Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,955)

Search Parameters:
Keywords = bio-applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5058 KB  
Article
Chemically Modified Zein- and Poly(methyl vinyl ether-co-maleic anhydride)-Based Core–Shell Sub-Micro/Nanoparticles for Essential Oil Delivery: Antibacterial Activity, Cytotoxicity, and Life Cycle Assessment
by Liudmyla Gryshchuk, Kyriaki Marina Lyra, Zili Sideratou, Fotios K. Katsaros, Sergiy Grishchuk, Nataliia Hudzenko, Milena Násner, José Gallego and Léo Staccioli
Nanomaterials 2026, 16(2), 139; https://doi.org/10.3390/nano16020139 - 20 Jan 2026
Abstract
The threat of antimicrobial resistance (AMR) and the need for sustainable disinfectants have spurred interest in natural antimicrobials such as essential oils (EOs). However, their application is limited by volatility, poor water solubility, and cytotoxicity. Herein, we present the development of bio-based core–shell [...] Read more.
The threat of antimicrobial resistance (AMR) and the need for sustainable disinfectants have spurred interest in natural antimicrobials such as essential oils (EOs). However, their application is limited by volatility, poor water solubility, and cytotoxicity. Herein, we present the development of bio-based core–shell sub-micro-/nanocapsules (NCs) with encapsulated oregano (OO), thyme (TO), eucalyptus (EuO), and tea tree (TTO) oils to enhance antimicrobial (AM) performance and reduce cytotoxicity. NCs were synthesized via a nanoencapsulation method using chemically modified zein or poly(methyl vinyl ether-co-maleic anhydride) (GZA) as shell polymers, with selected EOs encapsulated in their core (encapsulation efficacy > 98%). Chemical modification of zein with vanillin (VA) and GZA with either dodecyl amine (DDA) or 3-(glycidyloxypropyl)trimethoxysilane (EPTMS) resulted in improvement in particle size distributions, polydispersity indices (PDIs) of synthesized NCs, and in the stability of the NC-dispersions in water. Antibacterial testing against Staphylococcus aureus and cytotoxicity assays showed that encapsulation significantly reduced toxicity while preserving their antibacterial activity. Among the formulations, GZA-based NCs modified with EPTMS provided the best balance between safety and efficacy. Despite this, life cycle assessment revealed that zein-based NCs were more environmentally sustainable due to lower energy use and material impact. Overall, the approach offers a promising strategy for developing sustainable, effective, and safe EO-based antibacterial agents for AM applications. Full article
(This article belongs to the Special Issue Recent Advances in Antibacterial Nanoscale Materials)
Show Figures

Figure 1

21 pages, 56584 KB  
Article
Cross-Species Analysis of ABA-Induced Phosphosignaling Landscapes in Rice, Soybean, and Arabidopsis
by Hinano Takase, Sotaro Katagiri, Takuma Ide, Aina Nagano, Haruki Sakurai, Hana Kokubo, Taiki Yanagisawa, Masanori Okamoto and Taishi Umezawa
Proteomes 2026, 14(1), 4; https://doi.org/10.3390/proteomes14010004 - 20 Jan 2026
Abstract
Background: Abscisic acid (ABA) is a key phytohormone that regulates plant growth and stress responses through protein phosphorylation. While ABA-induced phosphosignaling has been extensively studied in Arabidopsis thaliana, its conservation and divergence across plant species remain unclear. Methods: Here, we performed phosphoproteomic [...] Read more.
Background: Abscisic acid (ABA) is a key phytohormone that regulates plant growth and stress responses through protein phosphorylation. While ABA-induced phosphosignaling has been extensively studied in Arabidopsis thaliana, its conservation and divergence across plant species remain unclear. Methods: Here, we performed phosphoproteomic analysis using LC-MS/MS in Arabidopsis, rice (Oryza sativa), and soybean (Glycine max) to compare ABA-responsive phosphorylation profiles among monocots, dicots, and legumes. Results: ABA treatments on Arabidopsis, rice, and soybean seedlings yielded approximately 24,604, 18,865, and 24,930 phosphopeptides, respectively. Comparative analyses revealed both conserved and species-specific ABA-responsive phosphoproteins. Conclusions: This work provides insights into the evolutionary diversification of ABA signaling and its potential applications in improving crop stress tolerance. Full article
(This article belongs to the Special Issue Plant Genomics and Proteomics)
Show Figures

Figure 1

24 pages, 1100 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 - 19 Jan 2026
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
36 pages, 3438 KB  
Review
Classical Food Fermentations as Modern Biotechnological Platforms: Alcoholic, Acetic, Butyric, Lactic and Propionic Pathways and Applications
by Anna Rymuszka and Wiktoria Gorczynska
Molecules 2026, 31(2), 333; https://doi.org/10.3390/molecules31020333 - 19 Jan 2026
Abstract
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal [...] Read more.
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal metabolic routes (EMP/ED glycolysis; oxidative ethanol metabolism; butyrate-forming pathways; and the Wood–Werkman, acrylate, and 1,2-propanediol routes to propionate) and relate them to the dominant microbial groups involved, including yeasts, acetic acid bacteria, lactic acid bacteria, clostridia, and propionibacteria. We highlight how the resulting metabolite spectra—ethanol, acetic acid, butyrate, lactate, propionate, and associated secondary metabolites—underpin product quality and safety in fermented foods and beverages and enable the industrial synthesis of platform chemicals, polymers, and biofuels. Finally, we discuss current challenges and opportunities for sustainable fermentation, including waste stream valorization, process intensification, and the integration of systems biology and metabolic engineering within circular economy frameworks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

17 pages, 1911 KB  
Editorial
Advances in (Bio)Sensors for Physiological Monitoring: A Special Issue Review
by Magnus Falk and Sergey Shleev
Sensors 2026, 26(2), 633; https://doi.org/10.3390/s26020633 - 17 Jan 2026
Viewed by 239
Abstract
Physiological monitoring has become an inherently interdisciplinary field, merging advances in engineering, chemistry, biology, medicine, and data analytics to create sensors that continuously track the vital signals of the body. These developments are enabling more personalized and preventive healthcare, as wearable (bio)sensors and [...] Read more.
Physiological monitoring has become an inherently interdisciplinary field, merging advances in engineering, chemistry, biology, medicine, and data analytics to create sensors that continuously track the vital signals of the body. These developments are enabling more personalized and preventive healthcare, as wearable (bio)sensors and intelligent algorithms can detect subtle physiological changes in real-time. In the Special Issue ‘Advances in (Bio)Sensors for Physiological Monitoring’, researchers from diverse domains contributed 18 papers showcasing cutting-edge sensor technologies and applications for health and performance monitoring. In this review, we summarize these contributions by grouping them into logical themes based on their focus: (1) cardiovascular and autonomic monitoring, (2) glucose and metabolic monitoring, (3) wearable sensors for movement and musculoskeletal health, (4) neurophysiological monitoring and brain–computer interfaces, and (5) innovations in sensor technology and methods. This thematic organization highlights the breadth of the research, spanning from fundamental sensor hardware to data-driven analytics, and underscores how modern (bio)sensors are breaking traditional boundaries in healthcare. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

26 pages, 495 KB  
Review
The Role of Bio-Based Products in Plant Responses to Salt and Drought Stress
by Rossella Saccone, Giancarlo Fascella, Giuseppe Bonfante, Erika Salvagno, Enzo Montoneri, Andrea Baglieri and Ivana Puglisi
Horticulturae 2026, 12(1), 95; https://doi.org/10.3390/horticulturae12010095 - 16 Jan 2026
Viewed by 71
Abstract
Agriculture faces increasing challenges in ensuring food security under a changing climate, where abiotic stresses such as salinity and drought represent major constraints to crop productivity. These stresses induce complex physiological and biochemical alterations in plants, including osmotic imbalance, oxidative damage, and disruption [...] Read more.
Agriculture faces increasing challenges in ensuring food security under a changing climate, where abiotic stresses such as salinity and drought represent major constraints to crop productivity. These stresses induce complex physiological and biochemical alterations in plants, including osmotic imbalance, oxidative damage, and disruption of metabolic pathways, ultimately impairing growth and yield. In this context, the application of biostimulants has emerged as a sustainable strategy to enhance plant resilience. While synthetic products are widely available, growing attention is being directed toward natural bio-based products, particularly those derived from renewable biomasses and organic wastes, in line with circular economy principles. This review critically examines the current literature on bio-based products with biostimulant properties, with particular emphasis on vermicompost-derived extracts, humic-like substances, and macro- and microalgae extracts, focusing on their role in mitigating salt and drought stress in plants. The reviewed studies consistently demonstrate that these bio-products enhance plant tolerance to abiotic stress by modulating key physiological and biochemical processes, including hormonal regulation, activation of antioxidant defence systems, accumulation of osmoprotectants, and regulation of secondary metabolism. Moreover, evidence indicates that these bio-based inputs can improve nutrient use efficiency, photosynthetic performance, and overall plant growth under stress conditions. Overall, this review highlights the potential of non-microbial bio-based biostimulants as effective and sustainable tools for climate-resilient agriculture, while also underlining the need for further research to standardize formulations, clarify mechanisms of action, and validate their performance under field conditions. Full article
Show Figures

Graphical abstract

28 pages, 11292 KB  
Article
Between Nature and City: Translating Nature’s Inspiration into Ecosystem Services Solutions for Hot Climate Resilience
by Ruaa M. Ismail, Merhan M. Shahda, Sara Eltarabily and Naglaa A. Megahed
Sustainability 2026, 18(2), 935; https://doi.org/10.3390/su18020935 - 16 Jan 2026
Viewed by 126
Abstract
The increasing challenges of urbanization and environmental degradation have led to a greater need for built environments that minimize ecological consequences while actively contributing to ecosystem services (ES). Bio-Inspired Design (BID) is a promising approach that translates natural-system ideas into architectural and urban [...] Read more.
The increasing challenges of urbanization and environmental degradation have led to a greater need for built environments that minimize ecological consequences while actively contributing to ecosystem services (ES). Bio-Inspired Design (BID) is a promising approach that translates natural-system ideas into architectural and urban solutions. This study investigates how BID can be used to deliver and improve ecosystem services, like climate regulation, air purification, and energy, in the built environment, focusing on applications in hot climates and at the meso scale. The study conducts a qualitative and integrative analysis of bio-inspired concepts derived from existing research and innovative practices. It examines specific ecosystem services—selected based on previous studies—and illustrates how these strategies can improve environmental performance in urban contexts. A conceptual framework for linking biological analogies to urban functions is proposed. The framework emphasizes the interdisciplinary relationships between architecture, urban design, material science, and environmental engineering. This provides a helpful guide for researchers and practitioners on how to use BID to enhance sustainability results. The study suggests that incorporating BID principles into urban design procedures can potentially transform built environments into active contributors to ecosystem functioning, enabling them to provide ES rather than merely consuming resources. While this conclusion is conceptual, the framework highlights pathways for more resilient and sustainable urban futures. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

24 pages, 3135 KB  
Article
Investigation on Mechanical Properties of Functional Graded Hybrid TPMS Structures Inspired Bone Scaffolds
by İsmail Aykut Karamanli
Polymers 2026, 18(2), 236; https://doi.org/10.3390/polym18020236 - 16 Jan 2026
Viewed by 192
Abstract
Triply Periodic Minimal Surface (TPMS) structures, with their zero average curvature, excellent energy absorption properties, high specific strength and high surface-to-volume ratio, could be used in a wide range of applications, such as the creation of lightweight and durable structures, grafts and implants. [...] Read more.
Triply Periodic Minimal Surface (TPMS) structures, with their zero average curvature, excellent energy absorption properties, high specific strength and high surface-to-volume ratio, could be used in a wide range of applications, such as the creation of lightweight and durable structures, grafts and implants. In this study, an internal TPMS structure inspiring trabecular bone and an external TPMS structure inspiring cortical bone were combined with infill density and topologically functionally graded to obtain hybrid structures. The aim of the study was to investigate the effects of functional grading on mechanical properties, energy absorption capacity and surface/volume (S/V) ratio and to determine the best combination. The novelty of the study is to obtain hybrid structures close to bone structures with a functional grading approach. The experimental design of the study was performed using the Design of Experiment (DoE) approach and the Taguchi method. Specimens were created according to the established experimental design and fabricated using a Masked Stereolithography (mSLA)-type 3D printer with bio-resin. The fabricated structures were subjected to compression tests; the results were examined in terms of deformation behavior, first peak, maximum force, energy absorption, specific energy absorption and S/V ratio. The optimal structures for defined input parameters were determined using signal-to-noise (S/N) ratios and ANOVA results. Deformations for diamond and primitive specimens began as shear band formation. Deformations for Neovius structures were mostly as brittle fracture. The highest first peak of 18.96 kN was obtained with the DN specimens, while the highest maximum force of 23.77 kN was obtained with the ND specimens. The best energy absorption property was also obtained with ND. The highest S/V ratio was 5.65 in the GP specimens. The statistical analyses were in accordance with the experimental results. Infill density increases decreased the S/V ratio while increasing all other parameters. This demonstrated the importance of mechanical-strength/porosity optimization for bone scaffold surrogate applications in this study. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

20 pages, 2354 KB  
Article
Combined Effects of Vegetable Oil-, Micronutrient-, and Activated Flavonoid-Based Biostimulants on Photosynthesis, Nematode Suppression, and Fruit Quality of Cucumber (Cucumis sativus L.)
by Georgia Ouzounidou, Niki-Sophia Antaraki, Antonios Anagnostou, George Daskas and Ioannis-Dimosthenis Adamakis
Plants 2026, 15(2), 274; https://doi.org/10.3390/plants15020274 - 16 Jan 2026
Viewed by 171
Abstract
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield [...] Read more.
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield losses worldwide, underscoring the need for sustainable alternatives to conventional fertilization and pest management. Under greenhouse conditions, a four-month cultivation trial evaluated vegetable oil-, micronutrient-, and activated flavonoid-based biostimulants, applying Key Eco Oil® (Miami, USA) via soil drench (every 15 days) combined with foliar sprays of CropBioLife® (Victoria, Australia) and KeyPlex 120® (Miami, USA) (every 7 days). Results showed reduced parasitic nematodes by 66% in soil and decreased gall formation by 41% in roots. Chlorophyll fluorescence and infrared gas analysis revealed higher oxygen-evolving complex efficiency (38%), increased PSII electron transport, improved the fluorescence decrease ratio, also known as the vitality index (Rfd), and higher CO2 assimilation compared to conventional treatments. Processed cucumbers showed higher sugar and nearly double ascorbic acid content, with improved flesh consistency and color. Therefore, the application of these bioactive products significantly reduced nematode infestation while enhancing plant growth and physiological performance, underscoring their potential as sustainable tools for crop cultivation and protection. These results provide evidence that sustainable bioactive biostimulants improve plant resilience, productivity, and nutritional quality, offering also an environmentally sound approach to pest management. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

36 pages, 3844 KB  
Review
Bioinspired Improvement of Lignocellulosic Bio-Based Materials Against Fire and Fungi—A Comprehensive Review
by Jovale Vincent Tongco and Armando G. McDonald
Bioresour. Bioprod. 2026, 2(1), 3; https://doi.org/10.3390/bioresourbioprod2010003 - 16 Jan 2026
Viewed by 154
Abstract
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed [...] Read more.
Lignocellulosic bio-based materials, such as wood, biocomposites, and natural fibers, exhibit desirable structural properties. This comprehensive review emphasizes the foundational and latest advancements in bioinspired improvement strategies, such as direct mineralization, biomineralization, lignocellulosic nanomaterials, protein-based treatments, and metal-chelating processes. Significant focus was placed on biomimetics, emulating natural protective mechanisms, with discussions on relevant topics including hierarchical mineral deposition, free-radical formation and quenching, and selective metal ion binding, and relating them to lignocellulosic bio-based material property improvements, particularly against fire and fungi. This review evaluates the effectiveness of different bioinspired processes: mineralized and biomineralized composites improve thermal stability, nanocellulose and lignin nanoparticles provide physical, thermal, and chemical barriers, proteins offer biochemical inhibition and mineral templating, and chelators interfere with fungal oxidative pathways while simultaneously improving fire retardancy through selective binding with metal ions. Synergistic approaches integrating various mechanisms could potentially lead to long-lasting and multifunctional protection. This review also highlights the research gaps, challenges, and potential for future applications. Full article
Show Figures

Figure 1

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 243
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

25 pages, 7696 KB  
Article
Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
by Veronika Gajdosova, Beata Strachota, Vaclav Pokorny, Libuse Brozova, Jan Kozisek, Ewa Pavlova, Zdenek Stary, Miroslav Slouf and Adam Strachota
Materials 2026, 19(2), 347; https://doi.org/10.3390/ma19020347 - 15 Jan 2026
Viewed by 210
Abstract
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step [...] Read more.
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix–filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus. Full article
Show Figures

Graphical abstract

30 pages, 8636 KB  
Article
Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
by Kyriaki Marina Lyra, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, Albany Milena Lozano Násner, Jose Gallego, Elias Sakellis, Fotios K. Katsaros, Dimitris Tsiourvas and Zili Sideratou
Materials 2026, 19(2), 346; https://doi.org/10.3390/ma19020346 - 15 Jan 2026
Viewed by 238
Abstract
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical [...] Read more.
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical characterization confirmed efficient cellulose functionalization and high-quality nanofibrillation, as well as the formation of uniformly dispersed ZnO nanoparticles (≈10–20 nm) strongly integrated within the cellulose network. The ZnO content was 30 and 20 wt. % for a-CNF/ZnO and c-CNF/ZnO, respectively. Antibacterial evaluation against Escherichia coli and Staphylococcus aureus revealed enhanced activity for both hybrids, with c-CNF/ZnO displaying the lowest MIC/MBC values (50/100 μg/mL). Antiviral assays revealed complete feline calicivirus inactivation at 100 μg/mL for c-CNF/ZnO, while moderate activity was observed against bovine coronavirus, highlighting the role of surface charge. Cytotoxicity assays on mammalian cells demonstrated high biocompatibility at antimicrobial concentrations. Life cycle assessment showed that c-CNF/ZnO exhibits a lower overall environmental burden than a-CNF/ZnO, with electricity demand being the main contributor, indicating clear opportunities for further reductions through process optimization and scale-up. Overall, these results demonstrate that CNF/ZnO nanohybrids effectively combine renewable biopolymers with ZnO antimicrobial functionality, offering a sustainable and safe platform for biomedical and environmental applications. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

31 pages, 1648 KB  
Review
Beyond the Solvent: Engineering Ionic Liquids for Biomedical Applications—Advances, Challenges, and Future Directions
by Amal A. M. Elgharbawy, Najihah Mohd Noor, Nor Azrini Nadiha Azmi and Beauty Suestining Diyah Dewanti
Molecules 2026, 31(2), 305; https://doi.org/10.3390/molecules31020305 - 15 Jan 2026
Viewed by 294
Abstract
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, [...] Read more.
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, and controlled release systems, ILs have since gained significant attention in drug delivery, antimicrobial treatments, medical imaging, and biosensing. This review examines the diverse functions of ILs in contemporary therapeutics and diagnostics, highlighting their transformative capabilities in improving drug solubility, bioavailability, transdermal permeability, and pathogen inactivation. In drug delivery, ILs improve solubility of bioactive compounds, with several IL formulations achieving substantial solubility enhancements for poorly soluble drugs. Bio-ILs, in particular, show promise in enhancing drug delivery systems, such as improving transdermal permeability. ILs also exhibit significant antimicrobial and antiviral activity, offering new avenues for combating resistant pathogens. Despite their broad potential, challenges such as cytotoxicity, long-term metabolic effects, and the stability of ILs in physiological conditions persist. While much research has focused on their physicochemical properties, biological activity and in vivo studies are still underexplored. The future directions for ILs in biomedical applications include the development of bioengineered ILs and hybrid ILs, combining functional components like nanoparticles and polymers to create multifunctional materials. These ILs, derived from renewable resources, show great promise in personalized medicine and clinical applications. Further research is necessary to evaluate their pharmacokinetics, biodistribution, and long-term safety to fully realize their biomedical potential. This study emphasizes the potential of ILs to transform therapeutic and diagnostic technologies by highlighting present shortcomings and offering pathways for clinical translation, while also debating the need for continuous research to fully utilize their biomedical capabilities. Full article
Show Figures

Graphical abstract

22 pages, 2640 KB  
Review
Allomelanin: A Promising Alternative to Polydopamine for Bioapplications
by Silvia Vicenzi, Agata Pane, Chiara Mattioli, Dario Mordini, Arianna Menichetti and Marco Montalti
J. Funct. Biomater. 2026, 17(1), 40; https://doi.org/10.3390/jfb17010040 - 15 Jan 2026
Viewed by 162
Abstract
Allomelanin is a natural class of melanin found mainly in fungi and derived from nitrogen-free precursors such as 1,8-dihydroxynaphthalene (1,8-DHN). Despite its biological relevance, allomelanin remains significantly less explored than other synthetic melanin analogs, particularly compared to polydopamine, a synthetic analog of eumelanin. [...] Read more.
Allomelanin is a natural class of melanin found mainly in fungi and derived from nitrogen-free precursors such as 1,8-dihydroxynaphthalene (1,8-DHN). Despite its biological relevance, allomelanin remains significantly less explored than other synthetic melanin analogs, particularly compared to polydopamine, a synthetic analog of eumelanin. In this review, we provide a comprehensive overview of current knowledge on allomelanin, summarizing the main methods used to characterize its molecular structure, morphology, and chemical functionalities. We also present its emerging applications, ranging from human health to materials science, highlighting how its optical characteristics, ability to modulate redox processes, and antioxidant properties support its growing technological interest. Finally, we describe the natural presence and biological role of allomelanin, highlighting how knowledge of its biosynthetic processes and functions in nature can guide more effective strategies for the design and optimization of new allomelanin materials. Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Figure 1

Back to TopTop