Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review
Abstract
:1. Introduction to Composites and Nanocomposites
2. Major Fillers Used in Composites and Nanocomposites
- -
- Calcium carbonate is a frequently utilized inorganic filler because it helps to reduce costs while increasing the hardness, durability, and heat resistance of the composite and nanocomposite materials. It is economically priced in a wide range of particle dimensions and treatments from widely recognized regional producers, making it ideal for composite applications. The highest quality grades of calcium carbonate filler are derived from limestone or marble and are commonly employed in automobile components [14,34].
- -
- Kaolin (hydrous aluminum silicate) is the second most commonly used filler because it helps to create a polished finish and lessens shrinkage and cracking during composite and nanocomposite curing. It is most often known in the business as clay. Mined clays are treated with air flotation or water washing processes to remove impurities and classify the product for use in composites. They have a wide range of particle dimensions available because they help to increase thermal stability, boost impact strength, and increase resistance to weathering and chemical actions of composite and nanocomposite materials [113].
- -
- Alumina trihydrate is widely used to improve fire and smoke performance. When exposed to high temperatures, this filler emits water (hydration), which reduces flame spread and smoke production. Alumina trihydrate is frequently used in composite plumbing fixture applications, including bathtubs, shower stalls, and related building items [109].
- -
- Calcium sulfate is a common flame/smoke retardant used in the tub/shower industry. It has fewer sources of hydration and releases water at a reduced temperature. This mineral filler provides a low-cost flame and smoke retardant filler [14]. Table 1 shows several single fillers used for composite and nanocomposite materials and their methods of fabrication and processing.
3. Hybrid Filler Composites and Synergy Effect
4. Hybrid Fillers and Polymer Composites
5. Applications of Hybrid Fillers in Composites and Nanocomposites
6. Summary and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
SEM | Scanning electron microscopy |
TEM | Transition electron microscopy |
FTIR | Fourier transform infrared spectroscopy. |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
BET | Brunauer–Emmett–Teller |
WCA | Water contact angle |
DSC | Differential scanning calorimeter. |
UV | Ultraviolet |
IS | Impedance spectroscopy |
FTT | Fracture toughness test |
TGA | Thermogravimetric analysis |
RS | Raman spectroscopy |
ZP | Zeta potential |
CF | Coefficient of friction |
Ws | Wear rate |
BDS | Broadband dielectric spectroscopy |
References
- Johnson, T. History of Composites: The Evolution of Lightweight Composite Materials; ThoughtCo.: New York, NY, USA, 2020. [Google Scholar]
- Mal. Bar Incorporated. History of Composite Materials; Mal. Bar Incorporated: Cuba, MO, USA, 2024. [Google Scholar]
- Keramati, Y.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Umer, U. Micromechanical simulation of thermal expansion, elastic stiffness and piezoelectric constants of graphene/unidirectional BaTiO3 fiber reinforced epoxy hybrid nanocomposites. Acta Mech. 2023, 234, 6251–6270. [Google Scholar] [CrossRef]
- Peter, P.; Ikubanni Oki, M.; Adeleke Adekunle, A.; Stojanovic, B. A review of ceramic/bio-based hybrid reinforced aluminium matrix composites. Cogent. Eng. 2020, 7, 1727167. [Google Scholar] [CrossRef]
- Safdari, M.; Al-Haik, M.S. A Review on Polymeric Nanocomposites. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–146. [Google Scholar]
- Kuang, T.; Zhang, M.; Chen, F.; Fei, Y.; Yang, J.; Zhong, M.; Wu, B.; Liu, T. Creating poly(lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller. Adv. Compos. Mater. 2023, 6, 48. [Google Scholar] [CrossRef]
- Jiang, Q.; Pei, X.; Wu, L.; Li, T.; Lin, J. UV resistance and water barrier properties of PP/PLA/MAH/TiO2 functional hybrid biocomposite films for packaging application. Adv. Polym. Technol. 2018, 37, 2971–2980. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, H.; Yang, Y.; Huang, J.; Liu, T.; Kuang, T.; Jiang, S.; Hejna, A.; Liu, K. Effect of different proportions of CNTs/Fe3O4 hybrid filler on the morphological, electrical and electromagnetic interference shielding properties of poly(lactic acid) nanocomposites. e-Polymers 2023, 23, 20230006. [Google Scholar] [CrossRef]
- Krishnasamy, P.; Rajamurugan, G.; Belaadi, A.; Sasikumar, R. Dynamic mechanical characteristics of natural fiber hybrid composites, Bio composites and Nano composites –A Review. Eng. Res. Express 2024, 6, 012503. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Yun, B.Y.; Yang, S.; Yuk, H.; Wi, S.; Kim, S. Structurally advanced hybrid support composite phase change materials: Architectural synergy. Energy Storage Mater. 2021, 42, 164–184. [Google Scholar] [CrossRef]
- Lyu, L.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z.; et al. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng. Sci. 2018, 2, 26–42. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Noroozi, M.; Abrisham, M.; Eghbalinia, S.; Teimoury, F.; Bahramian, A.R.; Dehghan, P.; Sadri, M.; Goodarzi, V. A comprehensive review on carbon-based polymer nanocomposite foams as electromagnetic interference shields and piezoresistive sensors. ACS Appl. Electron. Mater. 2020, 2, 2318–2350. [Google Scholar] [CrossRef]
- Li, B.; Salcedo-Galan, F.; Xidas, P.I.; Manias, E. Improving Electrical Breakdown Strength of Polymer Nanocomposites by Tailoring Hybrid-Filler Structure for High-Voltage Dielectric Applications. ACS Appl. Nano Mater. 2018, 1, 4401–4407. [Google Scholar] [CrossRef]
- Ding, X.; Pan, Z.; Zhang, Y.; Shi, S.; Cheng, Y.; Chen, H.; Li, Z.; Fan, X.; Liu, J.; Yu, J.; et al. Regulation of Interfacial Polarization and Local Electric Field Strength Achieved Highly Energy Storage Performance in Polyetherimide Nanocomposites at Elevated Temperature via 2D Hybrid Structure. Adv. Mater. Interfaces 2022, 9, 2201100. [Google Scholar] [CrossRef]
- Guo, F.; Shen, X.; Zhou, J.; Liu, D.; Zheng, Q.; Yang, J.; Jia, B.; Lau, A.K.T.; Kim, J. Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Adv. Funct. Mater. 2020, 30, 1910826. [Google Scholar] [CrossRef]
- Luo, H.-B.; Pan, X.-R.; Yang, J.-H.; Qi, X.-D.; Wang, Y. Simultaneously Improved Dielectric Constant and Breakdown Strength of PVDF-based Composites with Polypyrrole Nanowire Encapsuled Molybdenum Disulfide Nanosheets. Chin. J. Polym. Sci. 2022, 40, 515–525. [Google Scholar] [CrossRef]
- Olhan, S.; Behera, B.K. Development of GNP nanofiller based textile structural composites for enhanced mechanical, thermal, and viscoelastic properties for automotive components. Adv. Compos. Hybrid Mater. 2024, 7, 25. [Google Scholar] [CrossRef]
- Wu, X.; Steiner, P.; Raine, T.; Pinter, G.; Kretinin, A.; Kocabas, C.; Bissett, M.; Cataldi, P. Hybrid Graphene/Carbon Nanofiber Wax Emulsion for Paper-Based Electronics and Thermal Management. Adv. Electron. Mater. 2020, 6, 2000232. [Google Scholar] [CrossRef]
- Foteinidis, G.; Tsirka, K.; Tzounis, L.; Baltzis, D.; Paipetis, A.S. The Role of Synergies of MWCNTs and Carbon Black in the Enhancement of the Electrical and Mechanical Response of Modified Epoxy Resins. Appl. Sci. 2019, 9, 3757. [Google Scholar] [CrossRef]
- Shajari, S.; Arjmand, M.; Pawar, S.P.; Sundararaj, U.; Sudak, L.J. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Compos. Part B Eng. 2019, 165, 662–670. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, J.H.; Yoon, K.H. EMI Shielding and Mechanical Properties of Polycarbonate Nanocomposites Containing CNT Composite Powder. Fibers Polym. 2021, 22, 1704–1710. [Google Scholar] [CrossRef]
- Ponnamma, D.; Sharma, A.K.; Saharan, P.; Al-Maadeed, M.A.A. Gas Sensing and Power Harvesting Polyvinylidene Fluoride Nanocomposites Containing Hybrid Nanotubes. J. Electron. Mater. 2020, 49, 2677–2687. [Google Scholar] [CrossRef]
- Gbaguidi, A.; Namilae, S.; Kim, D. Monte Carlo Model for Piezoresistivity of Hybrid Nanocomposites. J. Eng. Mater. Technol. 2018, 140, 011007. [Google Scholar] [CrossRef]
- Ramu, S.; Senthilkumar, N.; Rajendran, S.; Deepanraj, B.; Abdeta, D.B. Physical and Mechanical Characterization of Bamboo Fiber/Groundnut Shell/Copper Particle/MWCNT-Filled Epoxy Hybrid Polymer Nanocomposites. J. Nanomater. 2022, 2022, 3026881. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Yan, L. Nanoscale thermal transport in epoxy matrix composite materials reinforced with carbon nanotubes and graphene nanoplatelets. J. Nanoparticle Res. 2019, 21, 256. [Google Scholar] [CrossRef]
- Chaudhari, B.C.; Khanderay, J.; Patil, C.; Patil, A.M.; Joshi, S.A.; Singh, V.; Palodkar, K.K.; Sainath, A.V.S.; Gite, V.V.; Jirimali, H.D. Waste Eggshells for the Decoration of Carbon Nanotubes and Graphene Nanosheets with Hydroxyapatite for Preparation of LLDPE Nanocomposites. J. Polym. Environ. 2019, 27, 2352–2359. [Google Scholar] [CrossRef]
- Mamunya, Y.; Sushko, O.; Maruzhenko, O.; Paraschenko, I.; Pylypenko, A.; Dubrovka, F. Influence of Structure and Composition of Polymer Nanocomposites with Carbon and Hybrid Fillers on the Efficiency of Electromagnetic Shielding. Macromol. Symp. 2023, 408, 2100360. [Google Scholar] [CrossRef]
- Chiu, F.-C.; Behera, K.; Cai, H.-J.; Chang, Y.-H. Polycarbonate/Poly(vinylidene fluoride)-Blend-Based Nanocomposites—Effect of Adding Different Carbon Nanofillers/Organoclay. Polymers 2021, 13, 2626. [Google Scholar] [CrossRef]
- Damampai, K.; Pichaiyut, S.; Stöckelhuber, K.W.; Das, A.; Nakason, C. Ferric Ions Crosslinked Epoxidized Natural Rubber Filled with Carbon Nanotubes and Conductive Carbon Black Hybrid Fillers. Polymers 2022, 14, 4392. [Google Scholar] [CrossRef] [PubMed]
- Zagho, M.M.; AlMaadeed, M.A.A.; Majeed, K. Thermal Properties of TiO2NP/CNT/LDPE Hybrid Nanocomposite Films. Polymers 2018, 10, 1270. [Google Scholar] [CrossRef]
- Min, C.; Liu, D.; Shen, C.; Zhang, Q.; Song, H.; Li, S.; Shen, X.; Zhu, M.; Zhang, K. Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol. Int. 2018, 117, 217–224. [Google Scholar] [CrossRef]
- Huang, K.; Ning, H.; Hu, N.; Wu, X.; Wang, S.; Weng, S.; Yuan, W.; Alamusi; Wu, L.; Liu, Y. Synergistic effect of CB and MWCNT on the strain-induced DC and AC electrical properties of PVDF-HFP composites. Carbon 2019, 144, 509–518. [Google Scholar] [CrossRef]
- Ahmed, T.; Ya, H.H.; Khan, R.; Hidayat Syah Lubis, A.M.; Mahadzir, S. Pseudo-ductility, morphology and fractography resulting from the synergistic effect of CaCO3 and bentonite in HDPE polymer nano composite. Materials 2020, 13, 3333. [Google Scholar] [CrossRef]
- Kavimani, V.; Stalin, B.; Gopal, P.M.; Ravichandran, M.; Karthick, A.; Bharani, M. Application of r-GO-MMT Hybrid Nanofillers for Improving Strength and Flame Retardancy of Epoxy/Glass Fibre Composites. Adv. Polym. Technol. 2021, 2021, 6627743. [Google Scholar] [CrossRef]
- Liu, D.; Wu, L.; Wu, K.; Xu, S.; Sui, G.; Jing, M.; Zhao, J.; Wei, Y.; Fu, Q. Largely enhanced energy density of polypropylene based nanocomposites via synergistic hybrid fillers and high shear extrusion assisted dispersion. Compos. Part A Appl. Sci. Manuf. 2019, 119, 134–144. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Silva, W.M.; Woellner, C.F.; Owuor, P.S.; Chipara, A.C.; Lopes, M.C.; Tiwary, C.S.; Pedrotti, J.J.; Salvatierra, R.V.; et al. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 24485–24492. [Google Scholar] [CrossRef] [PubMed]
- PL, J.; Nallabothula, H.; Menon, A.V.; Bose, S. Nanoinfiltration for Enhancing Microwave Attenuation in Polystyrene-Nanoparticle Composites. ACS Appl. Nano Mater. 2020, 3, 1872–1880. [Google Scholar]
- Pan, H.; Wang, Z.; Cui, Y.; Cao, L.; Zong, C. Influences of porous reduction graphene oxide/molybdenum disulfide as filler on dielectric properties, thermal stability, and mechanical properties of natural rubber. J. Vinyl Addit. Technol. 2021, 27, 868–880. [Google Scholar] [CrossRef]
- Kumar, N.B.R.; Crasta, V.; Praveen, B.M.; Shetty, B.G. A conductive mechanism of PVA (Mowiol 10-98) filled with ZnO and MWCNT nanoparticles. Bull. Mater. Sci. 2019, 42, 124. [Google Scholar] [CrossRef]
- Bagotia, N.; Choudhary, V.; Sharma, D. Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. Part B Eng. 2019, 159, 378–388. [Google Scholar] [CrossRef]
- Zagho, M.M.; AlMaadeed, M.A.A.; Majeed, K. Mechanical properties of gamma irradiated TiO2NPs/MWCNTs/LDPE hybrid nanocomposites. Emerg. Mater. 2020, 3, 675–683. [Google Scholar] [CrossRef]
- Rath, A.P.; Krishnan, P.S.G.; Kanny, K. Studies on (polytrimethylene terephthalate)/graphene oxide/f-MWCNT hybrid nanocomposites. Discover Nano 2024, 19, 21. [Google Scholar] [CrossRef]
- Swain, S.S.; Unnikrishnan, L.; Mohanty, S.; Nayak, S.K. Hybridization of MWCNTs and reduced graphene oxide on random and electrically aligned nanocomposite membrane for selective separation of O2/N2 gas pair. J. Mater. Sci. 2018, 53, 15442–15464. [Google Scholar] [CrossRef]
- Sen, P.; Pugazhenthi, G. Synergistic effect of dual nanofillers (MWCNT and Ni–Al LDH) on the electrical and thermal characteristics of polystyrene nanocomposites. J. Appl. Polym. Sci. 2018, 135, 46513. [Google Scholar] [CrossRef]
- Torabi, A.; Jafari, S.H.; Khonakdar, H.A.; Goodarzi, V.; Yu, L.; Skov, A.L. Electroactive phase enhancement in poly(vinylidene fluoride-hexafluoropropylene)/polycarbonate blends by hybrid nanofillers. J. Appl. Polym. Sci. 2022, 139, 51825. [Google Scholar] [CrossRef]
- Nimbagal, V.; Banapurmath, N.R.; Sajjan, A.M.; Patil, A.Y.; Ganachari, S.V. Studies on Hybrid Bio-Nanocomposites for Structural Applications. J. Mater. Eng. Perform. 2021, 30, 6461–6480. [Google Scholar] [CrossRef]
- Ramu, S.; Senthilkumar, N.; Rajendran, S.; Deepanraj, B.; Paramasivam, P. Thermal Conductivity and Mechanical Characterization of Bamboo Fiber and Rice Husk/MWCNT Filler Epoxy Hybrid Composite. J. Nanomater. 2022, 2022, 5343461. [Google Scholar] [CrossRef]
- Prabhudass, J.M.; Palanikumar, K.; Natarajan, E.; Markandan, K. Enhanced Thermal Stability, Mechanical Properties and Structural Integrity of MWCNT Filled Bamboo/Kenaf Hybrid Polymer Nanocomposites. Materials 2022, 15, 506. [Google Scholar] [CrossRef] [PubMed]
- Sa, K.; Mahakul, P.C.; Saha, S.; Behara, D.; Vishwakarma, P.N.; Mahanandia, P. Investigation of Electrical and Thermal Properties of Reduced Graphene Oxide–Multiwalled Carbon Nanotubes/PMMA Hybrid Nanocomposite. Phys. Status Solidi (A) Appl. Mater. Sci. 2018, 215, 1700476. [Google Scholar] [CrossRef]
- Bitenieks, J.; Buks, K.; Merijs-Meri, R.; Andzane, J.; Ivanova, T.; Bugovecka, L.; Voikiva, V.; Zicans, J.; Erts, D. Flexible N-Type Thermoelectric Composites Based on Non-Conductive Polymer with Innovative Bi2Se3-CNT Hybrid Nanostructured Filler. Polymers 2021, 13, 4264. [Google Scholar] [CrossRef]
- Merizgui, T.; Hadjadj, A.; Gaoui, B.; Sebaey, T.A.; Prakash, V.A.; Kious, M. High Content of Siliconized MWCNTs and Cobalt Nanowire with E-Glass/Kenaf Fibers as Promising Reinforcement for EMI Shielding Material. Silicon 2022, 14, 719–729. [Google Scholar] [CrossRef]
- Kobyliukh, A.; Olszowska, K.; Szeluga, U.; Pusz, S. Iron oxides/graphene hybrid structures—Preparation, modification, and application as fillers of polymer composites. Adv. Colloid Interface Sci. 2020, 285, 102285. [Google Scholar] [CrossRef]
- Suhasini, A.; Kumar, K.V.; Maiyalagan, T. Synthesis, thermal and magnetic behavior of iron oxide-polymer nanocomposites. Sci. Eng. Compos. Mater. 2018, 25, 189–195. [Google Scholar] [CrossRef]
- Won, S.S.; Kawahara, M.; Ahn, C.W.; Lee, J.; Lee, J.; Jeong, C.K.; Kingon, A.I.; Kim, S.-H. Lead-Free Bi0.5(Na0.78K0.22)TiO3 Nanoparticle Filler–Elastomeric Composite Films for Paper-Based Flexible Power Generators. Adv. Electron. Mater. 2020, 6, 1900950. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, M.; Guan, F.; Zhao, K.; Zhao, H.; Yin, J.; Feng, Y.; Yue, D. Microstructures and dielectric properties of fluorene polyester ternary nanocomposites optimized by zero-dimensional and two-dimensional fillers. J. Appl. Polym. Sci. 2022, 139, e52710. [Google Scholar] [CrossRef]
- Tong, L.-F.; He, L.; Zhan, C.-H.; Xia, Y.-Q.; Liu, X.-B. Poly(arylene ether nitrile) Dielectric Film Modified by Bi2S3/rGO-CN Fillers for High Temperature Resistant Electronics Fields. Chin. J. Polym. Sci. Engl. Ed. 2022, 40, 1441–1450. [Google Scholar] [CrossRef]
- Sarath, P.S.; Pahovnik, D.; Utroša, P.; Onder, O.C.; Thomas, S.; Haponiuk, J.T.; George, S.C. Study the synergistic effect of fumed silica and reduced graphene oxide insertion on the thermal, mechanical, tribological, and solvent transport properties of silicone rubber nanocomposites. J. Appl. Polym. Sci. 2022, 139, e52820. [Google Scholar] [CrossRef]
- Jose, P.P.A.; Kala, M.S.; Kalarikkal, N.; Thomas, S. Dielectric Properties of PMMA Films Reinforced with Ag/rGO Hybrid Composites. J. Electron. Mater. 2020, 49, 5970–5979. [Google Scholar] [CrossRef]
- Cuenca-Bracamonte, Q.; Yazdani-Pedram, M.; Aguilar-Bolados, H. Electrical Properties of Polyetherimide-Based Nanocomposites Filled with Reduced Graphene Oxide and Graphene Oxide-Barium Titanate-Based Hybrid Nanoparticles. Polymers 2022, 14, 4266. [Google Scholar] [CrossRef]
- Park, G.T.; Chang, J.H. Comparison of properties of PVA nanocomposites containing reduced graphene oxide and functionalized graphene. Polymers 2019, 11, 450. [Google Scholar] [CrossRef]
- Gogoi, K.K.; Das, S.; Maiti, S.; Chowdhury, A. Semiconductor-Grafted Polymer-Embedded Reduced Graphene-Oxide Nanohybrid for Power-Efficient Nonvolatile Resistive Memory Applications. ACS Appl. Nano Mater. 2020, 3, 11562–11573. [Google Scholar] [CrossRef]
- Ma, M.; Xu, L.; Qiao, L.; Chen, S.; Shi, Y.; He, H.; Wang, X. Nanofibrillated Cellulose/MgO@rGO composite films with highly anisotropic thermal conductivity and electrical insulation. Chem. Eng. J. 2020, 392, 123714. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Wang, H.; Ma, W.; Wang, T.; Wang, Q. Effects of TiO2 decorated reduced graphene oxide on mechanical and tribological properties of thermosetting polyimide. Compos. Int. 2022, 29, 985–998. [Google Scholar] [CrossRef]
- Chen, S.; Chen, M.; Huang, H.; Liu, X.; Qu, B.; Wang, R.; Liu, K.; Zheng, Y.; Zhuo, D. Nanocrystalline Cellulose– and Graphene Oxide–reinforced Polyvinyl Alcohol Films: Synthesis, Characterization, and Origin of Beneficial Co-filling Effects. Appl. Compos. Mater. 2022, 29, 1597–1619. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, C.; Shi, P.; Xu, Q.; Zhu, W.; Liu, R. Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites. Int. J. Biol. Macromol. 2020, 161, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barajas, F.; Ramos-Devalle, L.F.; Sanchez-Valdes, S.; Ramirez-Vargas, E.; Martinez-Colunga, J.G.; Espinoza-Martinez, A.B.; da Silva, L.; Hernandez-Gamez, J.F.; Rodriguez-Fernandez, O.S.; Beltran-Ramirez, F.I.; et al. Epoxy/hybrid graphene-copper nanocomposite materials with enhanced thermal conductivity. J. Appl. Polym. Sci. 2022, 139, e52419. [Google Scholar] [CrossRef]
- Velayudhan, P.; Paduvilan, J.K.; Patanair, B.; Sidharthan, S.K.; Kaliyathan, A.V.; Delpouve, N.; Saiter-Fourcin, A.; Thomas, S. Physical property characterizations of natural rubber nanocomposites through experimental techniques, models and CRR concept. J. Appl. Polym. Sci. 2023, 140, e54719. [Google Scholar] [CrossRef]
- Golbaten-Mofrad, H.; Salehi, M.H.; Jafari, S.H.; Goodarzi, V.; Entezari, M.; Hashemi, M. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2241–2257. [Google Scholar] [CrossRef]
- Vanitha, K.; Raja, T.S.R. Augmenting the Insulating and Heat Transfer Properties of Silicone Oil with Filler Composite GO-CuO Nanoparticles for Transformer Applications. J. Electron. Mater. 2023, 52, 7683–7693. [Google Scholar] [CrossRef]
- Natrayan, L.; Kaliappan, S.; Hatti, G.; Patil, P.P.; Gaur, P.; Manikandan, T.; Murugan, P. Influence the Graphene Filler Addition on the Tensile Behavior of Natural Kenaf Fiber-Based Hybrid Nanocomposites. J. Nanomater. 2022, 2022, 3554026. [Google Scholar] [CrossRef]
- Amirazodi, K.; Sharif, M.; Bahrani, M. Polypyrrole doped graphene oxide reinforced epoxy nanocomposite with advanced properties for coatings of mild steel. J. Polym. Res. 2019, 26, 244. [Google Scholar] [CrossRef]
- Paduvilan, J.K.; Velayudhan, P.; Amanulla, A.; Maria, H.J.; Saiter-Fourcin, A.; Thomas, S. Assessment of Graphene Oxide and Nanoclay Based Hybrid Filler in Chlorobutyl-Natural Rubber Blend for Advanced Gas Barrier Applications. Nanomaterials 2021, 11, 1098. [Google Scholar] [CrossRef]
- Mohammadnia, M.S.; Hemmati, S.; Fasihi-Ramandi, M.; Bahari, M. Synthesis of novel surface-modified nanohydroxyapatite containing chitosan-functionalized graphene oxide decorated with glycidyl methacrylate (GO–CS–GMA) via ATRP for biomedical application. Polym. Bull. 2022, 79, 9833–9858. [Google Scholar] [CrossRef]
- Selim, M.S.; Fatthallah, N.A.; Higazy, S.A.; Zhuorui, W.; Hao, Z. Superhydrophobic silicone/graphene oxide-silver-titania nanocomposites as eco-friendly and durable maritime antifouling coatings. Ceramics Int. 2024, 50, 452–463. [Google Scholar] [CrossRef]
- Chen, K.; Wang, X.; Jiang, J.; Zuo, P.; Liu, X.; Zhuang, Q. Partially unzipped carbon nanotubes-CaCu3Ti4O12/ferroelectric polymer nanodielectric composites with high permittivity, high energy storage capacity and low dielectric loss. Bull. Mater. Sci. 2023, 46, 199. [Google Scholar] [CrossRef]
- Ezika, A.C.; Sadiku, E.R.; Adekoya, G.J.; Ray, S.S.; Hamam, Y. Quantum Mechanical Study of the Dielectric Response of V2C-ZnO/PPy Ternary Nanocomposite for Energy Storage Application. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1569–1575. [Google Scholar] [CrossRef]
- Alexandrescu, L.; Georgescu, M.; Sonmez, M.; Gurau, D.; Constantinescu, R. Rigid antimicrobial polimeric composite with PVC matrix and ZnO AND TiO2 functionalized nanoparticles. Leather Footwear J. 2019, 19, 131–140. [Google Scholar] [CrossRef]
- Wen, F.; Zhu, C.; Li, L.; Zhou, B.; Zhang, L.; Han, C.; Li, W.; Yue, Z.; Wu, W.; Wang, G.; et al. Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chem. Eng. J. 2022, 430, 132676. [Google Scholar] [CrossRef]
- Blatsi, C.; Patsidis, A.C.; Psarras, G.C. Dielectric Properties and Energy Storage of Hybrid/Boron Nitride/Titanium Carbide/Epoxy Nanocomposites. J. Compos. Sci. 2022, 6, 259. [Google Scholar] [CrossRef]
- Jang, M.; Park, S.Y.; Kim, S.K.; Jung, D.; Song, W.; Myung, S.; Lee, S.S.; Yoon, D.H.; An, K. Strategic Customization of Polymeric Nanocomposites Modified by 2D Titanium Oxide Nanosheet for High-k and Flexible Gate Dielectrics. Small 2021, 17, 2007213. [Google Scholar] [CrossRef]
- Sasidharan, S.; Anand, A. Epoxy-Based Hybrid Structural Composites with Nanofillers: A Review. Ind. Eng. Chem. Res. 2020, 59, 12617–12631. [Google Scholar] [CrossRef]
- Khodadadi, A.; Haghighi, M.; Golestanian, H.; Aghadavoudi, F. Molecular dynamics simulation of functional and hybrid epoxy based nanocomposites. Mech. Adv. Compos. Struct. 2020, 7, 233–243. [Google Scholar]
- Indira Devi, M.P.; Nallamuthu, N.; Rajini, N.; Senthil Muthu Kumar, T.; Siengchin, S.; Varada Rajulu, A.; Hariram, N. Antimicrobial properties of poly(propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films. Ionics 2019, 25, 3461–3471. [Google Scholar]
- Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Imran, M.; Losic, D. Advancing dielectric and ferroelectric properties of piezoelectric polymers by combining graphene and ferroelectric ceramic additives for energy storage applications. Materials 2018, 11, 1553. [Google Scholar] [CrossRef]
- Meyhami, T.; Hassanajili, S.; Tanideh, N.; Taheri, E. Three dimensional scaffolds of hybrid PLA/PCL/HA/silica nanocomposites for bone tissue engineering. Polym. Bull. 2023, 81, 6025–6053. [Google Scholar] [CrossRef]
- Rajabimashhadi, Z.; Naghizadeh, R.; Zolriasatein, A.; Bagheri, S.; Mele, C.; Esposito Corcione, C. Hydrophobic, Mechanical, and Physical Properties of Polyurethane Nanocomposite: Synergistic Impact of Mg(OH)2 and SiO2. Polymers 2023, 15, 1916. [Google Scholar] [CrossRef]
- Du, Y.; Wang, X.; Zhou, Z.; Zhao, F.; Li, S.; Liu, Z.; Wu, Z.; Zhao, S.; Li, L. Effective hybridization of SiO2 microsphere and graphene with tannic acid interface modifier for fabrication of multifunctional natural rubber/graphene nanocomposites. Polym. Adv. Technol. 2023, 34, 1918–1932. [Google Scholar] [CrossRef]
- Velmurugan, G.; Chohan, J.S.; Muhammed Abraar, S.A.; Sathish, R.; Senthil Murugan, S.; Nagaraj, M.; Suresh Kumar, S.; Siva Shankar, V.; Elil Raja, D. Investigation of Nano SiO2 Filler Loading on Mechanical and Flammability Properties of Jute-Based Hybrid Polypropylene Composites. Silicon 2023, 15, 7247–7263. [Google Scholar]
- Carena, E.; Mezzomo, L.; Vallana, N.; Ceribelli, N.; Di Liberto, G.; Mostoni, S.; Ferrara, C.; Mauri, M.; Lorenzi, R.; Giordano, L.; et al. PVDF-HFP Based, Quasi-Solid Nanocomposite Electrolytes for Lithium Metal Batteries. Small 2024, e2311805. [Google Scholar] [CrossRef]
- Selim, M.S.; Azzam, A.M.; Higazy, S.A.; Shenashen, M.A.; Elmarakbi, A.; Ebara, M.; El-Safty, S.A. Hierarchical biocide-free silicone/graphene-silicon carbide nanocomposite coatings for marine antifouling and superhydrophobicity of ship hulls. Chem. Eng. Sci. 2024, 291, 119929. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Huang, R.; Zhu, Z.; Fong, H.; Hou, H. High-performance polyimide nanofibers reinforced polyimide nanocomposite films fabricated by co-electrospinning followed by hot-pressing. J. Appl. Polym. Sci. 2018, 135, 46849. [Google Scholar] [CrossRef]
- Jang, D.; Beckett, L.E.; Keum, J.; Korley, L.T. Leveraging peptide–cellulose interactions to tailor the hierarchy and mechanics of peptide–polymer hybrids. J. Mater. Chem. B 2023, 11, 5594–5606. [Google Scholar] [CrossRef]
- Singh, B.; Mohanty, A. Influence of Nanodiamonds on the Mechanical Properties of Glass Fiber-/Carbon Fiber-Reinforced Polymer Nanocomposites. J. Mater. Eng. Perform. 2022, 31, 3847–3858. [Google Scholar] [CrossRef]
- Afolabi, O.A.; Kanny, K.; Mohan, T.P. Processing of Hollow Glass Microspheres (HGM) filled Epoxy Syntactic Foam Composites with improved Structural Characteristics. Sci. Eng. Compos. Mater. 2021, 28, 116–127. [Google Scholar] [CrossRef]
- Afolabi, O.A.; Kanny, K.; Mohan, T. Loading Effect of Hollow Glass Microsphere (HGM) and Foam Microstructure on the Specific Mechanical Properties and Water Absorption of Syntactic Foam Composite. Int. J. Eng. Res. Afr. 2021, 56, 34–50. [Google Scholar] [CrossRef]
- Ullas, A.V.; Kumar, D.; Roy, P.K. Epoxy-Glass Microballoon Syntactic Foams: Rheological Optimization of the Processing Window. Adv. Polym. Technol. 2019, 2019, 9180302. [Google Scholar] [CrossRef]
- Sunny, B.; Sengar, H.; Bhatia, V. A Review on the Mechanical Properties and Environmental Impact of Hollow Glass Microsphere Epoxy Composites. IIOAB J. 2018, 9, 1–8. [Google Scholar]
- Paul, D.; Velmurugan, R.; Jayaganthan, R.; Gupta, N.K.; Manzhirov, A.V. Analysis of syntactic foam—GFRP sandwich composites for flexural loads. J. Phys. Conf. Ser. 2018, 991, 012064. [Google Scholar] [CrossRef]
- Galvagnini, F.; Fredi, G.; Dorigato, A.; Fambri, L.; Pegoretti, A. Mechanical Behaviour of Multifunctional Epoxy/Hollow Glass Microspheres/Paraffin Microcapsules Syntactic Foams for Thermal Management. Polymers 2021, 13, 2896. [Google Scholar] [CrossRef]
- Ali, M.; Rubel, R.; Yusuf, S.; Siddique, M.A. A review on syntactic foams processing, preparation and applications. In Proceedings of the ICMERE, Chittagong, Bangladesh, 11–13 December 2019. [Google Scholar]
- Salleh, Z.; Islam, M.M.; Epaarachchi, J.A.; Khan, M.T.I. Effects of Water Absorption on Mechanical Properties of Glass Microballoons/Vinyl Ester Syntactic Foams. Res. Rev. Mater. Sci. Chem. 2018, 8, 59–119. [Google Scholar]
- Patila, A.N.; Kubadea, P.R.; Kulkarnib, H.B. Mechanical Properties of Hybrid Glass Micro balloons/Fly Ash Cenosphere Filled Vinyl Ester Matrix Syntactic Foams. Mater. Today Proc. 2020, 22, 1994–2000. [Google Scholar] [CrossRef]
- Kaur, G.; Rana, D.S. Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase. J. Mater. Sci. Mater. Electron. 2020, 31, 18464–18476. [Google Scholar] [CrossRef]
- Sengwa, R.J.; Dhatarwal, P. Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies. J. Mater. Sci. Mater. Electron. 2021, 32, 9661–9674. [Google Scholar] [CrossRef]
- Ritu; Patel, M.K.; Gupta, M.K. Remarkable tailoring of thermal and dielectric properties of poly(vinyl alcohol) nanocomposite via hydrothermal grown ZnAl layer di hydroxide nanostructures and graphene fillers. J. Vinyl Addit. Technol. 2024, 30, 410–422. [Google Scholar] [CrossRef]
- Sill, T.E.; Zaheer, W.; Valdes, C.G.; Balcorta, V.H.; Douglas, L.; Fletcher, T.; Steiger, S.; Spinner, N.S.; Verkhoturov, S.V.; Kalyanaraman, V.; et al. Mechanistic origins of corrosion protection of aluminum alloys by graphene/polyetherimide nanocomposite coatings. npj Mater. Degrad. 2023, 7, 35. [Google Scholar] [CrossRef]
- Kalyani, P.; Muthupandeeswari, T. Investigation on the altered properties of PVA filled magnesium oxide composite (PVA@xMgO) thin films. Polym. Bull. 2022, 79, 10115–10134. [Google Scholar] [CrossRef]
- Razak, N.I.A.; Yusoff, N.I.S.M.; Ahmad, M.H.; Zulkifli, M.; Wahit, M.U. Dielectric, Mechanical, and Thermal Properties of Crosslinked Polyethylene Nanocomposite with Hybrid Nanofillers. Polymers 2023, 15, 1702. [Google Scholar] [CrossRef]
- Ponnamma, D.; Nair, S.S.; Parangusan, H.; Hassan, M.K.; Adham, S.; Karim, A.; Al-Maadeed, M.A.A. White Graphene-Cobalt Oxide Hybrid Filler Reinforced Polystyrene Nanofibers for Selective Oil Absorption. Polymers 2020, 12, 4. [Google Scholar] [CrossRef]
- Lee, T.H.; Moghadam, F.; Jung, J.G.; Kim, Y.J.; Roh, J.S.; Yoo, S.Y.; Lee, B.K.; Kim, J.H.; Pinnau, I.; Park, H.B. In Situ Derived Hybrid Carbon Molecular Sieve Membranes with Tailored Ultramicroporosity for Efficient Gas Separation. Small 2021, 17, 2104698. [Google Scholar] [CrossRef]
- Majidi, R.; Ramezanzadeh, M.; Ramezanzadeh, B. Developing a dual-functional self-healing nanocomposite utilizing oxidized-multiwall carbon nanotube/highly-porous metal-organic framework (OCNT/ZIF-8) nano-hybrid. Appl. Mater. Today 2023, 32, 101830. [Google Scholar] [CrossRef]
- Feriancová, A.; Dubec, A.; Pagáčová, J.; Pajtášová, M. Modification of the Filler based on Kaolin and its Use in the Polymer Composites. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2022; Volume 357, p. 07004. [Google Scholar]
- Song, W.; Park, J.; Kim, D.H.; Bae, S.; Kwak, M.; Shin, M.; Kim, S.; Choi, S.; Jang, J.; Shin, T.J.; et al. Jabuticaba-Inspired Hybrid Carbon Filler/Polymer Electrode for Use in Highly Stretchable Aqueous Li-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702478. [Google Scholar] [CrossRef]
- Guo, J.Z.; Song, K.; Liu, C. (Eds.) Thermal Conduction in Polymer Composites. In Polymer-Based Multifunctional Nanocomposites and Their Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–110. [Google Scholar]
- Al Naim, A.F.; Mazher, J.; Ibrahim, S.S. Morphological and Thermal Properties of Poly(Vinyl Alcohol)/Layered Double Hydroxide Hybrid Nanocomposite Fibers. Int. J. Polym. Sci. 2020, 2020, 8858138. [Google Scholar] [CrossRef]
- Anirudh, S.; Jayalakshmi, C.; Anand, A.; Kandasubramanian, B.; Ismail, S.O. Epoxy/hollow glass microsphere syntactic foams for structural and functional application-A review. Eur. Polym. J. 2022, 171, 111163. [Google Scholar] [CrossRef]
- Afolabi, O.A.; Pandurangan, M.T.; Kanny, K. Effect of Hollow Glass Microsphere (HGM) on Impact and Flexural Properties of High-Density Syntactic Foam Based Epoxy Composites. Mater. Today Proc. 2023, 87, 246–251. [Google Scholar] [CrossRef]
- Shen, X.; Han, C.; Tao, X.; Zhang, M.; Meng, D.; Weng, L.; Liu, J.; Guan, L. Preparation and dielectric properties of multilayer Ag@FeNi-MOF/PVDF composites. J. Mater. Sci. Mater. Electron. 2022, 33, 5311–5324. [Google Scholar] [CrossRef]
- Moskvina, M.A.; Trofimchuk, E.S.; Grabovenko, F.I.; Nikonorova, N.I.; Volynskii, A.L. Template Synthesis of Calcium Phosphates in Nanoporous Polyolefin Films Obtained via Crazing Mechanism. Inorg. Mater. Appl. Res. 2020, 11, 1124–1129. [Google Scholar] [CrossRef]
- Roy, A.; Kar, S.; Ghosal, R.; Mukhopadhyay, R.; Naskar, K.; Bhowmick, A.K. Unique graphene-carbon black hybrid nanofiller by a micromechanical cleavage technique as a reinforcing agent in elastomers: Fundamental and experimental studies. J. Appl. Polym. Sci. 2023, 140, e53575. [Google Scholar] [CrossRef]
- Tu, S.; Qiu, L.; Liu, C.; Zeng, F.; Yuan, Y.-Y.; Hedhili, M.N.; Musteata, V.; Ma, Y.; Liang, K.; Jiang, N.; et al. Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial Interactions. ACS Nano 2024, 18, 10196–10205. [Google Scholar] [CrossRef]
- Gupta, S.; Bhunia, R.; Fatma, B.; Maurya, D.; Singh, D.; Prateek; Gupta, R.; Priya, S.; Gupta, R.K.; Garg, A. Multifunctional and Flexible Polymeric Nanocomposite Films with Improved Ferroelectric and Piezoelectric Properties for Energy Generation Devices. ACS Appl. Energy Mater. 2019, 2, 6364–6374. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; Huang, X.; Chen, Y.; Zhang, L.; Sheng, X. Three-in-one polymer nanocomposite coating via constructing tannic acid functionalized MXene/BP hybrids with superior corrosion resistance, friction resistance, and flame-retardancy. Chem. Eng. Sci. 2024, 283, 119429. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, Q.; Mateti, S.; Bhattacharjee, A.; Yu, Y.; Zeng, X.; Sun, R.; Huang, S.; Chen, Y.I. Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity. Adv. Nanocomposites 2024, 1, 144–156. [Google Scholar] [CrossRef]
Matrix | Filler Type | Fabrication Method | Results | Ref. |
---|---|---|---|---|
Epoxy resin | GNS | Homogenization technique | Constant stiffness, improved transverse coefficient of TE, and piezoelectric constant e31 and e15. | [3] |
Poly(lactic acid) (PLA) | CNTs, CB | Melt blending | Electrical conductivity improvement of 9.8 × 10−2 S/m, tensile strength of 70.1 MPa, flexural strength of 91.3 MPa, and impact toughness of 2.8 kJ/m2. | [6] |
Polyolefins | CaCO3, MMT | Dispersion method | Improved electrical breakdown strength (EBD). | [14] |
Epoxy resin | MoS2, h-BN | Manual mixing–degassing method | 95% increase in tensile strength, 60% in ultimate strain, 58% in Young’s modulus. | [37] |
Polystyrene | Fe3O4, MoS2, MWCNT, GO | Nano-infiltration | Superior EMI shielding performance. | [38] |
Epoxy resin | GNP | VARTM | Enhancement in flexural strength by 26%. | [18] |
Polydimethylsiloxane (PDMS) elastomeric | TiO3 (BNTK) | Hand lay-up | Higher output voltage of =100 V and output power of =0.5 mW to drive 300 light-emitting diodes. | [55] |
Isopropyl alcohol | GNPs, CNFs | Emulsification | Improved bending paper-based conductors are stable and shielded from electromagnetic interference. | [19] |
Ecoflex matrix | CNT, CB | Breath figure (BF) process | Provided an efficient electrical pathway for filler interconnections. | [114] |
Polyimide (PI) | BNNS, rGO | Sequential BFC | It increased the thermal conductivity of composites by reducing phonon dispersion at the contact points between the two fillers. | [16] |
Polyetherimide (PEI) | BNNSs, TiO2 | Solution casting, centrifuging, and drying | Regulates local electric field strength and interfacial polarization, which facilitates the enhancement of energy storage properties. | [15] |
Polypropylene | TiO2 | Melt-blending process | Improved tensile and elastic modulus by 22% and 31%, respectively. | [7] |
Polyvinyl alcohol (PVA) | NCC, GO, MWCNT, ZnO | Centrifugation, ultrasonication, and stirring. | Higher glass transition and melting temperature improved tensile strength and storage modulus. | [40,65] |
Epoxy resin | CNTs, CB | Dispersion method | The synergistic effect of CNTs/CB was successfully actualized by optimal electrical properties and the 81% enhanced fracture toughness in comparison to the neat resin. | [20] |
Poly(vinylidene) fluoride (PVDF) | PUCNTs, CCTO | Chemical oxidation | Strong resistance to electric field failure and achieved significantly enhanced energy storage capacity. And the theoretical maximum energy density reached 15.5 J cm−3. | [76] |
Poly(arylene ether nitrile) (PEN) | Bi2S3, rGO-CN | Hydrothermal method | Better mechanical properties, with improvement in tensile strength, elastic modulus, and a decrease in elongation at break. | [57] |
Polypropylene (PP) | oMMT, BN | High shear extrusion | The energy density of PP was improved from 2.98 J/cm3 to 5.14 J/cm3. | [36] |
Polycarbonate (PC) | CNT | Co-axial twin-screw extruder | Higher flexural properties and good performance of the EMI. | [22] |
Polytrimethylene terephthalate (PTT) | GO, f-MWCNT | Twin-screw micro compounder, injection-molded | The tensile and flexural strength, moisture absorption, and impact strength were all enhanced slightly. | [43] |
Polyvinyl alcohol (PVA) | NCF, GO | Solvent casting method | The tensile strength and Young’s modulus increased by 74.5% and 278.0%, respectively. | [66] |
Polypropylene | TSP | Solution casting method | The nanocomposite films exhibited enhanced tensile and thermal properties when compared with the neat matrix. | [84] |
Polyglycerol sebacate (PGS)/gelatin (gel) | NC, GO | In situ polymerization | Enhanced storage modulus to 0.9–6.4 MPa, making it suitable for simulating various soft tissues. And the cell proliferation rate increased up to 82%. | [69] |
Poly(vinyl pyrrolidone)/Poly(vinyl alcohol) (PVP/PVA) | SnO2 | Homogeneous mixing | The crystallinity of the nanocomposite and the diffraction peak intensity increased with the filler concentration as it was enhanced from 1 to 5 wt %. | [105] |
Linear low-density polyethylene (LLDPE) | CNT, GO, HAP | In situ synthesis | The mechanical properties, hardness, and tensile strength of the LLDPE nanocomposite improved with percentage increase in the filler concentration. | [27] |
Natural rubber (NR) | rPGO, MoS2 | Microwave reduction | The composite exhibited highest strength of 21.3 MPa, elongation at break of 495%, and abrasion resistance of 0.165 cm−3 at 2% of filler concentration. | [39] |
Crosslinked polyethylene (XLPE) | Al2O3 | coprecipitation method | The mechanical properties were enhanced by 14.4%, 31.7%, and 23% for tensile strength, Young’s modulus, and elongation at break, respectively. | [109] |
Matrix | Hybrid Fillers | Characterizations | Contributions | Ref. |
---|---|---|---|---|
Polyolefins | CaCO3/MMT | TEM, SEM, XRD | Positive relationships between the polar particles and the negatively charged silicates of the hybrid fillers. | [14] |
Epoxy resin | MoS2/hBN | TEM, EDS, SEM, FTIR, XRD, DSC, Tensile, DMA, Thermal Conductivity | HRTEM images show a few-layer MoS2/h-BN flake, indicating success in the exfoliation process; FTIR with absorption bands between 500 and 4000 cm−1; XRD shows a hybrid diffractogram. 95% increase in tensile strength, 60% in ultimate strain, 58% in Young’s modulus. | [37] |
Polystyrene | rGO/MoS2, rGO/Fe3O4 | XRD, TEM, SEM, EDS | SEM images show an increase in the thickness of the rGO-MoS2 layer by 50 µm. EDS shows good infiltration of rGO-MoS2, while for rGO -Fe3O4, it shows poor infiltration. | [38] |
Isopropyl alcohol | GNPs/CNFs | DSC, TGA, SEM | The DSC measurements show the temperature that occurred while the emulsion was transparent and yellowish. TGA provides an extra heating treatment that stabilizes the coating adherence of the paper. The SEM study indicates that the morphology of pure paper substrates ranges from 10 to 100 µm. | [19] |
Ecoflex matrix | CNT/CB | TEM, SEM | Good homogeneous blending of hybrid carbon and polymer resulting in high electrical percolation of the nanocomposites. | [114] |
Polyimide (PI) | BNNSs/rGO | SEM, FTIR, XPS, Raman Spectroscopy | The SEM reveals the cross-section of the hybrid BNNS/rGO/PI films. FTIR and XPS were used to identify the functional groups that existed in the hybrid fillers. | [16] |
Polyetherimide (PEI) | BNNSs/TiO2 | SEM, TEM, HRTEM, XRD, FTRI | The SEM and TEM indicated the successful preparation of the composite materials. The microstructure of the 2D hybrid structure BNNSs-TiO2 was analyzed. | [15] |
Polyvinyl alcohol (PVA) | NCC/GO | XRD, BET, FTIR, TEM, WCA, SEM, DSC | XRD and FTIR show the major characteristic peaks of the hybrid filler. | [65] |
Epoxy resin | CNT/CB | IS, FTT, SEM | The conductive filler contributed to the high dielectric of epoxy matrix and the electrical impedance decrease in the entire system. Increased Kic values by 40% compared with the neat epoxy. | [20] |
Poly(vinylidene fluoride) (PVDF) | PUCNTs/CCTO | TEM, FTIR, XRD, TGA, SEM, | XRD of the hybrid filler indicated that the characteristic peak is very strong at 26°. TGA shows two stages of weight loss (i.e., at 70 °C and 200 °C) | [76] |
Poly(arylene ether nitrile) (PEN) | Bi2S3,/ rGO | TGA, DSC, FTIR, XRD, SEM, | The residual carbon rate of the hybrid filler increased to 83.81% after the temperature was raised to 800 °C. | [57] |
Polypropylene (PP) | oMMT/BN | SEM, TEM, XRD | Increased rotation speed from 150 rpm to 500 rpm improves the dispersion of the hybrid fillers. | [36] |
Polytrimethylene terephthalate (PTT) | GO, f-MWCNT | RS, SEM, FTIR, DSC, DMA | The RS indicated an overlapped band with a band attributed to the polymer matrix, the D band, located at 1386 cm−1. | [43] |
Polyvinyl alcohol (PVA) | NCF/GO | SEM, FTIR, ZP, TGA | The SEM revealed a smoother surface, which shows a little agglomeration in the composite. This shows a good interaction between the functionality groups of GO and NCF. | [66] |
Silicone rubber (QM) | FSiO2/rGO | CF, Ws, FTIR, XRD, SEM, DMA | Improved DMA properties while coefficient of friction (CF) and wear rate (Ws) were lowered due to better dispersion of the hybrid fillers. | [58] |
Polystyrene | MWCNT/sN-LDH | XRD, FTIR, RS, | The XRD pattern combines the involvement of all segments, the intensity of the relevant phase, and their peaks. The RS shows that the spectra have a low concentration in the D-bands of the fillers, preventing their high-intensity expression. | [45] |
Poly(vinylidene fluoride-hexafluoropropylene) (PHP) | BT/MWCNT | SEM, FTIR, XRD | SEM analysis shows compatibilization of the structure by adding the hybrid fillers, while FTIR and XRD results depicted the increase in β/α ratio of the nanocomposites. | [46] |
Natural rubber (NR) | GO/SiO2; GR/SiO2 | SEM, TEM | The SEM morphology shows that the surface of GO/SiO2 is more wrinkled and crumpled compared to GR/SiO2 | [68] |
Polyglycerol sebacate (PGS)/gelatin (gel) | NC/GO | WCA, FTIR, XRD, SEM, DMA, TGA | The water contact angle values for the hybrid nanocomposites ranged from 38.42o to 66.7o, confirming the hydrophilic character of the materials. | [69] |
Epoxy resin | BN/TiC | SEM, XRD, DMA, BDS | The dynamic analysis performed for α-relaxation revealed a Vogel–Fulcher–Tammann dependency on temperature. | [80] |
Poly(methyl methacrylate) (PMMA) | rGO/Ag | XRD, FTIR, SEM, TEM, EDX, RS, | Raman analysis prepared for the samples shows the presence of the characteristic D and G bands of the graphene-related materials. The D band is at 1343 cm−1 and G band at 1573 cm−1. | [59] |
Poly(vinylidene fluoride) (PVDF) | NiO–BaTiO3 | XRD, FTIR | The incorporation of the hybrid fillers in the nanocomposites leads to the formation of long-stabilized planar zigzag and all-trans conformations, while also inducing growth in the electroactive β-phase and enhancing crystallinity. | [104] |
Linear low-density polyethylene (LLDPE) | GO/HAP; CNT/HAP | FTIR, SEM, IR, XRD | The structural modification of the nanomaterial at lower loading revealed a distinction between CNT-HAP- and GO-HAP-based composites; however, with greater loading, the difference in impact strength increase was nearly identical for both types of composites. This revealed that the robust HAP-coated/modified CNT and GO can boost the impact strength due to the adhesion and involvement of the LLDPE chain with the nanoparticles. | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afolabi, O.A.; Ndou, N. Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review. Polymers 2024, 16, 1907. https://doi.org/10.3390/polym16131907
Afolabi OA, Ndou N. Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review. Polymers. 2024; 16(13):1907. https://doi.org/10.3390/polym16131907
Chicago/Turabian StyleAfolabi, Olusegun A., and Ndivhuwo Ndou. 2024. "Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review" Polymers 16, no. 13: 1907. https://doi.org/10.3390/polym16131907
APA StyleAfolabi, O. A., & Ndou, N. (2024). Synergy of Hybrid Fillers for Emerging Composite and Nanocomposite Materials—A Review. Polymers, 16(13), 1907. https://doi.org/10.3390/polym16131907