Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bio-based biopolymer composites for food

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 450 KiB  
Review
An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications
by Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Materials 2025, 18(13), 2978; https://doi.org/10.3390/ma18132978 - 23 Jun 2025
Cited by 1 | Viewed by 447
Abstract
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to [...] Read more.
Bio-nanocomposites represent an advanced class of materials that combine the unique properties of nanomaterials with biopolymers, enhancing mechanical, electrical and thermal properties while ensuring biodegradability, biocompatibility and sustainability. These materials are gaining increasing attention, particularly in biomedical applications, due to their ability to interact with biological systems in ways that conventional materials cannot. Graphene and graphene oxide (GO), two of the most well-known nanocarbon-based materials, have garnered substantial interest in bio-nanocomposite research because of their extraordinary properties such as high surface area, excellent electrical conductivity, mechanical strength and biocompatibility. The integration of graphene-based nanomaterials within biopolymers, such as polysaccharides and proteins, forms a new class of bio-nanocomposites that can be tailored for a wide range of biological applications. This review explores the synthesis methods, properties and biotechnological applications of graphene-based bio-nanocomposites, with a particular focus on polysaccharide-based and protein-based composites. Emphasis is placed on the biotechnological potential of these materials, including drug delivery, tissue engineering, wound healing, antimicrobial activities and industrial food applications. Additionally, biodegradable polymers such as polylactic acid, hyaluronic acid and polyethylene glycol, which play a crucial role in biotechnological applications, will be discussed. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Engineered Nanomaterials)
18 pages, 5689 KiB  
Article
Silk-Corn Zein Alloy Materials: Influence of Silk Types (Mori, Thai, Muga, Tussah, and Eri) on the Structure, Properties, and Functionality of Insect–Plant Protein Blends
by Nagireddy Poluri, Christopher R. Gough, Steven Sanderlin, Christopher Velardo, Anthony Barca, Joseph Pinto, Joseph Perrotta, Maxwell Cohen and Xiao Hu
Int. J. Mol. Sci. 2025, 26(1), 186; https://doi.org/10.3390/ijms26010186 - 29 Dec 2024
Cited by 1 | Viewed by 1211
Abstract
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is [...] Read more.
Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials. This study aims to compare five different types of silk (Mori, Thai, Muga, Tussah, and Eri) fabricated into thin composite films in conjunction with plant-based proteins. To offer a wider range of morphologies, corn zein, another widely available protein material, was introduced into the silk protein networks to form blended polymers with various ratios of silk to zein. This resulted in the successful alloying of protein from an animal source with protein from a plant source. The material properties were confirmed through structural, morphological, and thermal analyses. FTIR analysis revealed the dominance of intramolecular beta-sheet structures in wild silks, while the domestic silks and zein favored random coil and alpha-helical structures, respectively. Post-treatments using water annealing further refined the structure and morphology of the films, resulting in stable composites with both inter- and intramolecular beta-sheet structures in wild silks. While in domestic silks, the random coils were converted into intermolecular beta-sheets with enhanced beta-sheet crystallinity. This improvement significantly enhanced the thermal and structural properties of the materials. By deciding on the source, ratio, and treatment of these biopolymers, it is possible to tailor protein blends for a wide range of applications in medicine, tissue engineering, food packaging, drug delivery, and bio-optics. Full article
(This article belongs to the Collection Feature Papers in 'Macromolecules')
Show Figures

Figure 1

38 pages, 12608 KiB  
Review
Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres
by Ana Catarina Vale, Liliana Leite, Vânia Pais, João Bessa, Fernando Cunha and Raul Fangueiro
Polymers 2024, 16(24), 3602; https://doi.org/10.3390/polym16243602 - 23 Dec 2024
Cited by 4 | Viewed by 2620
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review [...] Read more.
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted. Full article
Show Figures

Figure 1

18 pages, 3245 KiB  
Article
Development of Edible Coatings Based on Different Biopolymers to Enhance the Internal Shelf-Life Quality of Table Eggs
by Georgina S. Cortés-Ramírez, J. I. Velasco, Miguel Ángel Plascencia, Ángel E. Absalón and Diana V. Cortés-Espinosa
Coatings 2024, 14(12), 1525; https://doi.org/10.3390/coatings14121525 - 3 Dec 2024
Viewed by 1903
Abstract
Fresh hen eggs constitute a perishable food and are widely consumed worldwide because of their nutritional value. The eggshell is a natural barrier that protects the egg. However, it is very porous and fragile, which makes it susceptible to breakage, contamination, and deterioration, [...] Read more.
Fresh hen eggs constitute a perishable food and are widely consumed worldwide because of their nutritional value. The eggshell is a natural barrier that protects the egg. However, it is very porous and fragile, which makes it susceptible to breakage, contamination, and deterioration, affecting its internal quality during storage, reducing the half-life of the egg for consumption, and causing economic losses to producers. This study aimed to evaluate different edible composites based on biopolymers and proteins for their application as coatings for preservation and shelf-life extension. First, 32 formulations were prepared and evaluated on eggs stored at 4 °C and 25 °C for 6 weeks. Subsequently, 11 coating solutions with the lowest weight loss were selected, and 216 eggs were evaluated; the response variables were HU, YI, and yolk pH and white pH during weeks 1, 3, and 6 of storage. Finally, four formulations, biobased in chitosan, pectin, and alginate derivative composites, presented the highest internal quality results for at least 3 weeks compared with uncoated eggs. These results expand the range of biopolymers available for use as egg coatings compared with the currently used chitosan, as their production process is less expensive than that of chitosan and more attractive to the poultry industry. Full article
(This article belongs to the Special Issue Advances and Trends in Edible Films and Coatings)
Show Figures

Figure 1

16 pages, 8048 KiB  
Article
Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications
by Diana Ionela Dăescu, Diana Maria Dreavă, Anamaria Todea, Francisc Peter and Iulia Păușescu
Polymers 2024, 16(16), 2256; https://doi.org/10.3390/polym16162256 - 8 Aug 2024
Cited by 5 | Viewed by 2251
Abstract
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution [...] Read more.
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV–VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer–flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat’s quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy. Full article
(This article belongs to the Special Issue Polymeric Materials in Food Science)
Show Figures

Figure 1

46 pages, 1459 KiB  
Review
Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review
by Natalia Revutskaya, Ekaterina Polishchuk, Ivan Kozyrev, Liliya Fedulova, Valentina Krylova, Viktoriya Pchelkina, Tatyana Gustova, Ekaterina Vasilevskaya, Sergey Karabanov, Anastasiya Kibitkina, Nadezhda Kupaeva and Elena Kotenkova
Polymers 2024, 16(14), 1976; https://doi.org/10.3390/polym16141976 - 10 Jul 2024
Cited by 11 | Viewed by 2634
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment [...] Read more.
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging. Full article
(This article belongs to the Special Issue Active and Intelligent Food Packaging Polymers, 2nd Edition)
Show Figures

Figure 1

19 pages, 2141 KiB  
Article
Sustainable Food Packaging with Chitosan Biofilm Reinforced with Nanocellulose and Essential Oils
by Sofia J. Silva, Nsevolo Samba, José Mendes, João R. A. Pires, Carolina Rodrigues, Joana Curto, Arlindo Gomes, Ana Luísa Fernando and Lúcia Silva
Macromol 2023, 3(4), 704-722; https://doi.org/10.3390/macromol3040040 - 10 Oct 2023
Cited by 4 | Viewed by 2876
Abstract
Active packaging with biobased polymers aim to extend the shelf life of food and to improve the environmental sustainability of the food industry. This new concept was tested with samples of fresh poultry meat wrapped with chitosan reinforced with 2.5% of commercial nanocellulose [...] Read more.
Active packaging with biobased polymers aim to extend the shelf life of food and to improve the environmental sustainability of the food industry. This new concept was tested with samples of fresh poultry meat wrapped with chitosan reinforced with 2.5% of commercial nanocellulose (NC) incorporating 1% of essential oils (EO) from Aloysia citrodora (ACEO) and Cymbopogon citratus (CCEO). The performance of the bionanocomposites containing EOs was assessed and compared with unwrapped meat samples and samples wrapped with chitosan/NC, during a 13 day period of refrigerated storage for several physicochemical parameters related to food deterioration and microbial growth. Wrapping the meat with the chitosan/NC polymer helped to increase the shelf life of the meat. The incorporation of EOs added extra activity to the biocomposites, further delaying the meat deterioration process, by halting the lipid oxidation and the Enterobactereaceae growth until the 9th day. The composition of both EOs was similar, with the main components contributing to the increased activity of the biopolymers being geranial and neral. The performance of ACEO surpassed that of CCEO, namely on the Enterobactereaceae growth. This trend may be associated with ACEO’s higher phenolic content and the higher antioxidant activity of the compounds released by the ACEO biopolymers. Full article
(This article belongs to the Special Issue Functional Polymer-Based Materials)
Show Figures

Graphical abstract

52 pages, 1981 KiB  
Review
Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials
by Cornelia Vasile and Mihaela Baican
Polymers 2023, 15(15), 3177; https://doi.org/10.3390/polym15153177 - 26 Jul 2023
Cited by 86 | Viewed by 13519
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in [...] Read more.
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics. Full article
(This article belongs to the Special Issue Advances in Natural Polymers: Extraction Methods and Applications)
Show Figures

Figure 1

21 pages, 2868 KiB  
Review
Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application
by Andre Jiang, Rajkumar Patel, Bandana Padhan, Supriya Palimkar, Padmaja Galgali, Arindam Adhikari, Imre Varga and Madhumita Patel
Polymers 2023, 15(10), 2235; https://doi.org/10.3390/polym15102235 - 9 May 2023
Cited by 65 | Viewed by 12938
Abstract
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and [...] Read more.
A recent focus on the development of biobased polymer packaging films has come about in response to the environmental hazards caused by petroleum-based, nonbiodegradable packaging materials. Among biopolymers, chitosan is one of the most popular due to its biocompatibility, biodegradability, antibacterial properties, and ease of use. Due to its ability to inhibit gram-negative and gram-positive bacteria, yeast, and foodborne filamentous fungi, chitosan is a suitable biopolymer for developing food packaging. However, more than the chitosan is required for active packaging. In this review, we summarize chitosan composites which show active packaging and improves food storage condition and extends its shelf life. Active compounds such as essential oils and phenolic compounds with chitosan are reviewed. Moreover, composites with polysaccharides and various nanoparticles are also summarized. This review provides valuable information for selecting a composite that enhances shelf life and other functional qualities when embedding chitosan. Furthermore, this report will provide directions for the development of novel biodegradable food packaging materials. Full article
(This article belongs to the Special Issue Food Biopolymers)
Show Figures

Figure 1

20 pages, 7172 KiB  
Article
Part B: Improvement of the Optical Properties of Cellulose Nanocrystals Reinforced Thermoplastic Starch Bio-Composite Films by Ex Situ Incorporation of Green Silver Nanoparticles from Chaetomorpha linum
by Nour Houda M’sakni and Taghreed Alsufyani
Polymers 2023, 15(9), 2148; https://doi.org/10.3390/polym15092148 - 30 Apr 2023
Cited by 11 | Viewed by 2912
Abstract
The study was used in the context of realigning novel low-cost materials for their better and improved optical properties. Emphasis was placed on the bio-nanocomposite approach for producing cellulose/starch/silver nanoparticle films. These polymeric films were produced using the solution casting technique followed by [...] Read more.
The study was used in the context of realigning novel low-cost materials for their better and improved optical properties. Emphasis was placed on the bio-nanocomposite approach for producing cellulose/starch/silver nanoparticle films. These polymeric films were produced using the solution casting technique followed by the thermal evaporation process. The structural model of the bio-composite films (CS:CL-CNC7:3–50%) was developed from our previous study. Subsequently, in order to improve the optical properties of bio-composite films, bio-nanocomposites were prepared by incorporating silver nanoparticles (AgNPs) ex situ at various concentrations (5–50% w/w). Characterization was conducted using UV-Visible (UV-Vis), Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) to understand the structure–property relationships. The FTIR analysis indicated a reduction in the number of waves associated with the OH functional groups by adding AgNPs due to the formation of new hydrogen bonds between the bio-composite matrix and the CL-WE-AgNPs. Based on mathematical equations, the optical bandgap energy, the energy of Urbach, the edge of absorption (Ed), and the carbon clusters (N) were estimated for CS:CL-CNC and CS:CL-CNC-AgNPs (5–50%) nanocomposite films. Furthermore, the optical bandgap values were shifted to the lower photon energy from 3.12 to 2.58 eV by increasing the AgNPs content, which indicates the semi-conductor effect on the composite system. The decrease in Urbach’s energy is the result of a decrease in the disorder of the biopolymer matrix and/or attributed to an increase in crystalline size. In addition, the cluster carbon number increased from 121.56 to 177.75, respectively, from bio-composite to bio-nanocomposite with 50% AgNPs. This is due to the presence of a strong H-binding interaction between the bio-composite matrix and the AgNPs molecules. The results revealed that the incorporation of 20% AgNPs into the CS:CL-CNC7:3–50% bio-composite film could be the best candidate composition for all optical properties. It can be used for potential applications in the area of food packaging as well as successfully on opto-electronic devices. Full article
Show Figures

Graphical abstract

15 pages, 4229 KiB  
Article
Sustainable Starch/Lignin Nanoparticle Composites Biofilms for Food Packaging Applications
by Xunwen Sun, Qingye Li, Hejun Wu, Zehang Zhou, Shiyi Feng, Pengcheng Deng, Huawei Zou, Dong Tian and Canhui Lu
Polymers 2023, 15(8), 1959; https://doi.org/10.3390/polym15081959 - 20 Apr 2023
Cited by 40 | Viewed by 6808
Abstract
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch [...] Read more.
Construction of sustainable composite biofilms from natural biopolymers are greatly promising for advanced packaging applications due to their biodegradable, biocompatible, and renewable properties. In this work, sustainable advanced food packaging films are developed by incorporating lignin nanoparticles (LNPs) as green nanofillers to starch films. This seamless combination of bio-nanofiller with biopolymer matrix is enabled by the uniform size of nanofillers and the strong interfacial hydrogen bonding. As a result, the as-prepared biocomposites exhibit enhanced mechanical properties, thermal stability, and antioxidant activity. Moreover, they also present outstanding ultraviolet (UV) irradiation shielding performance. As a proof of concept in the application of food packaging, we evaluate the effect of composite films on delaying oxidative deterioration of soybean oil. The results indicate our composite film could significantly decrease peroxide value (POV), saponification value (SV), and acid value (AV) to delay oxidation of soybean oil during storage. Overall, this work provides a simple and effective method for the preparation of starch-based films with enhanced antioxidant and barrier properties for advanced food packaging applications. Full article
Show Figures

Figure 1

23 pages, 3942 KiB  
Article
Mechanical, Barrier, Antioxidant and Antimicrobial Properties of Alginate Films: Effect of Seaweed Powder and Plasma-Activated Water
by Hege Dysjaland, Izumi Sone, Estefanía Noriega Fernández, Morten Sivertsvik and Nusrat Sharmin
Molecules 2022, 27(23), 8356; https://doi.org/10.3390/molecules27238356 - 30 Nov 2022
Cited by 12 | Viewed by 2845
Abstract
The incorporation of natural fillers such as seaweed may potentially enhance the properties of biopolymer films. In this study, we investigated the effect of seaweed powder as a bio-filler in alginate-based films at different concentrations (10, 30, and 50%, w/w alginate) [...] Read more.
The incorporation of natural fillers such as seaweed may potentially enhance the properties of biopolymer films. In this study, we investigated the effect of seaweed powder as a bio-filler in alginate-based films at different concentrations (10, 30, and 50%, w/w alginate) and particle sizes (100 and 200 μm) on the mechanical, barrier, antioxidant, and antimicrobial properties of alginate which are essential for food packaging applications. Initially, mechanical properties of the alginate films prepared at different temperatures were evaluated to find the optimal temperature for preparing alginate solution. The addition of seaweed powder did not have any positive effect on the mechanical properties of the alginate films. However, the barrier (water vapor transmission rate) and antioxidant properties were improved with the addition of seaweed filler regardless of concentration. In addition, selected films were prepared in plasma-activated water (PAW). The mechanical properties (tensile strength, but not elongation at break) of the films prepared with PAW improved compared to the films prepared in distilled water, while a significant decrease was observed when incorporated with the seaweed filler. The films prepared in PAW also showed improved barrier properties compared to those prepared in distilled water. The antimicrobial activity of the alginate-seaweed film-forming solution was in general more pronounced when prepared with PAW and stored at 10 °C, particularly at the highest concentration of the film-forming solution (83.3% v/v). A more pronounced inhibitory effect was observed on the Gram-positive S. aureus than on the Gram-negative E. coli, which has been attributed to the different composition and structure of the respective cell walls. This study has demonstrated the potential of seaweed filler in combination with PAW towards enhanced functionality and bioactivity of alginate films for potential food packaging applications. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

40 pages, 4503 KiB  
Review
The Green Era of Food Packaging: General Considerations and New Trends
by Enrico Maurizzi, Francesco Bigi, Andrea Quartieri, Riccardo De Leo, Luisa Antonella Volpelli and Andrea Pulvirenti
Polymers 2022, 14(20), 4257; https://doi.org/10.3390/polym14204257 - 11 Oct 2022
Cited by 36 | Viewed by 6255
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food [...] Read more.
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green. Full article
(This article belongs to the Special Issue Polymeric Blend Films Used in Food Packaging)
Show Figures

Figure 1

22 pages, 1008 KiB  
Review
High Amylose-Based Bio Composites: Structures, Functions and Applications
by Marwa Faisal, Tingting Kou, Yuyue Zhong and Andreas Blennow
Polymers 2022, 14(6), 1235; https://doi.org/10.3390/polym14061235 - 18 Mar 2022
Cited by 30 | Viewed by 4961
Abstract
As biodegradable and eco-friendly bio-resources, polysaccharides from a wide range of sources show steadily increasing interest. The increasing fossil-based production of materials are heavily associated with environmental and climate concerns, these biopolymers are addressing such concerns in important areas such as food and [...] Read more.
As biodegradable and eco-friendly bio-resources, polysaccharides from a wide range of sources show steadily increasing interest. The increasing fossil-based production of materials are heavily associated with environmental and climate concerns, these biopolymers are addressing such concerns in important areas such as food and biomedical applications. Among polysaccharides, high amylose starch (HAS) has made major progress to marketable products due to its unique properties and enhanced nutritional values in food applications. While high amylose-maize, wheat, barley and potato are commercially available, HAS variants of other crops have been developed recently and is expected to be commercially available in the near future. This review edifies various forms and processing techniques used to produce HAS-based polymers and composites addressing their favorable properties as compared to normal starch. Low toxic and high compatibility natural plasticizers are of great concern in the processing of HAS. Further emphasis, is also given to some essential film properties such as mechanical and barrier properties for HAS-based materials. The functionality of HAS-based functionality can be improved by using different fillers as well as by modulating the inherent structures of HAS. We also identify specific opportunities for HAS-based food and biomedical fabrications aiming to produce cheaper, better, and more eco-friendly materials. We acknowledge that a multidisciplinary approach is required to achieve further improvement of HAS-based products providing entirely new types of sustainable materials. Full article
Show Figures

Figure 1

23 pages, 2418 KiB  
Review
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry
by Vandana Chaudhary, Sneh Punia Bangar, Neha Thakur and Monica Trif
Polymers 2022, 14(4), 829; https://doi.org/10.3390/polym14040829 - 21 Feb 2022
Cited by 61 | Viewed by 9918
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally [...] Read more.
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop