1 | Viewed by 1465
Abstract
Identification of a natural-based sensitizer with optimal stability and efficiency for dye-sensitized solar cell (DSSC) application remains a challenging task. Previously, we proposed a new class of sensitizers based on bio-nano hybrids. These systems composed of natural cyanidin dyes interacting with silver nanoclusters [...] Read more.
Identification of a natural-based sensitizer with optimal stability and efficiency for dye-sensitized solar cell (DSSC) application remains a challenging task. Previously, we proposed a new class of sensitizers based on bio-nano hybrids. These systems composed of natural cyanidin dyes interacting with silver nanoclusters (NCs) have demonstrated enhanced opto-electronic and photovoltaic properties. In this study, we explore the doping of silver nanocluster within a cyanidin-Ag3 hybrid employing Density Functional Theory (DFT) and its time-dependent counterpart (TDDFT). Specifically, we investigate the influence of coinage metal atoms (Au and Cu) on the properties of the cyanidin-Ag3 system. Our findings suggest that cyanidin-Ag2Au and cyanidin-AgAuCu emerge as the most promising candidates for improved light harvesting efficiency, increased two-photon absorption, and strong coupling to the TiO2 surface. These theoretical predictions suggest the viability of replacing larger silver NCs with heterometallic trimers such as Ag2Au or AgAuCu, presenting new avenues for utilizing bio-nano hybrids at the surface for DSSC application. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

31 pages, 9946 KiB  
Review
Granulation of Lithium-Ion Sieves Using Biopolymers: A Review
by Inimfon A. Udoetok, Abdalla H. Karoyo, Emmanuel E. Ubuo and Edidiong D. Asuquo
Polymers 2024, 16(11), 1520; https://doi.org/10.3390/polym16111520 - 28 May 2024
Cited by 4 | Viewed by 2250
Abstract
The high demand for lithium (Li) relates to clean, renewable storage devices and the advent of electric vehicles (EVs). The extraction of Li ions from aqueous media calls for efficient adsorbent materials with various characteristics, such as good adsorption capacity, good selectivity, easy [...] Read more.
The high demand for lithium (Li) relates to clean, renewable storage devices and the advent of electric vehicles (EVs). The extraction of Li ions from aqueous media calls for efficient adsorbent materials with various characteristics, such as good adsorption capacity, good selectivity, easy isolation of the Li-loaded adsorbents, and good recovery of the adsorbed Li ions. The widespread use of metal-based adsorbent materials for Li ions extraction relates to various factors: (i) the ease of preparation via inexpensive and facile templation techniques, (ii) excellent selectivity for Li ions in a matrix, (iii) high recovery of the adsorbed ions, and (iv) good cycling performance of the adsorbents. However, the use of nano-sized metal-based Lithium-ion sieves (LISs) is limited due to challenges associated with isolating the loaded adsorbent material from the aqueous media. The adsorbent granulation process employing various binding agents (e.g., biopolymers, synthetic polymers, and inorganic materials) affords composite functional particles with modified morphological and surface properties that support easy isolation from the aqueous phase upon adsorption of Li ions. Biomaterials (e.g., chitosan, cellulose, alginate, and agar) are of particular interest because their structural diversity renders them amenable to coordination interactions with metal-based LISs to form three-dimensional bio-composite materials. The current review highlights recent progress in the use of biopolymer binding agents for the granulation of metal-based LISs, along with various crosslinking strategies employed to improve the mechanical stability of the granules. The study reviews the effects of granulation and crosslinking on adsorption capacity, selectivity, isolation, recovery, cycling performance, and the stability of the LISs. Adsorbent granulation using biopolymer binders has been reported to modify the uptake properties of the resulting composite materials to varying degrees in accordance with the surface and textural properties of the binding agent. The review further highlights the importance of granulation and crosslinking for improving the extraction process of Li ions from aqueous media. This review contributes to manifold areas related to industrial application of LISs, as follows: (1) to highlight recent progress in the granulation and crosslinking of metal-based adsorbents for Li ions recovery, (2) to highlight the advantages, challenges, and knowledge gaps of using biopolymer-based binders for granulation of LISs, and finally, (3) to catalyze further research interest into the use of biopolymer binders and various crosslinking strategies to engineer functional composite materials for application in Li extraction industry. Properly engineered extractants for Li ions are expected to offer various cost benefits in terms of capital expenditure, percent Li recovery, and reduced environmental footprint. Full article
Show Figures

Figure 1

12 pages, 540 KiB  
Communication
Nano(bio)Materials Do Not Affect Macrophage Phenotype—A Study Conducted by the REFINE Project
by Christopher A. W. David, Jolanda P. Vermeulen, Sabrina Gioria, Rob J. Vandebriel and Neill J. Liptrott
Int. J. Mol. Sci. 2024, 25(10), 5491; https://doi.org/10.3390/ijms25105491 - 17 May 2024
Viewed by 1252
Abstract
Macrophages are well known for their involvement in the biocompatibility, as well as biodistribution, of nano(bio)materials. Although there are a number of rodent cell lines, they may not fully recapitulate primary cell responses, particularly those of human cells. Isolation of tissue-resident macrophages from [...] Read more.
Macrophages are well known for their involvement in the biocompatibility, as well as biodistribution, of nano(bio)materials. Although there are a number of rodent cell lines, they may not fully recapitulate primary cell responses, particularly those of human cells. Isolation of tissue-resident macrophages from humans is difficult and may result in insufficient cells with which to determine the possible interaction with nano(bio)materials. Isolation of primary human monocytes and differentiation to monocyte-derived macrophages may provide a useful tool with which to further study these interactions. To that end, we developed a standard operating procedure for this differentiation, as part of the Regulatory Science Framework for Nano(bio)material-based Medical Products and Devices (REFINE) project, and used it to measure the secretion of bioactive molecules from M1 and M2 differentiated monocytes in response to model nano(bio)materials, following an initial assessment of pyrogenic contamination, which may confound potential observations. The SOP was deployed in two partner institutions with broadly similar results. The work presented here shows the utility of this assay but highlights the relevance of donor variability in responses to nano(bio)materials. Whilst donor variability can provide some logistical challenges to the application of such assays, this variability is much closer to the heterogeneous cells that are present in vivo, compared to homogeneous non-human cell lines. Full article
(This article belongs to the Special Issue Interaction of Nanomaterials with the Immune System: 3rd Edition)
Show Figures

Figure 1

22 pages, 4020 KiB  
Review
A Review for Uncovering the “Protein-Nanoparticle Alliance”: Implications of the Protein Corona for Biomedical Applications
by Burcu Önal Acet, Désirée Gül, Roland H. Stauber, Mehmet Odabaşı and Ömür Acet
Nanomaterials 2024, 14(10), 823; https://doi.org/10.3390/nano14100823 - 8 May 2024
Cited by 17 | Viewed by 3484
Abstract
Understanding both the physicochemical and biological interactions of nanoparticles is mandatory for the biomedical application of nanomaterials. By binding proteins, nanoparticles acquire new surface identities in biological fluids, the protein corona. Various studies have revealed the dynamic structure and nano–bio interactions of the [...] Read more.
Understanding both the physicochemical and biological interactions of nanoparticles is mandatory for the biomedical application of nanomaterials. By binding proteins, nanoparticles acquire new surface identities in biological fluids, the protein corona. Various studies have revealed the dynamic structure and nano–bio interactions of the protein corona. The binding of proteins not only imparts new surface identities to nanoparticles in biological fluids but also significantly influences their bioactivity, stability, and targeting specificity. Interestingly, recent endeavors have been undertaken to harness the potential of the protein corona instead of evading its presence. Exploitation of this ‘protein–nanoparticle alliance’ has significant potential to change the field of nanomedicine. Here, we present a thorough examination of the latest research on protein corona, encompassing its formation, dynamics, recent developments, and diverse bioapplications. Furthermore, we also aim to explore the interactions at the nano–bio interface, paving the way for innovative strategies to advance the application potential of the protein corona. By addressing challenges and promises in controlling protein corona formation, this review provides insights into the evolving landscape of the ‘protein–nanoparticle alliance’ and highlights emerging. Full article
Show Figures

Figure 1

52 pages, 6842 KiB  
Review
Porous Inorganic Nanomaterials: Their Evolution towards Hierarchical Porous Nanostructures
by Anitta Jose, Tom Mathew, Nora Fernández-Navas and Christine Joy Querebillo
Micro 2024, 4(2), 229-280; https://doi.org/10.3390/micro4020016 - 18 Apr 2024
Cited by 6 | Viewed by 4090
Abstract
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption [...] Read more.
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption and interaction, porous channels providing accessibility to active/surface sites, and exposed reactive surface/active sites induced by uncoordinated bonds. These properties prove useful for the development of different porous composition types (metal oxides, silica, zeolites, amorphous oxides, nanoarrays, precious metals, non-precious metals, MOFs, carbon nanostructures, MXenes, and others) through different synthetic procedures—templating, colloidal synthesis, hydrothermal approach, sol-gel route, self-assembly, dealloying, galvanostatic replacement, and so—for different applications, such as catalysis (water-splitting, etc.), biosensing, energy storage (batteries, supercapacitors), actuators, SERS, and bio applications. Here, these are presented according to different material types showing the evolution of the structure design and development towards the formation of hierarchical porous structures, emphasizing that the formation of porous nanostructures came about out of the desire and need to form hierarchical porous nanostructures. Common trends observed across these different composition types include similar (aforementioned) applications and the use of porous nanomaterials as templates/precursors to create novel ones. Towards the end, a discussion on the link between technological advancements and the development of porous nanomaterials paves the way to present future perspectives on these nanomaterials and their hierarchical porous architectures. Together with a summary, these are given in the conclusion. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

18 pages, 5022 KiB  
Article
Machine Learning-Based Predictive Model to Assess Rheological Dynamics of Eco-Friendly Oils as Biolubricants Enriched with SiO2 Nanoparticles
by Girish Hariharan, Meghana Kundala Navada, Jeevan Brahmavar and Ganesha Aroor
Lubricants 2024, 12(3), 92; https://doi.org/10.3390/lubricants12030092 - 14 Mar 2024
Cited by 5 | Viewed by 2091
Abstract
Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present [...] Read more.
Efficient machinery operation relies on the performance of high-quality lubricants. Currently, mineral oils of different grades are widely employed for lubricating machine components, but their environmental impact is a concern. Biolubricants are potential alternatives to mineral oils due to environmental factors. The present study focuses on assessing the rheological characteristics of SiO2 nanoparticle (NP)-enhanced ecofriendly biolubricants for near zero and high-temperature conditions. Pure neem oil, pure castor oil and a 50:50 blend of both oils were considered as the base oils. Nanobiolubricants with enhanced dispersion stability were prepared for varied concentrations of NPs using an ultrasonification method. Viscosity analysis was conducted using an MCR-92 rheometer, employing the Herschel Bulkley model to precisely characterize the viscosity behavior of bio-oils. Due to the fluid–solid interaction between SiO2 NPs and bio-oils, a crossover trend was observed in the flow curves generated for different base oils enriched with SiO2 NPs. For neem oil, a significant increase in viscosity was noted for 0.2 wt% of NPs. Using the multilayer perceptron (MLP) algorithm, an artificial neural network (ANN) model was developed to accurately predict the viscosity variations in nanobiolubricants. The accuracy of the predicted values was affirmed through experimental investigations at the considered nanoSiO2 weight concentrations. Full article
Show Figures

Figure 1

15 pages, 2711 KiB  
Review
Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application
by Sitansu Sekhar Nanda and Dong Kee Yi
Int. J. Mol. Sci. 2024, 25(6), 3266; https://doi.org/10.3390/ijms25063266 - 13 Mar 2024
Cited by 18 | Viewed by 3454
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The [...] Read more.
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy. Full article
(This article belongs to the Special Issue State-of-the-Art Nanoscience in Asia)
Show Figures

Figure 1

Back to TopTop